
ri
LL

f
‘

SS,

ForApple Ics and Q :

ee Apple IIcs Toolbox Reference: Volume 3
by Apple Computer,Inc.

4

@.

rorappletcsand Apple IIcs” Toolbox Reference
1 MB Applelcs

Volume 3

A
vv
Addison-Wesley Publishing Company, Inc.

Reading, Massachusetts Menlo Park, California New York
Don Mills, Ontario Wokingham, England Amsterdam Bonn
Sydney Singapore Tokyo Madrid San Juan

@ APPLE COMPUTER,INC.

This manual is copyrighted by Apple
or by Apple’s suppliers, with all rights
reserved. Under the copyright laws,
this manual may not be copied,in
whole or in part, without the written
consent of Apple Computer, Inc. This
exception does notallow copies to be
made for others, whether or not sold,
but all of the material purchased may
be sold, given,orlent to another
person. Underthe law, copying
includes translating into another
language.

The Apple logois a registered
trademark of Apple Computer, Inc.
Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal and
state laws.

© Apple Computer, Inc., 1990
20525 Mariani Avenue
Cupertino, CA 95014-6299
(408) 996-1010

Apple, the Apple logo, AppleShare,
AppleTalk, Apple IIGS, ImageWriter,
LaserWriter, MacPaint, and Macintosh
are registered trademarks of
Apple Computer, Inc.

APDA, Apple Desktop Bus, Finder,
GS/OS, MPW, and QuickDraw are
trademarks of Apple Computer, Inc.

ITC Zapf Dingbats is a registered
trademark of International Typeface
Corporation.

Microsoft is a registered trademark of
Microsoft Corporation.

NUBUSis a trademark of

Texas Instruments.

POSTSCRIPT is a registered trademark,
andIllustrator is a trademark, of
Adobe Systems Incorporated.

Simultaneously published in the
United States and Canada.

ISBN 0-201-55019-9
ABCDEFGHIJ-MU-943210

First printing, MAY 1990

LIMITED WARRANTY ON MEDIA

AND REPLACEMENT

ALL IMPLIED WARRANTIES ON
THIS MANUAL, INCLUDING
IMPLIED WARRANTIES OF
MERCHANTABILITY AND
FITNESS FOR A PARTICULAR
PURPOSE, ARE LIMITED IN
DURATIONTO NINETY (90) DAYS
FROM THE DATE OF THE

ORIGINAL RETAIL PURCHASE OF
THIS PRODUCT.

Even though Apple has reviewed
this manual, APPLE MAKES NO
WARRANTY OR

REPRESENTATION, EITHER
EXPRESS OR IMPLIED, WITH
RESPECT TO THIS MANUAL, ITS
QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. AS
A RESULT, THIS MANUAL IS SOLD
“AS IS,” AND YOU, THE
PURCHASER, ARE ASSUMING
THE ENTIRE RISK AS TO ITS
QUALITY AND ACCURACY.

IN NO EVENT WILL APPLE BE
LIABLE FOR DIRECT, INDIRECT,
SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES
RESULTING FROM ANY DEFECT
OR INACCURACY IN THIS

MANUAL, evenif advised of the

possibility of such damages.

THE WARRANTY AND REMEDIES

SET FORTH ABOVE ARE
EXCLUSIVE AND IN LIEU OF ALL
OTHERS, ORAL OR WRITTEN,
EXPRESS OR IMPLIED. No Apple
dealer, agent, or employeeis
authorized to make any
modification, extension, or addition
to this warranty.

Somestates do not allow the
exclusion or limitation of implied
warranties or liability for incidental
Or consequential damages, so the
abovelimitation or exclusion may
not apply to you. This warranty gives
you specific legal rights, and you
may also have other rights which
vary from statetostate.

ForApple lics and

1 MB Apple lics

4

@.

Apple IIcs” Toolbox Reference

Volume 3

The Official Publicationfrom Apple Computer, Inc.

The Apple lcs Toolbox Reference is a comprehensive guide to the Apple
IIGS Toolbox, which contains more than 1000 ready-to-use tool set

routines. These routines enable programmers and developers to access
the powerful capabilities of the Apple IIGs personal computer and write

programs that comply with the Apple desktop interface standards. Using

the Toolbox also frees programmers from muchofthe tedious

background “bookkeeping” that would otherwise be required to

maintain that interface.

The Apple IIcs Toolbox Reference consists of three volumes that together

provide a complete description of the Toolbox. This volume, Volume3,
contains descriptions of hundreds of changes and additions to the
original set of programmingtools, including:

= Complete documentation for the new Resource Manager and
TextEdit Tool Set

m Descriptions of the new sound-related tool sets (the Audio
Compression and Expansion Tool Set, the MIDI ToolSet, the Note
Sequencer, and the Note Synthesizer)

= Details on how to use the newly expanded support for controls

Volume 1 begins with a brief overview of the tool sets contained in the

Toolbox at the time of publication. Following this introduction, each of

the remaining chapters describes oneof the tool sets. Arranged

alphabetically by tool set name, the chapters includethe following
information:

= An overview of what routines are in the tool set and how they can

be used

= A complete description of each routine, with the parameters for
the programming languages, and possible errors. Examples,figures,
and tables give additional information about the routines.

= A summary ofthe constants, data structures, and error codesfor
the tool set

Volume 2 follows the same format, describing the tool sets not covered

in thefirst volume.It also provides appendixes and a glossary , along

with an index covering the first two volumes.

The Apple Ics Toolbox Reference is an indispensable resourcefor the

programmerwriting programsthat access the full range of capabilities of
the Apple IIcs.

Contents

Figures and tables / xxiii

Preface What’s in This Volume / xxix

Organization / xxx

Typographical conventions / xxxi
Call format / xxxii

ToolCallName $call number / xxxii

26 Apple Desktop Bus Tool Set Update / 26-1

Error corrections / 26-2

Clarification / 26-3

27 Audio Compression and Expansion Tool Set / 27-1
Error correction / 27-2

About Audio Compression and Expansion / 27-2
Uses of the ACE Tool Set / 27-4

How ADPCM works / 27-5

ACE housekeeping routines / 27-6
ACEBootInit $011D / 27-46

ACEStartUp $021D / 27-7
ACEShutDown $031D / 27-8
ACEVersion $041D / 27-9

ACEReset $051D / 27-10

ACEStatus $061D / 27-11

ACEInfo $071D / 27-12
Audio Compression and Expansiontoolcalls / 27-13

ACECompBegin $0B1D / 27-13

ACECompress $091D / 27-14

ACEExpand $0A1D / 27-16

ACEExpBegin $0C1D / 27-18

ACEToolSet error codes / 27-19

28 Control Manager Update / 28-1

Error corrections / 28-2

Clarifications / 28-3
New features of the Control Manager / 28-4

Keystroke processing in controls / 28-4

The Control Manager and resources / 28-5

New and changed controls / 28-6
Simple button control / 28-7
Check box control / 28-7

Icon button control / 28-8

LineEdit control / 28-8

List control / 28-9

Picture control / 28-9

Pop-up control / 28-10
Radio button control / 28-11

Scroll bar control / 28-11

Size box control / 28-11

Static text control / 28-11

TextEdit control / 28-12

New control definition procedure messages / 28-13
Initialize routine / 28-14

Drag routine / 28-14

Record size routine / 28-14

Event routine / 28-14

Target routine / 28-16
Bounds routine / 28-17

Window size routine / 28-18

Tab routine / 28-19

Notify multipart routine / 28-20
Window changeroutine / 28-21

New Control Managercalls / 28-22
CallctlDefProc $2C10 / 28-22

CMLoadResource $3210 / 28-24

CMReleaseResource $3310 / 28-25

FindTargetCtl $2610 / 28-26

GetCtlHandleFromID $3010 / 28-27
GetCt1IpD $2A10 / 28-28

GetCtlMoreFlags $2E10 / 28-29

GetCtlParamPtr $3510 / 28-30

iv Apple IIs Toolbox Reference, Volume 3

Invalctls $3710 / 28-31

MakeNextCtlTarget $2710 / 28-32

MakeThisCtlTarget $2810 / 28-33

NewControl2 $3110 / 28-34

Notifyctis $2D10 / 28-36

SendEventToCtl $2910 / 28-37

SetCtlID $2B10 / 28-39
SetCtlMoreFlags $2F10 / 28-40

SetCtlParamPtr $3410 / 28-41

Control Managererror codes / 28-42

New Control Managertemplates and records / 28-43
NewContro1l2input templates / 28-43

Control template standard header / 28-44

Keystroke equivalent information / 28-47

Simple button control template / 28-48
Check box control template / 28-50
Icon button control template / 28-52

LineEdit control template / 28-55
List control template / 28-57
Picture control template / 28-60
Pop-up control template / 28-62
Radio button control template / 28-67
Scroll bar control template / 28-69
Size box control template / 28-71

Static text control template / 28-73
TextEdit control template / 28-75

Control Manager code example / 28-81
New control records / 28-87

Generic extended control record / 28-87

Extended simple button control record / 28-93

Extended check box control record / 28-95
Icon button control record / 28-97

LineEdit control record / 28-100
List control record / 28-102

Picture control record / 28-104

Pop-up control record / 28-106
Extended radio button control record / 28-110

Contents V

29

30

31

32

Extended scroll bar control record / 28-112

Extended size box control record / 28-114

Static text control record / 28-116
TextEdit control record / 28-119

Desk Manager Update / 29-1

New features of the Desk Manager / 29-2
Scrollable CDA menu / 29-2

Run queue / 29-3
Run queue example / 29-5

New Desk Managercalls / 29-6
AddToRung $1F05 / 29-6

RemoveCDA $2105 / 29-7

RemoveFromRunQ $2005 / 29-8

RemoveNDA $2205 / 29-9

Dialog Manager Update / 30-1
Error corrections / 30-2

Event Manager Update / 31-1

Error correction / 31-2
Newfeatures of the Event Manager / 31-2

Journaling changes / 31-2
Keyboard input changes / 31-3

New Event Managercalls / 31-5

GetKeyTranslation $1B06 / 31-5

SetAutoKeyLimit $1A06 / 31-6

SetKeyTranslation $1C06 / 31-7

Font Manager Update / 32-1

Error corrections / 32-2

Newfeatures of the Font Manager / 32-2
New Font Managercall / 32-4

InstallwithStats $1C1B / 32-4

vi Apple Ics Toolbox Reference, Volume 3

33 Integer Math Tool Set Update / 33-1

Clarification / 33-2

34 LineEdit Tool Set Update / 34-1

New features of the LineEdit Tool Set / 34-2

New LineEdit call / 34-4

GetLEDefProc $2414 / 344

35 List Manager Update / 35-1
Clarifications / 35-2

List Managerdefinitions / 35-3
Newfeatures of the List Manager / 35-4

NewList Managercalls / 35-5
DrawMember2 $111C / 35-5

NewList2 $161C / 35-6
NextMember2 $121C / 35-8

ResetMember2 $131C / 35-9

SelectMember2 $141C / 35-10

SortList2 $151C / 35-11

36 Memory Manager Update / 36-1

Error correction / 36-2

Clarification / 36-2
New features of the Memory Manager / 36-2

Out-of-memory queue / 36-2
Out-of-memory routine example / 36-6

New Memory Managercalls / 36-9
AddToOOMQueue $0C02 / 36-9
RealFreeMem $2F02 / 36-10

RemoveFromoOOMQueue $0D02 / 36-11

37 Menu Manager Update / 37-1
Error corrections / 37-2

Clarifications / 37-2
New features of the Menu Manager / 37-4

Menucaching / 37-6

Contents vii

Caching with custom menus / 37-7
Pop-up menus / 37-8

Pop-up menuscrolling options / 37-10

Howto use pop-up menus / 37-12
New Menu Managerdata structures / 37-15

Menu item template / 37-15
Menu template / 37-18
Menubar template / 37-20

New Menu Managercalls / 37-21
GetPopUpDefProc $3BO0F / 37-21

HideMenuBar $450F / 37-22

InsertMItem2 $3FOF / 37-23

NewMenu2 $3E0F / 37-24

NewMenuBar2 $430F / 37-25

PopUpMenuSelect $3COF / 37-27

SetMenuTitle2 $400F / 37-29

SetMItem2 $410F / 37-30

SetMItemName2 $420F / 37-31

ShowMenuBar $460F / 37-32

38 MIDI Tool Set / 38-1

About the MIDI Tool Set / 38-2

Using the MIDI Tool Set / 38-5

Tool dependencies / 38-7

MIDI packet format / 38-7
MIDI ToolSet service routines / 38-9

Real-time commandroutine / 38-10

Real-time error routine / 38-11
Input data routine / 38-12

Output data routine / 38-13
Starting up the MIDI Tool Set / 38-14
Reading time-stamped MIDI data / 38-16

Fast access to MIDI Tool Set routines / 38-20
MIDI application considerations / 38-22

MIDI and AppleTalk / 38-22

Disabling interrupts / 38-22

MIDI and other sound-related tool sets / 38-23
The MIDI clock / 38-23

Input and outputbuffer sizing / 38-24

viii Apple IIGS Toolbox Reference, Volume3

39

Loss of MIDI data / 38-25

Numberof MIDI interfaces / 38-25

MIDI housekeepingcalls / 38-26
MidiBootInit $0120 / 38-26
MidiStartUp $0220 / 38-27

MidiShutDown $0320 / 38-28

Midiversion $0420 / 38-29

MidiReset $0520 / 38-30

MidiStatus $0620 / 38-31

MIDItool calls / 38-32

MidiClock $0B20 / 38-33

MidiControl $0920 / 38-36

MidiDevice $0A20 / 38-43

MidiInfo $0C20 / 38-46

MidiReadPacket $0D20 / 38-49

MidiWritePacket $0E20 / 38-51

MIDI Tool Set error codes / 38-53

Miscellaneous Tool Set Update / 39-1

Error corrections / 39-2

Clarification / 39-2

New features of the Miscellaneous Tool Set / 39-3

Queue handling / 39-3

Interrupt state information / 39-4
New Miscellaneous ToolSet calls / 39-6

AddToQueue $2E03 / 39-6

DeleteFromQueue $2F03 / 39-7

GetCodeResConverter $3403 / 39-8

GetInterruptState $3103 / 39-9

GetIntStateRecSize $3203 / 39-10

GetROMResource $3503 / 39-10

ReadMouse2 $3303 / 39-11

ReleaseROMResource $3603 / 39-12

SetInterruptState $3003 / 39-12

Contents ix

40 Note Sequencer / 40-1

About the Note Sequencer / 40-2

Using the Note Sequencer / 40-4
Sequence timing / 40-4

Using MIDI with the Note Sequencer / 40-5
The Note Sequencer as a commandinterpreter / 40-6

Error handlers and completion routines / 40-7
Note commands / 40-8

noteOff command / 40-9

noteOn command / 40-9

Filler notes / 40-10

fillerNote command / 40-10

Control commands / 40-11

callRoutine command / 40-12

jump command / 40-13

pitchBend command / 40-14

programChange command / 40-15

tempo command / 40-15

turnNotesOff command / 40-16

setVibratoDepth command / 40-16

Register commands / 40-17
decRegister command / 40-18

ifGo command / 40-18

incRegister command / 40-19

setRegister command / 40-19

MIDI commands / 40-20

midiChnlPress command / 40-21

midiCt1Change command / 40-21

midiNoteOff command / 40-21

midiNoteOn command / 40-22

midiPitchBend command / 40-22

midiPolyKey command / 40-22

midiProgChange command / 40-23

midiSelChn1Mode command / 40-23

midiSetSysEx1 command / 40-23

midiSysExclusive command / 40-24

midiSysCommon command / 40-24

midiSysRealTime command / 40-25

Patterns and phrases / 40-26

x Apple IIGs Toolbox Reference, Volume 3

41

A sample Note Sequencer program / 40-28

Note Sequencer housekeepingcalls / 40-37

SeqBootInit $011A / 40-37

SeqStartUp $021A / 40-38

SeqShutDown $031A / 40-41

Seqversion $041A / 40-42

SeqReset $051A / 40-43

SeqStatus $061A / 40-44

Note Sequencercalls / 40-45
ClearIncr $0A1A / 40-45

GetLoc $0C1A / 40-46

Get.Timer $0B1A / 40-47

SeqAllNotesOff $0D1A / 40-48

SetIncr $091A / 40-49

SetInstTable $121A / 40-50

SetTrkInfo $0EIA / 40-51

StartInts $131A / 40-52

StartSeq $0F1A / 40-53

StartSeqRel $151A / 40-55

Sample sequence with relative addressing / 40-58
StepSeq $101A / 40-60
StopInts $141A / 40-61

StopSeq $111A / 40-62

Note Sequencererror codes / 40-63

Note Synthesizer / 41-1

Aboutthe Note Synthesizer / 41-2
Using the Note Synthesizer / 41-3

The sound envelope / 41-3

Note Synthesizer envelopes / 41-5
Instruments / 41-7
DOC memory / 41-10
Generators / 41-10

Note Synthesizer housekeeping calls / 41-13
NSBootInit $0119 / 41-13
NSStartUp $0219 / 41-14

NSShutDown $0319 / 41-15

NSVersion $0419 / 41-16

NSReset $0519 / 41-17

Contents xi

NSStatus $0619 / 41-18
Note Synthesizer calls / 41-19

AllNotesoOff $0D19 / 41-19

AllocGen $0919 / 41-20

DeallocGen $0A19 / 41-21

Noteoff $0C19 / 41-22

NoteOn $0B19 / 41-23

NSSetUpdateRate $0E19 / 41-25

NSSetUserUpdateRtn $0F19 / 41-26

Note Synthesizer error codes / 41-27

42 Print Manager Update / 42-1

Error corrections / 42-2

Clarifications / 42-2

Newfeatures of the Print Manager / 42-3

New Print Managercalls / 42-4
PMLoadDriver $3513 / 42-4

PMUnloadDriver $3413 / 42-5

PrGetDocName $3613 / 42-6

PrGetPgOrientation $3813 / 42-7

PrGetPrinterSpecs $1813 / 42-8

PrSetDocName $3713 / 42-9

Previously undocumented Print Managercalls / 42-10

PrGetNetworkName $2B13 / 42-10

PrGetPortDvrName $2913 / 42-11

PrGetPrinterDvrName $2813 / 42-12

PrGetUserName $2A13 / 42-13

PrGetZoneName $2513 / 42-14

Print Managererror codes / 42-15

43, QuickDraw II Update / 43-1

Error corrections / 43-2

Clarification / 43-3
New features of QuickDraw II / 43-4

QuickDraw II speed enhancement / 43-4

New font header layout / 43-5

xi Apple Ics Toolbox Reference, Volume 3

44 QuickDraw II Auxiliary Update / 44-1

45

New feature of QuickDraw II Auxiliary / 44-2
New QuickDrawII Auxiliary calls / 44-3

CalcMask $0E12 / 44-3

SeedFill $0D12 / 44-8

SpecialRect $0C12 / 44-15

Resource Manager / 45-1

About the Resource Manager / 45-2

About resources / 45-5

Identifying resources / 45-5
Resource types / 45-6
Resource IDs / 45-6

Resource names / 45-7

Using resources / 45-8

Resource attributes / 45-9

Resourcefile format / 45-12

Resourcefile IDs / 45-12

Resource file search sequence / 45-13

Resourcefile layout and data structures / 45-14
Resourcefile header / 45-16

Resource map / 45-17
Resource free block / 45-19

Resource reference record / 45-20
Resource converter routines / 45-21

ReadResource / 45-22

WriteResource / 45-24

ReturnDiskSize / 45-26

Application switchers and desk accessories / 45-27
Resource Manager housekeeping routines / 45-29

ResourceBootInit $011E / 45-29

ResourceStartUp $021E / 45-30

ResourceShutDown $031E / 45-31

ResourceVersion $041E / 45-32

ResourceReset $051E / 45-33

ResourceStatus $061E / 45-34

Resource Managertool calls / 45-35
AddResource $0CIE / 45-35

CloseResourceFile $0BIE / 45-37

Contents

CountResources $221E / 45-38

CountTypes $201E / 45-39
CreateResourceFile $091E / 45-40

DetachResource $181E / 4541

GetCurResourceaApp $141E / 45-42

GetCurResourceFile $121E / 45-43

GetIndResource $231E / 45-44

GetIndType $211E / 45-46

GetMapHandle $261E / 45-47

GetOpenFileRefNum $1FIE / 45-49

GetResourceattr $1B1E / 45-51

GetResourceSize $1DIE / 45-52

HomeResourceFile $151E / 45-53

LoadAbsResource $271E / 45-54

LoadResource $0EIE / 45-56

MarkResourceChange $101E / 45-58

MatchResourceHandle $1E1E / 45-59

OpenResourceFile $0A1E / 45-61

ReleaseResource $171E / 45-63

RemoveResource $0FIE / 45-64

ResourceConverter $281E / 45-65

SetCurResourceApp $131E / 45-67

SetCurResourceFile $111E / 45-68

SetResourceAttr $1C1E / 45-69

SetResourceFileDepth $251E / 45-70

SetResourceID $1Al1E / 45-71

SetResourceLoad $241E / 45-72

UniqueResourceID $191E / 45-73

UpdateResourceFile $0DIE / 45-75

WriteResource $161E / 45-76

Resource Manager summary / 45-77

46 Scheduler / 46-1

47 Sound Tool Set Update / 47-1

Error corrections / 47-2

Clarification / 47-3

xiv Apple IIGs Toolbox Reference, Volume 3

FFStartSound / 47-3

Moving a sound from the Macintosh computerto the Apple IIGs
computer / 47-4

Sample code / 47-5
New information / 47-6

Introduction to sound on the Apple IIGs computer / 47-7
Note Sequencer / 47-7
Note Synthesizer / 47-8

Sound generallogic unit (GLU) / 47-8

Vocabulary / 47-8

Oscillator / 47-8

Generator / 47-9

Voice / 47-9

Sample rate / 47-9
Drop sample tuning / 47-10

Frequency / 47-10
Sound RAM / 47-10
Waveform / 47-10

DOCregisters / 47-10
Frequencyregisters / 47-11
Volumeregister / 47-12

Waveform Data Sample register / 47-12
Waveform Table Pointer register / 47-12

Control register / 47-12

Bank-Select/Table-Size/Resolution register / 47-13

Oscillator Interrupt register / 47-15

Oscillator Enable register / 47-15

A/D Converter register / 47-15
MIDI andinterrupts / 47-16

New Sound ToolSet calls / 47-17
FFSetUpSound $1508 / 47-17

FFStartPlaying $1608 / 47-18

ReadDOCReg $1808 / 47-19

SetDOCReg $1708 / 47-21

48 Standard File Operations Tool Set Update / 48-1

Newfeatures of the Standard File Operations Tool Set / 48-2
New filter procedure entry interface / 48-4

Custom item-drawing routines / 48-5

Contents XV

Standard File data structures / 48-6

Reply record / 48-6
Multifile reply record / 48-8

File type list record / 48-9

Standard File dialog box templates / 48-11

OpenFile dialog box templates / 48-12
Save File dialog box templates / 48-18

New or changed Standard File calls / 48-27
SFAl1Caps $0D17 / 48-27

SFGetFile2 $0E17 / 48-28

SFMultiGet2 $1417 / 48-30
SFPGetFile2 $1017 / 48-32
SFPMultiGet2 $1517 / 48-34
SFPPutFile2 $1117 / 48-36
SFPutFile2 $0F17 / 48-38
SFReScan $1317 / 48-40

SFShowInvisible $1217 / 48-41

Standard File error codes / 48-42

49 TextEdit Tool Set / 49-1

About the TextEdit Tool Set / 49-2

TextEdit call summary / 49-4

How to use TextEdit / 49-6
Standard TextEdit key sequences / 49-11

Internal structure of the TextEdit Tool Set / 49-14
TextEdit controls and the Control Manager / 49-14

TextEdit filter procedures and hook routines / 49-15
Generic filter procedure / 49-16

doEraseRect $0001 / 49-17

doEraseBuffer $0002 / 49-18

doRectChanged $0003 / 49-18

Keystrokefilter procedure / 49-19
Word wrap hook / 49-22

Word break hook / 49-24
Custom scroll bars / 49-26

TextEdit data structures / 49-27
High-level TextEdit structures / 49-28

TEColorTable / 49-28
TEFormat / 49-31

xvi Apple IIGs Toolbox Reference, Volume 3

TEParamBlock / 49-33

TERuler / 49-39

TEStyle / 49-41

Low-level TextEdit structures / 49-42

TERecord / 49-42

KeyRecord / 49-53

StyleItem / 49-55

SuperBlock / 49-56

SuperHandle / 49-57

SuperItem / 49-58

TabItem / 49-59
TextBlock / 49-60

TextList / 49-61

TextEdit housekeeping routines / 49-62

TEBootInit $0122 / 49-62

TEStartUp $0222 / 49-63

TEShutDown $0322 / 49-64
TEVersion $0422 / 49-65

TEReset $0522 / 49-66

TEStatus $0622 / 49-67
TextEdit tool calls / 49-68

TEActivate $0F22 / 49-68

TEClear $1922 / 49-69

' TEClick $1122 / 49-70

TECompactRecord $2822 / 49-72

TECopy $1722 / 49-73

TECut $1622 / 49-74

TEDeactivate $1022 / 49-75

TEGetDefProc $2222 / 49-76

TEGetInternalProc $2622 / 49-77

TEGetLastError $2722 / 49-78

TEGetRuler $2322 / 49-79

TEGetSelection $1C22 / 49-81

TEGetSelectionStyle $1E22 / 49-82

TEGetText $0C22 / 49-85

TEGetTextInfo $0D22 / 49-89

TEIdle $0E22 / 49-92

TEInsert $1A22 / 49-93

TEKey $1422 / 49-96

TEKill $0A22 / 49-98

Contents

TENew $0922 / 49-99

TEOffsetToPoint $2022 / 49-101

TEPaintText $1322 / 49-103

TEPaste $1822 / 49-106

TEPointToOffset $2122 / 49-107

TEReplace $1B22 / 49-109

TEScroll $2522 / 49-112

TESetRuler $2422 / 49-114

TESetSelection $1D22 / 49-116

TESetText $0B22 / 49-117

TEStyleChange $1F22 / 49-120

TEUpdate $1222 / 49-123

TextEdit summary / 49-124

50 Text Tool Set Update / 50-1

New features of the Text Tool Set / 50-2

51 Tool Locator Update / 51-1

Error correction / 51-2

Clarification / 51-2

New features of the Tool Locator / 51-2

Tool set startup and shutdown / 51-3
Tool set numbers / 51-6

Tool set dependencies / 51-8

New Tool Locator calls / 51-13

MessageByName $1701 / 51-13

SetDefaultTPT $1601 / 51-16

ShutDownTools $1901 / 51-17

StartUpTools $1801 / 51-18

52 Window Manager Update / 52-1

Error corrections / 52-2

Clarifications / 52-3

Newfeatures of the Window Manager / 52-3
Alert windows / 52-6

Special characters / 52-10
Alert window example / 52-11

xviii Apple IIGS Toolbox Reference, Volume 3

TaskMaster result codes / 52-13

Window Managerdata structures / 52-15

Window record / 52-15

Task record / 52-17

New Window Managercalls / 52-21
AlertWindow $590E / 52-21

CompileText $600E / 52-23

DrawInfoBar $550E / 52-26

EndFrameDrawing $5BOE / 52-27

ErrorWindow $620E / 52-28

GetWindowMgrGlobals $580E / 52-30

NewWindow2 $610E / 52-31

ResizeWindow $5C0E / 52-34

StartFrameDrawing $5A0E / 52-35

TaskMaster $1D0E / 52-36

TaskMasterContent $5DO0E / 52-46

TaskMasterDA $5FOE / 52-48

TaskMasterKey $5EQE / 52-49

GDRPrivate $540E / 52-52

Error messages / 52-53

Resource Types / E-1

Resource type numbers / E-2

rAlertString $8015 / E-3

rClinputString $8005 / E4

rcloutputString $8023 / E-5

rControlList $8003 / E-6

rControlTemplate $8004 / E-7

Control template standard header / E-7
Keystroke equivalent information / E-12

Simple button control template / E-13

Check box control template / E-15

Icon button control template / E-17

LineEdit control template / E-21
List control template / E-23 .
Picture control template / E-26
Pop-up control template / E-28
Radio button control template / E-32
Scroll bar control template / E-34

Contents xix

Size box control template / E-36
Static text control template / E-38
TextEdit control template / E-40

rCString $801D / E-46

rCtlColorTb1 $800D / E-46

rErrorString $8020 / E47

rIcon $8001 / E-48

rKTransTable $8021 / E-49

rListRef $801C / E-51

rMenu $8009 / E-52

rMenuBar $8008 / E-55

rMenuItem $800A / E-56

rPicture $8002 / E-58

rPString $8006 / E-59

rResName $8014 / E-60

rStringList $8007 / E-61

rStyleBlock $8012 / E-62

rTERuler $8025 / E-64

rText $8016 / E-66

rTextBlock $8011 / E-67

rTextForLETextBox2 $800B / E-68

rToolStartup $8013 / E-69

rTwoRects $801A / E-71

rWindColor $8010 / E-72

rWindParaml $800E / E-74

rWindParam2 $800F / E-78

F Delta Guide / F-1

Apple Desktop Bus / F-2
Error corrections / F-2

Clarification / F-3

Audio Compression and Expansion Tool Set / F-4

Error correction / F-4

Control Manager / F-5

Error corrections / F-5

Clarifications / F-6

Dialog Manager / F-7

Error corrections / F-7

XX Apple IIGs Toolbox Reference, Volume 3

Event Manager / F-8

Error correction / F-8

Font Manager / F-9

Error corrections / F-9

Integer Math Tool Set / F-10

«Clarification» / F-10

List Manager / F-11
-Clarifications» / F-11

List Managerdefinitions / F-12

Memory Manager / F-13
Error correction / F-13

-Clarification» / F-13

Menu Manager/ F-14

Error corrections / F-14

«Clarifications» / F-15

Miscellaneous Tool Set / F-16

Error corrections / F-16

Clarification / F-17

Print Manager / F-18

Error corrections / F-18

«Clarifications» / F-18

QuickDraw II / F-19

Error corrections / F-19

Clarification / F-20

Sound Tool Set / F-21

Error corrections / F-21

Clarification / F-22

FFStartSound / F-22

Moving a sound from the Macintosh computer
to the Apple IIGS computer / F-24

Sample code / F-24
Tool Locator / F-25

Error correction / F-25

Clarification / F-25

Window Manager / F-26

Error corrections / F-26

Clarifications / F-27

Contents xxi

G Toolbox Code Example / G-1

The Busy .p module / G-2

The busybox.r module / G-4

The uEvent .p module / G-78

The uGlobals.p module / G-83

The uMenu.p module / G-86

The uUtils.p module / G-89

The uWindow.p module / G-92

Glossary / GL-1

Index / X-1

xxii Apple IIGs Toolbox Reference, Volume 3

Figures and tables

Audio Compression and Expansion Tool Set / 27-1

Table 27-1 ACE Tool Set error codes / 27-19

Control Manager Update / 28-1

Figure 28-1

Figure 28-2

Figure 28-3

Figure 28-4
Figure 28-5
Figure 28-6
Figure 28-7
Figure 28-8

Figure 28-9
Figure 28-10

Figure 28-11

Figure 28-12

Figure 28-13

Figure 28-14
Figure 28-15
Figure 28-16
Figure 28-17
Figure 28-18

Figure 28-19
Figure 28-20

Figure 28-21
Figure 28-22

Figure 28-23
Figure 28-24
Figure 28-25
Figure 28-26
Figure 28-27
Figure 28-28
Figure 28-29

Figure 28-30

Table 28-1

Control template standard header / 28-44
Keystroke equivalent record layout / 28-47

Item template for simple button controls / 28-48

Control template for check box controls / 28-50

Control template for icon button controls / 28-52

Control template for LineEdit controls / 28-55
Control template for list controls / 28-57
Control template for picture controls / 28-60
Control template for pop-up controls / 28-62
Unselected pop-up menu / 28-66

Selected pop-up menu with left-justified title / 28-66
Selected pop-up menu with right-justified title / 28-66
Control template for radio button controls / 28-67

Control template for scroll bar controls / 28-69
Control template for size box controls / 28-71

Control template for static text controls / 28-73
Control template for TextEdit controls / 28-75
Generic extended control record / 28-88

Extended simple button control record / 28-93
Extended check box control record / 28-95
Icon button control record / 28-97
LineEdit control record / 28-100
List control record / 28-102
Picture control record / 28-104
Pop-up control record / 28-106
Extended radio button control record / 28-110
Extended scroll bar control record / 28-112
Extended size box control record / 28-114

Static text control record / 28-116
TextEdit control record / 28-119

Control Managererror codes / 28-42

Figures and tables xxiii

31

Desk Manager Update / 29-1

Figure 29-1 Run item header / 29-4

Event Manager Update / 31-1

Figure 31-1 Journal record for mouse event / 31-2

Figure 31-2 Keystroke translation table / 31-3

LineEdit Tool Set Update / 34-1

Figure 34-1 LineEdit edit record (new layout) / 34-3

Memory Manager Update / 36-1

Figure 36-1 Out-of-memory routine header / 36-4

Menu Manager Update / 37-1

Figure 37-1 Scrolling menus with indicator at bottom / 37-5
Figure 37-2 Menurecord layout for cached menu / 37-7
Figure 37-3. Window with pop-up menus / 37-9
Figure 37-4 Dragging through a pop-up menu / 37-10
Figure 37-5 Type 1 pop-up menu / 37-11
Figure 37-6 Type 2 pop-up menu / 37-12
Figure 37-7. MenuItemTemplatelayout / 37-15

Figure 37-8 MenuTemplatelayout / 37-18

Figure 37-9 MenuBarTemplate layout / 37-20

Table 37-1 Menu Managercalls that work with pop-up menus / 37-13

MIDI Tool Set / 38-1

Figure 38-1 MIDI application environment / 38-5

Table 38-1 MIDI Tool Set error codes / 38-53

Miscellaneous Tool Set Update / 39-1

Figure 39-1 Queue header layout / 39-4

Figure 39-2 Interrupt state record layout / 39-5

Xxiv Apple IIGs Toolbox Reference, Volume 3

Note Sequencer / 40-1

Figure 40-1 Format of a seqltem / 40-6
Figure 40-2 Note command format / 40-8
Figure 40-3 Control command format / 40-11
Figure 40-4 Register command format / 40-17
Figure 40-5 MIDI command format / 40-20

Table 40-1 Note Sequencererror codes / 40-63

Note Synthesizer / 41-1

Figure 41-1 Sound envelope, showing attack, decay, sustain, and
release / 41-4

Figure 41-2 Typical Note Synthesizer envelope / 41-5
Figure 41-3 Instrument data structure / 41-7
Figure 41-4 Generator control block layout (GcBRecord) / 41-12

Table 41-1 Note Synthesizer error codes / 41-27

Print Manager Update / 42-1

Table 42-1 Print Manager error codes / 42-15

QuickDraw II Update / 43-1

Figure 43-1 Pen state record / 43-2
Figure 43-2 QuickDraw picture header / 43-3
Figure 43-3 New font headerlayout / 43-5

QuickDraw II Auxiliary Update / 44-1

Figure 44-1 Mask generation with calcMask / 44-3
Figure 44-2 Implementing a lasso tool with calcMask / 44-4
Figure 44-3 Mask generation with SeedFill / 44-8
Figure 44-4 Implementing a paint buckettool with seedFill / 44-9
Figure 44-5 Paint bucket tool with undo / 44-10
Figure 44-6 Implementing a “from-the-inside” lasso tool with

SeedFill / 4411

Figures and tables xxv

45 Resource Manager / 45-1

Figure 45-1 A resourcefile search chain / 45-13
Figure 45-2 Resource file internal layout / 45-15
Figure 45-3 Resource file header (ResHeaderRec) / 45-16

Figure 45-4 Resource map (MapRec) / 45-17
Figure 45-5 Resource free block (FreeBlockRec) / 45-19
Figure 45-6 Resource reference record (ResRefRec) / 45-20

Table 45-1 Resource Manager constants / 45-77
Table 45-2 Resource Managerdata structures / 45-78
Table 45-3 Resource Managererror codes / 45-80

47 Sound Tool Set Update / 47-1

Figure 47-1 DOC registers / 47-14

48 Standard File Operations Tool Set Update / 48-1

Figure 48-1 New-style reply record / 48-6
Figure 48-2 Multifile reply record / 48-8
Figure 48-3 File type list record / 48-9

Table 48-1 Standard File error codes / 48-42

49 TextEdit Tool Set / 49-1

Figure 49-1 TEColorTable layout / 49-28
Figure 49-2. TEFormatlayout / 49-31
Figure 49-3 TEParamBlocklayout / 49-33
Figure 49-4 TERulerlayout / 49-39

Figure 49-5 TEStyle layout / 49-41

Figure 49-6 TERecordlayout / 49-42

Figure 49-7 KeyRecordlayout / 49-53
Figure 49-8 sStyleItem layout / 49-55
Figure 49-9 SuperBlock layout / 49-56
Figure 49-10 SuperHandle layout / 49-57

Figure 49-11 SuperItem layout / 49-58
Figure 49-12 TabItem layout / 49-59
Figure 49-13. TextBlocklayout / 49-60
Figure 49-14 TextList layout / 49-61

Table 49-1 TextEdit constants / 49-124

Table 49-2 TextEdit data structures / 49-126
Table 49-3 TextEdit error codes / 49-134

xxvi Apple IIGS Toolbox Reference, Volume 3

51 Tool Locator Update / 51-1

52

Figure 51-1

Table 51-1

Table 51-2

Tool set Start Stop record / 51-4

Tool set numbers / 51-6
Tool set dependencies / 51-8

Window Manager Update / 52-1

Figure 52-1
Figure 52-2
Figure 52-3
Figure 52-4

Figure 52-5

Table 52-1

Table 52-2

Table 52-3
Table 52-4

AlertWindowinputstring layout / 52-6
An alert string / 52-11
Analert string defining a custom rectangle / 52-12
Windowrecord definition / 52-15
Task record definition / 52-17

Standard alert window sizes / 52-8

Substitution string array / 52-11
TaskMaster result codes / 52-13

Error messages / 52-53

Resource Types / E-1

Figure E-1

Figure E-2

Figure E-3

Figure E-4
Figure E-5
Figure E-6
Figure E-7
Figure E-8
Figure E-9

Figure E-10

Figure E-11

Figure E-12

Figure E-13

Figure E-14
Figure E-15
Figure E-16
Figure E-17

Figure E-18
Figure E-19

Alert string, type rAlert St ring ($8015) / E-3
GS/OSclass 1 input string, type rclInputString

($8005) / E-4
GS/OSclass 1 output string, type rcloutput String

($8023) / E-5
Controllist, type rcont rolList ($8003) / E-6
Control template standard header / E-7
Keystroke equivalent record layout / E-12
Item template for simple button controls / E-13
Control template for check box controls / E-15

Control template for icon button controls / E-17
Control template for LineEdit controls / E-21
Control templatefor list controls / E-23

Control template for picture controls / E-26

Control template for pop-up controls / E-28

Control template for radio button controls / E-32
Control template for scroll bar controls / E-34

Control template for size box controls / E-36

Control template for static text controls / E-38

Control template for TextEdit controls / E-40

C string, type rcSt ring ($801D) / E-46

Figures and tables xxvii

Figure E-20 Icon, type rIcon ($8001) / E-48
Figure E-21 Keystroke translation table, type rKTransTable

($8021) / E-49
Figure E-22 List memberreference array element, type rListRef

($801C) / E-51
Figure E-23 Menu template, type rMenu ($8009) / E-52
Figure E-24 Menubarrecord, type rMenuBar ($8008) / E-55
Figure E-25 Menuitem template, type rMenuItem ($800A) / E-56
Figure E-26 QuickDrawpicture, type rPicture ($8002) / E-58
Figure E-27 Pascalstring, type rPSt ring ($8006) / E-59
Figure E-28 Resource namearray, type rResName ($8014) / E-60
Figure E-29 Pascalstring array, type rStringList ($8007) / E-61
Figure E-30 TextEdit style information, type rst yleBlock

($8012) / E-62
Figure E-31 TextEdit ruler information, type rTERuler ($8025) / E-64
Figure E-32 Text block, type rtext ($8016) / E-66
Figure E-33 Text block, type rTextBlock ($8011) / E-67
Figure E-34 LETextBox2 inputtext, type rfextForLETextBox2

($800B) / E-68
Figure E-35 Tool set start-stop record, type rfoolStartup

($8013) / E-69
Figure E-36 Tworectangles, type rTwoRect s ($801A) / E-71

Figure E-37 Window colortable, type rwindColor ($8010) / E-72
Figure E-38 Window template, type rwindParam1 ($800E) / E-75
Figure E-39 Window template, type rwindParam2 ($800F) / E-78

Table E-1 Resources listed by resource type number / E-2

F Delta Guide / F-1

Figure F-1_ Pen state record / F-20

Figure F-2. QuickDraw picture header / F-20

Xxviii Apple IIGs Toolbox Reference, Volume 3

Preface What’s in This Volume

This third volume of the Apple IIcs Toolbox Reference contains new

material describing numerous changes to the Apple IIGs® Toolbox.It

contains six previously undocumentedtool sets, many new tool calls, and

numerous corrections and additions. This document comprises both new

material and information issued in a previous update that wasavailable

only from the Apple Programmers and Developers Association (APDA™),.

xxix

Organization

Like the first two volumes of the Apple IIcs Toolbox Reference, this book contains chapters

that are devoted to individual tool sets or managers. The chapters are arranged
alphabetically by tool set name. Chapters documenting the six new tool sets appear in

alphabetical order amongthe other chapters. Chapters that discuss previously existing

tool sets or managers carry the sametitles as before, with the addition of the word
Update. Note that chapters in this book have been numbered sequentially following the

last chapter in Volume2 of the Apple IIGs Toolbox Reference.

Each chapter contains a brief introductory note, which indicates whether the chapter
updates existing material or describes a new tool set or manager. Update chapters contain
one or more ofthese sections:

Error corrections Corrects errors in the previous toolbox documentation

Clarifications Provides additional information about previously documented

toolbox features, including bug fixes
New features Describes new toolset features

Newtoolcalls Defines newtoolcalls

New chapters follow the organizationalstyle ofthe first two volumes.

In addition to the chapters that discuss the various tool sets and managers, this book

contains several appendixes.

Appendix E, “Resource Types” Contains format and content information forall

defined Apple IIGS resource types
Appendix F, “Delta Guide’ Collects all corrections to andclarifications of

the previous volumesof the Toolbox Reference
in a single location

Appendix G, “Toolbox Code Example” Presents a sample program, BusyBox, which
illustrates the use of manyof the new features
of the Apple IIGs Toolbox

Xxx Apple IIGs Toolbox Reference, Volume3

Typographical conventions

This update largely follows the typographical conventionsofthefirst two volumesofthe
Apple lIGs Toolbox Reference. New terms appear in boldface when they are introduced.

Tool call parameter names appearin italics. Record field names, routine names, and code

listings appear in the Courier font.

Preface xxxi

Call format

This book documents toolcalls for all the new tool sets and severalof the existing tool

sets in the following format.

Certain elements of this format may not appearin all calls. For example, stack diagrams

are omitted from those calls that do not affect the stack.

ToolCallName Scallnumber

A description ofthe call’s function.

Parameters

Stack before call

Previous contents

— longParmName - Long—Description of longParmName parameter

wordParmName Word—Description of wordParmName parameter

<—SP
Stack after call

Previous contents

- Result - Long—Description ofcall result value Cif any)

<—SP

Errors $XXXX Error name Description of the error code.

C C code. The C language function declaration for the call.

stackParameter Detailed description of stack input or output parameter, where

appropriate.

Xxxii Apple IIGS Toolbox Reference, Volume 3

Chapter 26 Apple Desktop Bus Tool Set Update

This chapter contains new information about the Apple Desktop Bus™
Tool Set. The complete reference tothis tool set is in Volume1,

Chapter3 of the Apple IIcs Toolbox Reference.

26-1

Error corrections

The parameter table for the ReadKeyMicroData toolcall ($0A09) in Volume 1 ofthe

Toolbox Reference incorrectly describes the format for the readConfig command ($0B).
The description should be as follows:

Command datalength Name

$0B 3

Action

readConfig Read configuration; dataPtrrefers to a
3-byte data structure.

Byte ADB keyboard and mouse

addresses.
Low nibble = keyboard
High nibble = mouse

Byte Keyboard layout and display

language.

Low nibble = keyboard layout

High nibble = display language

Byte Repeat rate and delay.

Low nibble = repeatrate

High nibble = repeat delay

The description ofthis configuration record is also wrongin the tool set summary. The
following list correctly describes ReadConfigRec,the configuration record for the
ReadKeyMicroDatatoolcall.

Name Offset Type

rcADBAddr $0000 Byte

rcLayoutOrLang $0001 Byte

rcRepeatDelay $0002 Byte

26-2 Apple IGS Toolbox Reference, Volume 3

Definition

ADB keyboard and mouse addresses.

Low nibble = keyboard
High nibble = mouse

Keyboard layout and display language.
Low nibble = keyboard layout
High nibble = display language

Repeat rate and delay.

Low nibble = repeatrate
High nibble = repeat delay

Clarification

This section presents new information about the AsyncADBReceivecall.

You can call AsyncADBReceiveto poll a device using register 2, andit will return certain

useful information about the status of the keyboard. The call returns the following
information in the specified bits of register 2:

bit 5:

bit 3:

bit 2:

bit 1:

bit 0:

0 = Caps Lock key down

1 = Caps Lock key up

0 = Control key down

1 = Control key up

0 = Shift key down
1 = Shift key up

0 = Option key down
1 = Option key up

0 = Command key down

1 = Commandkey up

Chapter 26 Apple Desktop Bus ToolSet Update 26-3

Chapter 27 Audio Compression and
Expansion Tool Set

This chapter documentsthe features of the new Audio Compression and
Expansion (ACE) ToolSet. This is a new tool set not previously

documented in the Apple IIGs Toolbox Reference.

27-1

Error correction

An error exists in the Apple IIGs Toolbox Reference Update (distributed by APDA™). The

description of the ACEExpandtoolcall contains an incorrect parameter block. This book
contains a corrected description.

About Audio Compression and Expansion

The Audio Compression and Expansion (ACE) tools are a set ofutility routines that
compress and expanddigital audio data. The tool set is designed to support a variety of
methods of audio signal compression, but at present only one method is implemented.

With the present method of compression supported by the ACE tools, you can choose

either of two compression ratios. You can compress a digital audio signal to halfits

original size or to three-eighthsits original size. The ratio used is determined by a
parameter of the ACE call that does the compression or expansion.

The obvious advantages of compressing an audio signal are that it takes up less space on

the disk, and less time is needed to transfer the data. A digital sample that is compressed
to halfits original size occupies only half the space and takes only half as longto transfer.
Such a samplecan load from the disk twice as fast as the uncompressed version and is
much more economical to upload to or download from a commercial computer network.
Note, however, that data compression and expansion require significant processor
resources, and therefore take sometime.

The followinglist summarizes the capabilities of the ACE ToolSet. The toolcalls are
grouped according to function. Later sections of this chapter discuss audio compression
and expansionin greater detail and define the precise syntax ofthe toolcalls.

Routine Description

Housekeeping routines

ACEBoot Init Called only by the Tool Locator—mustnotbe called by
an application

ACEStartUp Initializes the ACE Tool Set for use by an application
ACEShutDown Informs the ACE ToolSet that an application is finished

using its tool calls
ACEVersion Returns the ACE ToolSet version number

27-2

—

Apple IIGs Toolbox Reference, Volume 3

ACEReset Called only when the system is reset—mustnot becalled

by an application

ACEStatus Returns the operational status of the ACE Tool Set

ACEInfo Returns information about the ACE Tool Set operating
environment

Audio compression and expansiontoolcalls

ACECompBegin Prepares the ACE tools to compress an audio sequence

ACECompress Compresses an audio sequence

ACEExpand Expands a previously compressed audio sequence

ACEExpBegin Prepares the ACEtools to expand a previously
compressed audio sequence

Chapter 27 Audio Compression and Expansion Tool Set 27-3

Uses of the ACE ToolSet

Software often includes sound effects, music, or speech. The problem with cligitized

soundis that it requires considerable storage space. A faithful monophonic digitization

of 30 seconds of an FM radio signal occupies nearly a megabyte (MB) of disk space. A user

might be somewhatreluctant to use a program that occupies so muchspace only to

achieve sound effects. The ACE Tool Set provides you with the means to compress

digitized sound signals to minimize this problem.

ACE presently supports Adaptive Differential Pulse Code Modulation (ADPCM). This
compression method assumesthat audio signals tend to be relatively smooth and

continuous.If the amplitude (loudness) of a typical audio signal is plotted againsttime,
the graphis relatively smooth compared to a spreadsheet, a text document, or other
typical files that may contain arbitrarily distributed byte values. As a result, it is possible
to compute the probable value of the next sample in the signal. ADPCM usesa static

model of what the change between any given value and the nextis likely to be and a

dynamic model of what the next actual change should be, based on the valueslast

observed. ADPCM examinesthe next signal to compareits predictions against the

observed value and then encodesthe difference between its prediction and the actual
value.

ADPCMrelies on therelative predictability of audio signals. If the changes in an audio
signal are too great or sudden, ADPCMrecords an erroneousvalue. In general, a certain

Statistically predictable amount of error appears in any signal that is compressed by this

method. The errors appear not as distortions of the quality of the sound but as pink

noise, or hiss, muchlike the hiss on ordinary cassette recordings. Thus, although ADPCM
compression is suitable for many sound-compressiontasks, particularly for sound effects

or speech in gamesor business software,it is not the best choice for very high-fidelity

reproduction. A signal compressed by the ADPCM methodis likely to be too noisy for use

in professional audio, such as film soundtrack recording.

274 Apple Ics Toolbox Reference, Volume 3

How ADPCM works

The ADPCM method assumesthat any particular digital sample in a block of audio data

has a valuethatis relatively close to the values on either side of it. ADPCM predicts what

the next value will be, and comparesit with the value that is actually there. The difference

is encoded in a value that is some numberofbits in size, which is specified by the

application code. With ADPCM the programmercan specify encoded values either 3 or 4

bits wide. Because the original data is stored in 8-bit samples, the compressionrate is
either 8 to 3 or 8 to 4, depending on which size a particular program specifies.

Errors result when the difference between the original signal and the value that ADPCM

predicts is greater than can be encodedin the specified numberof bits. The encoded
value then effectively becomes a random value, and sois perceived as audio noise. If the
target code is 3 bits wide, then the difference observed by the compression algorithm is
morelikely to be out of range than if the code size is 4 bits. Greater compression,
therefore, results in greater loss of fidelity.

As stated earlier, the fidelity loss sounds like hiss, not like a gross distortion of the audio

signal. Even using inaccurate predictive models, ADPCM tends to producehiss rather than

more offensive forms of distortion. The technique tracks the gross characteristics of

audio signals well even whenthe rate oferrors is high. At worst, an expandedsignal sounds

faithful to the original, though muffled by noise.

L\ Important The noisier a sampled signal is, the noisier the sample compressed by

using ADPCM will be. Any noisethatis introducedinto the signal
produces discontinuities in the audio data and causeserrors in the
compression and expansion process. For this reason, any editing,

equalization, or other sound-processing effects should be applied to

the original signal before it is compressed. ADPCM compression

should bethe last process applied to an audio signal beforeit is stored
on the final disk. a

Chapter 27 Audio Compression and Expansion Tool Set 27-5

ACE housekeeping routines

These routines allow you to start and stop the ACE tools and to obtain status information

about the toolset.

ACEBootInit $011D

Performs anyinitializations of the ACE tools that are necessary at boottime.

A Warning Applications must not make this call. a

Parameters This call has no input or output parameters. The stack is unaffected.

Errors None

C extern pascal void ACEBootInit ();

274 Apple Ics Toolbox Reference, Volume 3

ACEStartUp $021D

Initializes the ACE tools for use by an application. The ACEStartUproutine sets aside a

region of bank $00, specified by dPageAddr, for use as the ACEtools’ direct page. At
present, ACE uses one 256-byte page of bank $00 memory asits direct page. Because

future versions of the ACE tools may use a different amount of memory for the direct
page, applications should determine the correct size for the direct page with a call to
ACEInfo.Thetoolset’s direct page should always begin on a page boundary.

Parameters

Stack before call

Previous contents

dPageAddr Word—Beginning of direct-page space

<—SP

Stack after call

| Previous contents |

| |

Errors $1D01 aceIsActive ACE ToolSet already started up.
$1D02 aceBadpDP Requested direct-page location

invalid.

C extern pascal void ACEStartUp (dPageAddr);

Word dPageAddr;

Chapter 27 Audio Compression and Expansion Tool Set 27-7

ACEShutDown $031D

Performs any housekeepingthat is required to shut down the ACE ToolSet. Applications

that use the ACEtools should always makethis call before quitting. The application, not

the ACE ToolSet, must allocate and deallocate direct-page space in bank zero.

Parameters This call has no input or output parameters. The stack is unaffected.

Errors $1D03 aceNotActive ACE ToolSet not started up.

C extern pascal void ACEShutDown();

27-8 Apple IIGs Toolbox Reference, Volume 3

ACEVersion $041D

Returns the version numberof the currently installed ACE Tool Set. This call can be made

before a call to ACEStartUp. The versionInfo result will contain the information in the

standard format defined in Appendix A, “Writing Your Own ToolSet,” in Volume 2 of the

Toolbox Reference.

Parameters

Stack before call

Previous contents

Space Word—Spaceforresult

<—SP

Stack after call

Previous contents

versionInfo Word—Version number of ACE ToolSet

<—SP

Errors None

C extern pascal Word ACEVersion();

Chapter 27 Audio Compression and Expansion Tool Set 27-9

ACEReset $051D

Resets the ACE ToolSet. This call is made by a system reset.

A Warning Applications should never makethis call because it performs tool set

initializations appropriate to a machine reset. a

Parameters This call has no input or output parameters. The stack is unaffected.

Errors None

C extern pascal void ACEReset ();

27-10 Apple IIGs Toolbox Reference, Volume 3

ACEStatus $061D

Returns a Boolean flag, which is TRUE (nonzero) if the tool set has been started up and

FALSE(zero)if it has not. This call can be made before a call to ACEStartUp.

@ Note: If your program issues this call in assembly language,initialize the result space on
the stack to NIL. Upon return from ACESt atus,your program need only check the

value of the returned flag. If the ACE ToolSet is not active, the returned value will be

FALSE (NIL).

Parameters

Stack before call

Previous contents

Space Word—Spacefor result

<—SP

Stack after call

Previous contents

activeFlag Word—Boolean value indicating whether tool set is active

<—SP

Errors None

C extern pascal Boolean ACEStatus();

Chapter 27 Audio Compression and Expansion Tool Set 27-11

ACEInfo $071D

Returns certain information aboutthe currently installed version of the ACEtools. This call

can be madebefore a call to ACEStartUp.The infoltemCode parameterspecifies what

information thecall is to return. At present, the only valid value is 0. This value specifies

that the call will return the size in bytes of the direct page that ACE requires.

Parameters

Stack before call

Previous contents

- Space - Long—Spacefor result

infoltemCode Word—What type of information to return

<—SP

Stack after call

Previous contents

-— infoltemValue - Long—Requested information

<—SP

Errors $1D04 aceNoSuchParam Requested information type not
supported.

C extern pascal LongWord ACEInfo(infoItemCode);

Word infoItemCode;

27-12 Apple IIGS Toolbox Reference, Volume 3

Audio Compression and Expansion tool calls

The Audio Compression and Expansiontoolcalls are all new calls, added to the Apple IIcs®
Toolboxsince the first two volumes of the Toolbox Reference were published.

ACECompBegin S0BID

Prepares the ACE tools to compress a new audio sequence. After AcECompress

completes the process of compression and returns, the ACE tools normally save certain

relevantstate information so that subsequentcalls to AcECompresscan be used on

succeeding parts of the same audio sequence.It is often desirable to break a long audio

signal into smaller parts for compression. The preservation of appropriate state variables

allows a call to ACECompress (to compresspart of such a signal and then, for a

subsequentcall, to continue the compression process where the previouscall left off.

Just before a program calls AcECompress to process a new audio sample,it shouldcall
ACECompBeginto ensurethatall saved state information is cleared and that

ACECompress isstarting with a “clean slate.” When an application is compressing a long
audio sample as a numberofsmallerpieces, it should call AcECompBegin only before the
first subsequence. Thereafter, the application should not makethis call until all parts of
the sequence have been processed. Thestate information that ACE preserves between

calls allows ACECompressto process subsequent blocks, using appropriate information

from previous ones.

Call AcECompBeginonly before compressingthe first sequence of a series of sub-

sequences, or before compressing a single sequencethatis not part of a longer sequence.

Parameters This call has no input or output parameters. The stack is unaffected.

Errors $1D03 aceNotActive ACE Tool Set not started up.

C extern pascal void ACECompBegin ();

Chapter 27 Audio Compression and Expansion Tool Set 27-13

ACECompress $091D

Compresses a numberof blocks of digital audio data and stores the compressed data at a

specified location. Each input block contains 512 bytes of data to be compressed. Your

program also specifies the compression method, using the method parameter.

Before issuing the ACECompresstoolcall, your program should call acEcompBegin to

prepare the ACE ToolSet for audio compression.

@ Note: Because ACECompressis guaranteed to reducethesize of every byte of source

data, the resulting data can be stored in the sameplace as the source data. Thatis, the
source and destination locations in RAM can bethe same.

Parameters

Stack before call

Previous contents

- STC - Long—Handle to the source data

- srcOffset - Long—Offset from src to the actual storage location

- dest - Long—Handle to storage for the resulting data

— destOffset - Long—Offset from dest to the actual storage location

nBlks Word—Numberof 512-byte blocks of source data

method Word—Method of compression

<—SP

Stack after call

| Previous contents

| | <—SP

Errors $1D05 §aceBadMethod Specified compression method

not supported.
$1D06 aceBadSre Specified source invalid.
$1D07 aceBadDest Specified destination invalid.
$1D08 §aceDataOverlap Specified source and destination

areas overlap in memory.

27-14 Apple IIGs Toolbox Reference, Volume 3

src, dest

srcOffset, destOffset

nBlks

method

extern pascal void ACECompress(src, srcOffset, dest,

destOffset, nBlks, method);

Handle sre, dest;

Long srcOffset, destOffset;

Word nBlks, method;

Contain handles to source and destination data locations,
respectively.

Contain byte offsets from locations specified by src and dest,
respectively. These parameters allow your program to seta starting

location within an input sample or output buffer.

Specifies the number of 512-byte blocks of audio data to be
compressed.

Specifies the compression method to be used by AcECompress
whenprocessing the data. A value of 1 causes each byte of input data
to be compressed to a 4-bit quantity; a value of 2 yields 3 bits per

byte of input data.

Clearly, the value of the method parameter helps determine the size of

the resulting data that ACECompress Stores at destOffset bytes

beyondthe location specified by dest. When using method 1 (4-bit

compression), you can calculate the number of bytes ACECompress
will produce by multiplying the contents of the nBlks parameter by the
numberofbytes in a data block (512), multiplying that result by the
numberofresult bits per input byte (4), and then dividing by the
numberofbits in a byte (8), as in this formula:

((nBlks * 512) * 4) /8

For method 2, the samebasic calculation applies, except that each

input byte results in 3 output bits.

((nBlks * 512) * 3)/8

Chapter 27. Audio Compression and Expansion Tool Set 27-15

ACEExpand S0A1D

Expands a previously compressed audio sample, using the method specified by the

method parameter, andstores it at the specified location. Unlike AcECompress,
ACEExpandcannotstore its results in the same location asits source because the
resulting data is 2 to 2.67 times as large as the source.

Parameters

Stack before call

Previous contents

- STC - Long—Handle to the source data

- srcOffsett - Long—Offset from src to the actual storage location

- dest -| Long—Handleto storage for the resulting data

- destOffset - Long—Offset from dest to the actual storage location

nBlks Word—Numberof 512-byte blocks to be stored at dest

method Word—Method of compression

<—SP

Stack after call

| Previous contents |

| | <—S§P

Errors $1D05 §aceBadMethod Specified compression method

not supported.
$1D06 aceBadSrc Specified source invalid.
$1D07 aceBadDest Specified destination invalid.
$1D08 aceDataOverlap Specified source and destination

areas overlap in memory.

27-16 Apple IIGs Toolbox Reference, Volume 3

src, dest

srcOffset, destOffset

nBlks

method

extern pascal void ACEExpand(src, srcOffset, dest,

destOffset, nBlks, method);

Handle src, dest;

Long srcOffset, destOffset;

Word nBlks, method;

Contain handles to source and destination data locations,

respectively.

Contain byte offsets from locations specified by src and dest,
respectively. These parameters allow your program toset a starting
location within the input compressed data or output buffer.

Specifies the number of 512-byte blocks of expanded data to be
returned at the location destOffset bytes beyond dest.

Specifies the method used when the sample was compressed. A value
of 1 indicates that ACEExpandis to expand each4-bit quantity in the
compressed sample into an 8-bit byte. A value of 2 causes

ACEExpand (to process 3-bit quantities in the compressed sample.

Chapter 27 Audio Compression and ExpansionTool Set 27-17

ACEExpBegin $0C1D

Prepares ACE to expand a new sequence. Like ACECompBegin, ACEExpBeginClears any

stored state information from previous calls before expanding compressed data. You can

expand a large compressed sample by processingit as a series of subsequences with
repeated calls to ACEExpand, because certain appropriate state variables are preserved
from call to call. If you are calling ACEExpand to work on a new sequencethat bears no
relation to any other compressed sequence, or to expand a short sequencein just onecall

to ACEExpand, you should makethis call first to clear these state variables. If, however,

you are makinga call to ACEExpand to expand a sequencethatis a part of a longer

sequence andis notthe first subsequence, you should not makethiscall first, becauseit
will throw awayall information that ACE has recorded about the previous sequences.

Parameters This call has no input or output parameters. The stack is unaffected.

Errors $1D03 aceNotActive ACETool Set not started up.

C extern pascal void ACEExpBegin();

27-18 Apple IIGs Toolbox Reference, Volume 3

ACE Tool Set error codes

Table 27-1 lists the error codes that may be returned by Audio Compression and Expansion Tool

Set calls.

a Table 27-1 ACE ToolSet error codes

Value Name Definition

$0000 aceNoError Noerror

$1D01 aceIsActive ACE Tool Set already started up
$1D02 aceBadDP Requested direct-page location invalid
$1D03 aceNotActive ACEToolSet not started up

$1D04 aceNoSuchParam Requested information type not supported
$1D05 aceBadMethod Specified compression method not

supported
$1D06 aceBadSrc Specified source invalid
$1D07 aceBadDest Specified destination invalid

$1D08 aceDataOverlap Specified source and destination areas
overlap in memory

$1DFF aceNot Implemented The requested function has not been

implemented

Chapter 27 Audio Compression and Expansion ToolSet 27-19

Chapter 28 Control Manager Update

This chapter documents new features of and information about the
Control Manager. The complete Control Manager documentationis in
Volume1, Chapter 4 of the Apple Ilcs Toolbox Reference.

28-1

Error corrections

This section documents errors in Chapter 4, “Control Manager,” in Volume1 of the Toolbox
Reference.

a Thecolortable for the size box control in the Toolbox Referenceis incorrect. The
correct table follows, with new information in boldface.

growOutline word

growNorBack word

growSelBack word

Outline color

bits 15-8 = zero

bits 7-4 = outline color

bits 3-0 = Zero

Colorof interior when not highlighted

bits 15-8 = Zero

bits 7-4 = background color

bits 3-0 = icon color

Color of interior when highlighted

bits 15-8 = zero

bits 7-4 = background color

bits 3-0 = icon color

= A statement on page 4-76 of the Toolbox Reference, in the section that covers the

SetCtlParamsCall, is not strictly accurate. The statementthat the call “sets new

parameters to the control's definition procedure” is misleading; the call does notset
the parametersdirectly. Rather, it sends the new parameters to the control’s definition
procedure, unlike SetCt 1Value, which actually sets the appropriate value in the
control record and then passes the valueto the definition procedure.

28-2 Apple IIGs Toolbox Reference, Volume 3

Clarifications

The following items provide additional information about features previously described
in Volume 1 of the Toolbox Reference.

s The barArrowBack entry in the scroll bar color table was never implementedas first
intended andis no longerused.

= The Control Managerpreserves the current port across Control Managercalls, including

those that are passed through other tools, such as the Dialog Manager.

= The Control Managerpreserves the following fields in the port of a window that
contains controls:

bkPat

pnLoc

pnSize

pnMode

pnPat

pnMask

pnvis

fontHandle

fontID

fontFlags

txSize

txFace

txMode

SpExtra

chExtra

fgColor

bgColor

background pattern
pen location
pen size

pen mode
pen pattern
pen mask

pen visibility
handle of current font

ID of current font
font flags

text size

text face
text mode
value of space extra

value of character extra
foreground color
background color

a The control definition procedures for simple buttons, check boxes, and radio buttons

can now compute the size of their boundary rectangles automatically. The computed

size is based onthesize ofthetitle string of the button.

a To ensure predictable color behavior, you should alwaysalign color table-based
controls on an even pixel boundary in 640 mode. If you do notdoso,the controlwill
not appear in the colors you specify, due to the effect of dithering.

Chapter 28 Control Manager Update 28-3

New features of the Control Manager

The Control Manager now supports a numberof new features. This section discusses these

new features in detail.

Colors in control tables now use all four colorbits in both modes; they formerly used
only 2 bits in 640 mode. This change affects all control color tables defined in the
Toolbox Reference. For any applications that use color controls in 640 mode, the effect

is that controls will be a different color. This change allows dithered colors to be used

with controls.

The scroll bar control definition procedure now maintains the required relationship

among the ct lValue, viewSize, and dataSizefields of a scroll bar record. Prior

to Apple IIGS system software 5.0, it was the responsibility of the application to

ensure that the ct lvaluefield never exceeded the difference between dataSize
and viewSize (dataSize —- viewSize). Thescroll bar control definition procedure
now adjusts the ct lvalue or dataSizefield if the other quantities are set to invalid
values.

For example,if viewSize = 30 and dataSize = 100, then the maximumallowable value

of ct lvalueis 70. If an application set the ct 1Valuefield to 80, the Control Manager
would adjust dataSize to 110. In this same example,if ct 1value = 70 and the

application set dataSizeto 90, the Control Manager would adjust ct 1valueto 60.

Changes to the viewSize field can also invalidate the three settings. In the example
mentioned before, in which ct lvalue = 70, viewSize = 30, and dataSize = 100,
setting viewSize to 40 would cause the Control Managerto set ct 1Valueto 60.

Keystroke processing in controls

Apart from the normal use of keystrokes to enter data, the Control Manager now supports

two special uses for keyboard data: keystroke equivalents and switching between
certain types of controls.

284 Apple IIGs Toolbox Reference, Volume 3

Manytypes of controls support keystroke equivalents, which allow the userto select the

control by pressing a keyboard key. You assign a keystroke equivalent for a controlin its

control template (see “New Control Manager Templates and Records” later in this chapter
for specifics on control templates). When the user presses that key, TaskMaster will return

an eventjust as if the user had clicked in the control. Further, the system will automatically

highlight and dim the control. Note that this feature is available only to controls that have
been created with the NewCont ro12 toolcall, and for which the fCt lWant Events bit

has beenset to 1 in the moreFlags word of the control template. See “New and Changed
Controls”later in this chapter for information about which controls support keystroke
equivalents.

Edit field controls (LineEdit controls and TextEdit controls) accept keystrokes as part of

their normal function. Note, however, that more than oneedit field control can be used in

a window. Under these circumstances, the user moves among these controls by pressing
the Tab key. In addition, the system must keep track of which control is meantto receive
user keystrokes. To do so, the Control Manager now supports the notion of a target
control. The target controlis the edit field control that is the current recipient of user

actions (keystrokes and menu items).

The Control Manager and resources

You can nowspecify most data for the Control Managerusing either pointers, handles, or

resource IDs (see Chapter 45, “Resource Manager,” in this book for complete information

on resources). Because the form of the specification may differ, the Control Manager(as

well as many other tool sets) also requires a reference type, which indicates whether a

particular reference is a pointer, handle, or resource ID. You set the reference type and the

reference as appropriate in the control template you pass to the Control Manager

NewContro1l2 toolcall. Note further that the type of reference you use when you specify

data for the Control Manager governs how that data is later accessed. For example, if you
originally specify the color table for a control with a handle, then anytime the system

returns a reference to that color table, the reference is a handle; similarly, your application
must alwaysrefer to that color table with a handle.

You can use resourcesto store a wide variety of items for the Control Manager. For

example, the titles associated with simple buttons, radio buttons, and check boxes
created with the NewCont ro12tool call may be stored as resources. As a result, your

application may free the space devoted to thetitle string after the control has been

created. Similarly, you can define control definition procedures as resources. The Control
Managerloads the code whenit is needed.

Chapter 28 Control Manager Update

The Control Manager handles resources differently according to the relative permanence

of the data. For temporary information, the Control Managerloads the resource, uses the

data, and then frees the resource (using the Re leaseResourcetoolcall). For permanent

information, the Control Manager loads the resource each time the resource is accessed.
Such resources should be unlocked and unpurgeable.

The current version of the Apple IIGS system software keeps the control definition
procedure for icon button controls in the system resourcefile. In the future, the system

may store other definition procedures in this resource file. Consequently, you should
ensure that the Resource Managercan reach the system resourcefile in any resource search

path you set up (see Chapter 45, “Resource Manager,” for more information on the

resourcefile search path).

New and changed controls

The Control Manager now supports more standard control types. In addition to the

original standard controls (buttons, check boxes, radio buttons, size boxes, and scroll

bars), the Control Manager now supportsthe following controls:

a Static text controls display text messages in a rectangle that you define. The

displayed text supports word wrap andcharacterstyling. This text cannot be edited
by the user.

a Picture controls draw a picture into a defined rectangle.

s Icon button controls allow you to present an icon as part of a button control. A

defined icon is displayed within the bounds of the rectangle that represents the button

control on the screen. Icon buttons include support for keyboard equivalents.

a LineEdit controls allow the userto entersingle-line items.

a TextEdit controls, supported by the new TextEdit tool set (see Chapter 49,

“TextEdit ToolSet,” in this book), allow the user to edit text within a defined
rectangle, which can extend beyonda singleline.

= Pop-up menu controls support scrollinglists of possible selection options that

appear whentheuserselects the control.

a List controls display scrollable lists of items.

28-6 Apple IIGs Toolbox Reference, Volume 3

To create any of these new controls, you must set up the appropriate control template

and call NewContro12. Unlike the NewCont rol tool call, which accepts its control
definition on the stack, NewControl2 defines controls according to the contents of one
or more control templates. These templates contain all the information necessary for the
Control Managerto create controls. Your application fills each control template with the

data appropriate to the control you wish to create. The Control Manageruses this input

specification to construct the corresponding control record and create the control. You

can use this technique to create any control, not just the new control types. For complete

information on the format and content of these control templates, see “New Control

Manager Templates and Records”later in this chapter.

All controls created by NewCont ro12, rather than NewCont rol,are referred to as

extended controls. Functionally, extended controls do notdiffer from controls created
by NewControl.In fact, extended control records work with all Control Managertool
calls. However, the control record for an extended control contains more data than the

old-style record. In addition, many new Control Managercalls and features are valid only

for extended controls. Note that all controls created by NewCont ro12, notjust the new
control types, are extended controls. For complete information on the format and

content of extended control records, see “New Control Manager Templates and Records”
later in this chapter.

You may call NewCont ro12 directly or you may invokeit indirectly bycalling

NewWindow2. See Chapter 45, “Resource Manager,” and Chapter 52, “Window Manager
Update,” for details on new window calls.

The following sections discuss each type of control supported by the Control Manager.

For the original controls, these sections address new features provided by the Control

Manager. For new control types, these sections introduce you to the functionality now

provided.

Simple button control

Simple button controls created with the NewCont ro12 toolcall can support keystroke
equivalents, which allow the user to activate the button by pressing an assigned key on the

keyboard. See “Keystroke Processing in Controls” earlier in this chapter for details.

Check box control

Check box controls created with the NewCont ro12 tool call can support keystroke

equivalents, which allow the user to activate the box by pressing an assigned key on the
keyboard. See “Keystroke Processing in Controls” earlier in this chapter for details.

Chapter 28 Control Manager Update 28-7

Icon button control

This new typeof control can display an icon as well as text in a defined window. You
specify the boundary rectangle for the window anda reference to the icon when you

create the control. See Chapter 17, “QuickDraw II Auxiliary,” in Volume 2 of the Toolbox

Reference for information about icons. You can create icon button controls only with the

NewContro12 toolcall.

Icon button controls operate much as simple button controls do. Note, however, that

with icon controls, the control rectangle is inset slightly from its specified coordinates

before the button is drawn. As a result, outlined round buttons stay completely within the
specified control rectangle (this is not the case for an outlined round simple button
control). Icon button controls support keyboard equivalents. See “Keystroke Processing
in Controls” earlier in this chapter for details.

The icon is drawn each time the control is drawn. The icon and text are centeredin the

specified control rectangle. If the control has notext, the icon is still centered. The icon is

not clipped to the control rectangle. If the iconis larger than the specified control

rectangle, the portion of the icon that lay outside the rectangle is not erased when you

erase the control.

Note that icon controls require the QuickDraw™II Auxiliary and Resource Managertool
sets. Note as well that the control definition procedure for icon buttonsis kept in the

system resourcesfile, so your application should ensure that the system disk is online

before defining an icon button control. Your application can promptthe user to insert the

system diskif it is not already online.

LineEdit control

This new control type lets your application manage single-line, editable items in a window.
You specify the boundary rectangle for the text, the maximum numberofcharacters allowed,
and aninitial value for the displayed text string when you create the control with the

NewCont ro12 tool call. The text is updated each time the control is drawn. LineEdit controls
also support passwordfields, which do not echo the characters entered by the user. Rather,
the control echoes each typed character as an asterisk (see Chapter 34, “LineEdit ToolSet
Update,” for information about the new features in the LineEdit Tool Set).

LineEdit controls respond to both mouse and keyboard events. If your application uses

TaskMaster, the system handles most events automatically. To take full advantage of

TaskMaster, set the tmcontentControls, tmControlKey, and tmIdleEvents flags

in the taskMaskfield of the task record to 1 (see Chapter 52, “Window Manager

Update,” for information about the new features of TaskMaster).

288 Apple IIGS Toolbox Reference, Volume 3

If your application does not use TaskMaster, your application must call TrackControl
to track the mouse and perform appropriate text selection when the user presses the

mouse button in a LineEdit control. TaskMaster does this automatically if you have set
the tmcontentCont rols flag to 1 in the taskMaskfield of the task record.

Without TaskMaster, your application sends keyboard events to LineEdit controls using
the SendEvent ToCt1 toolcall (see “New Control ManagerCalls” later in this chapter).
First, your code must check for menu key equivalents. If none are found, then issue the
SendEventToCt1 call, setting targetOnlyFlag to FALSE(all controls that want
events are searched), windowPtrto NIL (find the top window), and

extendedTaskRecPtr to refer to the task record containing the keystroke

information. Again, TaskMasterdoesall this for you if you have set the tmcont rolKey

flag to 1 in the taskMaskfield.

To keepthe insertion point blinking, your application must send idle events to the

LineEdit control. To dothis, issue a SendEventToCt1 call, setting targetOnlyFlag

to TRUE (send eventonly to target control), windowPtr to NIL (use top window), and

extendedTaskRecPtrto referto the task record containing the event information.
TaskMaster doesthis for you if you have set the tmIdleEvents flag to 1 in the
taskMaskfield.

The LineEdit tool set performsline editing in LineEdit controls. If you want to issue
LineEdit tool calls directly from your program,retrieve the LineEdit record handle from

the ct LData field of the control record for the LineEdit control.

List control

This new control type allows your program to display lists from which the user mayselect

one or more items. You have the benefit of full List Manager functionality with respectto
such features as selection windowscrolling and item selection (single item, arbitrary

items, or ranges). You specify the parametersfor the list as well as the initial conditions
for its display when you define the control. The Control Managerand the List Manager

take care of the rest. You cancreatelist controls only with the NewCont ro12 toolcall.

List controls use the List Managertool set. To understand how to use this control in your
application, see Chapter 35, “List Manager Update,” in this book.

Picture control

This new control type displays a QuickDraw picture in a specified window. You specify

the boundary rectangle for the control and a reference to the picture when youcreate the
control. The picture is drawn each time the control is drawn. You cancreate picture
controls only with the NewContro12toolcall.

Chapter 28 Control Manager Update 28-9

Note that when thepicture is drawn, the boundary rectanglefor the control is used as the

picture destination rectangle (see Chapter 17, “QuickDraw II Auxiliary,” in Volume 2 of

the Toolbox Reference for details about picture drawing). As a consequence,the picture

may be scaled at draw time if the dimensions ofthe original picture frame are not the
same as those of the control rectangle. To force the picture to be displayedatits original

size, and thus avoid scaling, set the lower-right cornerof the control rectangle to (0,0).
The Control Manager recognizes this value at controlinitialization time and sets the

control rectangle to be the samesize as the picture frame.

In general, a click in a picture control is ignored. However, the Control Manager provides
facilities to inform your application if the user clicks in the control. To make a picture
control inactive, set the ct 1Hilite field to $FF; otherwise, the control is active and may

receive user events.

Note that picture controls require the QuickDraw II Auxiliary tool set.

Pop-up control

This new control type allows you to define and support pop-up menusinside a window.

You specify the boundary rectangle for the control, along with a reference to the menu

definition when you create the control with the NewContro12 toolcall. The menutitle

becomesthetitle of the control, and the current selection for the control is defined by the

initial value.

Pop-up controls respond to both mouse and keyboard events. If your application uses

TaskMaster, the system will handle most events automatically. To take full advantage of
TaskMaster, set the tmContentControls and tmControlKey flags in the taskMask

field of the task record to 1 (see Chapter 52, “Window Manager Update,” for information
about the new features of TaskMaster).

If your application does not use TaskMaster, your application must call TrackCont rol

to track the mouse and present the pop-up menuto the user whenthe userpresses the
mouse button inside a pop-up control. TaskMaster does this for you if you have set the

tmContentControlsflag to 1 in the taskMaskfield.

Without TaskMaster, your program sends keyboard events to pop-up menucontrols using

the SendEventToCt1 toolcall (see “New Control ManagerCalls” later in this chapter).
First, check for menu key equivalents. If none are found, then issue the

SendEventToCtl call, setting targetOnlyFlag to FALSE(all controls that want

events are searched), windowPtr to NIL (find the top window), and
extendedTaskRecPtrto refer to the task record containing the keystroke
information. TaskMaster doesall this for you if you have set the tmcont rolKeyflag to 1

in the taskMaskfield.

28-10 Apple IIGs Toolbox Reference, Volume 3

Note that the Control Managerplaces the current userselection value into ct 1Value.If
you needto retrieve the user selection number, you maydo so from thisfield.

Radio button control

Radio button controls created with the NewContro12tool call can support keystroke

equivalents, which allow the userto select a button by pressing an assigned key on the

keyboard. See “Keystroke Processing in Controls” earlier in this chapterfor details.

Scroll bar control

Scroll bar controls provide no new features.

Size box control

You can now set up size box controls that automatically invoke GrowWindow and

SizeWindowif you create the control with the NewContro12 toolcall. When the user

drags the size box, the Control Managercalls GrowWindow and SizeWindowtotrack the
control and resize the window rectangle if the £cal1lWindowMgrbit in the flagfield of
the size box control template is set to 1 (see the description of the size box control

template in “New Control Manager Templates and Records”later in this chapter). If this
flag is set to 0, then the control is merely highlighted.

Static text control

This new control type displays uneditable (hence, “static”) text in a specified window.

Static text controls accept initial text in the same format as the LETextBox2 LineEdit
tool call does. Consequently, you can place font, style, size, and color changes into the

displayed text, affording you great freedom to create a distinctive text display (see
“LETextBox2” in Chapter 11, “List Manager,” in Volume1 of the Toolbox Reference for

information on the embedded change codes accepted by LEText Box2).In addition,
Static text controls can accommodate text substitution. With this feature, you can

customize the displayed text to fit run-time circumstances. You can create static text
controls only with the NewCont ro12 toolcall.

If you are going to use text substitution in yourstatic text, your application must set up
the control template correctly (set fsubstituteText in flag to 1) andtell the system
wherethe substitution array is kept (issue the SetctLParamPtr Control Managertool
call). The text substitution array has the same format as that used by the AlertWindow

call (see Chapter 52, “Window Manager Update,” for information about AlertWindow
and for substitution array format and content).

Chapter 28 Control Manager Update 28-11

In general, applications ignore clicks in static text controls. However, the Control
Managerprovidesfacilities to inform your application if the user clicks in the control. To
makea static text control inactive, set the ct 1Hilite field to $FF; otherwise, the
control is active and may receive user events.

Note that static text controls require the LineEdit, QuickDraw II Auxiliary, and Font
Managertoolsets.

TextEdit control

This controllets the user create, edit, or view multiline items in a window. You specify the
boundary rectangle for the edit window, parameters governing the amountoftext to be
entered, and, optionally, someinitial text to display. The TextEdit control does the rest.
You can create TextEdit controls only with the NewContro12 toolcall.

The TextEdit control uses the TextEdit tool set. This new tool set is completely described

in Chapter 49, “TextEdit Tool Set.” You should familiarize yourself with the material in
that chapter before using this control.

28-12 Apple IIcs Toolbox Reference, Volume3

New control definition procedure messages

Previously, control definition procedures had to support 13 message types (see Chapter4,

“Control Manager,” in Volume 1 of the Toolbox Reference for a discussion of the original
message types). When you create custom controls with new control records (see “New
Control Manager Templates and Records”later in this chapter), your control must support
these additional messages.

Value Control Message Description

13 ctlHandleEvent Handle a keystroke or menuselection

14 ctlChangeTarget Issued when control’s target status has
changed

15 ct1lChangeBounds Issued when control’s boundary

rectangle has changed

16 ct lWindChangeSize Windowsize has changed

17 ct lHandleTab By pressing the Tab key,the user has

moved to a control that can be the

target

18 ctlNotifyMultiPart A multipart control (a control that

ownsseparate visible items) must be

hidden, drawn, or shown

19 ctlWindStateChange Window state has changed

In addition, the initCt1, dragCt1, and recSize messages have new control routine

interfaces when used with extended controls. The following sections discuss each new or
changed message in detail.

If you must draw when handling control messages, your control definition procedure

should save the current GrafPort andset the port correctly for your control before

drawing. After your control definition procedure is finished drawing, restore the previous
GrafPort. Note that saving the current GrafPort includes saving the penstate, all pattern
and color information, andall regions in the port to which your program draws.

To maintain compatibility with future versions of the Control Manager, control definition

procedures should always return a retValue of 0 for unrecognized and unsupported control

messagetypes. In addition, if you use custom control messages, be careful to assign type
values greater than $8000 (decimal 32,768).

Chapter 28 Control Manager Update 28-13

Initialize routine

Previously, ctlParamcontained param1 and param2 from NewCont rol.If you create

your custom control with NewCont rol, these input parametersare the same. However,if

you create your control with NewCont ro12 (see “New Control ManagerCalls”later in this

chapter), then ctlParamcontains a pointer to the control template for the control.

Drag routine

The result code for the drag routine now contains additional information that allows

control definition procedures to disable tracking. Previously, retValue indicated whether

or not your defProc wanted the Control Managerto do the dragging. For controls created

with NewCont rol, thisis still the case. For controls created with NewCont rol2, your

definition procedure uses the low-order word of retValue exactly as before (zero means
that the Control Manager should drag the control; nonzero means your controldefinition
procedure handled it). Your defProc retums the part code of the control in the high-order

word (see Chapter 4, “Control Manager,” in Volume 1 of the Toolbox Referencefor

information on control part codes). If this value is 0, then the Control Manager assumes

that the user aborted the drag operation and performs no screen updates.

Record size routine

Previously, ct/Param was undefinedfor this routine. Now, the Control Managersets

ctlParam to 0 for controls created with NewCont rol. For controls created with

NewCont ro1l2, ctlParam contains a pointerto the control template.

Event routine

To pass information forall events, including keystroke or mouse events, the Control

Managercalls the control definition procedure with the ct LHandleEvent message. Only
controls you create with either the £ct lWantEvents bit or the fct 1CanBeTargetbit
set to 1 in the moreFlagsfield of the control template will receive this message (see
“New Control Manager Templates and Records”later in this chapter for detailed

information on these flags). The first qualifying control in the control list has the first
opportunity to handle the event. If that control processes the event, then no other

controls seeit. If, however, that control does not process the event, the Control Manager

passes the eventto the next qualifying eventin the list. This process continues until a

control handles the eventor the list is exhausted. If no control definition procedure
handles the event, TaskMaster passes the event to the application.

28-14 Apple IlGs Toolbox Reference, Volume 3

If your custom control can be the target control, your event routine should issue the

MakeNextCt1Targettool call whenever the user presses the Tab key. When yourroutine

regains control after that call, it should check whether another control becamethe target
control. If so, your routine should send a ct 1HandleTab control messageto that control

definition procedure. In either case, your routine must indicate that it handled the Tab

key event bysetting retValue to $FFFFFFFF on return from the Event routine.

Parameters

Stack before call

Previous contents

- Space -

ctlMessage

- ctlParam _

—theControlHandle-

Stack after call

Previous contents

- retValue -

Long—Spaceforresult

Word—ct lHandleEvent message

Long—Pointer to task record containing event information

Long—Handle to control

<—SP

Long—$FFFFFFFFif control took the event; $0 if control did not

<—SP

Chapter 28 Control Manager Update 28-15

Target routine

To signal a change in the control's target status (the control is now,or is no longer, the
target), the Control Managercalls the control definition procedure with the

ctlChangeTarget message. Note that this message is sent to both the previous target

control and the newtarget control. Your control definition procedure can distinguish

which controlis the new target by examining the fct 1Targetbit in the ct lMoreFlags

field of the control record. This bit is set to 1 in the control record of the new target

control. In the previous target, the bit is set to 0.

In response to the ct l1ChangeTarget message, some controldefinition procedures

change the appearanceoftheir control on the screen or perform otheractions as

appropriate. For example, LineEdit and TextEdit controls display an insertion point or a

text selection only when theyarethetarget.

Parameters

Stack before call

Previous contents

- Space - Long—Spacefor result

ctlMessage Word—ct 1ChangeTarget message

- ctlParam - Long—Undefined

—theControlHandle- Long—Handle to contro]

<—SP
Stack after call

Previous contents

- retValue - Long—Undefined

<—SP

28-16 Apple [IGS Toolbox Reference, Volume 3

Bounds routine

To signal to the control that its boundary rectangle has changed, the Control Managercalls
the control definition procedure with the ct 1ChangeBounds message. In response to

this message, your control definition procedure should adjustits internal control record

variables to accountfor the new rectangle. For example, any subrectangles defined for a

control may need to change wheneverthe boundary rectangle changes.

@ Note: This message is not supported by control definition procedures currently

provided by Apple Computer, Inc.; however, you should handle this message in any
custom controls you create.

Parameters

Stack before call

Previous contents

Space

ctlMessage

ctlParam

—theControlHandle-

Stack after call

Previous contents

retValue

Long—Spacefor result

Word—ct1ChangeBounds message

Long—Undefined

Long—Handle to control

<—SP

Long—Undefined

<—SP

Chapter 28 Control Manager Update 28-17

Window size routine

The Control Managercalls the control definition procedure with the
ct1WindChangeSize message wheneverthe user changesthe size of the control

window.In responseto this message, your controldefinition procedure should do whatis
necessary to maintain a consistent screen presentation. This may entail resizing multipart

controls, moving size boxes, and so on.

Parameters

Stack before call

Previous contents

- Space - Long—Spacefor result

ctlMessage Word—ct1WindChangeSize message

- ctlParam - Long—Undefined

~theControlHandle- Long—Handle to control

<—SP
Stack after call

Previous contents

- retValue - Long—Undefined

 <—SP

28-18 Apple IIGs Toolbox Reference, Volume 3

Tab routine

Yourcontrol definition procedure receives the ct lHandleTab message whenthe user

presses the Tab key while another control is the target. That control's definition
procedure issues the MakeNextCtlTargettoolcall before sending this control message

(see “Event Routine” earlier in this chapter). Your definition procedure receives the
ctlChangeTarget control message before it receives the ct 1HandleTab message.

The control definition procedure should perform the appropriate actions in response to
becomingthe target as a result of a Tab keystroke rather than a mouseclick. For example,
in response to this message, LineEdit and TextEdit control definition procedures select all
the text in the control in preparation for user input.

Parameters

Stack before call

Previous contents

- Space - Long—Spaceforresult

ctlMessage Word—ct1HandleTab message

- ctlParam - Long—Undefined

-theControlHandle- Long—Handle to control

<—SP
Stack after call

Previous contents

- retValue - Long—Undefined

<—SP

Chapter 28 Control Manager Update 28-19

Notify multipart routine

The Control Managercalls the control definition procedure with the
ctlNotifyMultiPart message to signal that a multipart control needs to be hidden,
shown,or drawn. This message is relevant only to multipart controls, which include other
displayable entities that do notfit within the boundary rectangle. For example,list
controls consist ofthelist itself and a scroll control, which is separate, and are therefore
multipart controls. By contrast, the scroll controlitself is not a multipart control because
its componentparts (arrows, page regions, and thumb) arefully containedin the scroll
control boundary rectangle, and are not separate functional entities. The
fCtlIsMultiPartbit in the moreF lagsfield of the control template mustbe setto 1
for a control to receive this message. In responseto this message, your definition
procedure must do what is needed to hide or show the control completely.

The low-order word of ctlParamtells the definition procedure what to do.

0 Hide the entire control

1 Erase the entire control

2 Show theentire control

3 Show onecontrol

Parameter

Stack before call

Previous contents

- Space - Long—Spacefor result

ctlMessage Word—ct1NotifyMultiPart message

- ctlParam - Long—High wordis undefined; low word contains option

—theControlHandle- Long—Handle to control

<—SP

Stack after call

Previous contents

- retValue - Long—Undefined

<—SP

28-20 Apple IIGs Toolbox Reference, Volume 3

Window change routine

The Control Managercalls the control definition procedure with the

ct lWindStateChange message to signalthat the state of the window containing the

control has changed. For example, a control definition procedure receives this message
wheneverthe control's window is activated or deactivated. At this time, the control

definition procedure may draw dimmedcontrols in windows that have been unhidden.

The low-order word of the ct/Param parameter contains the new state of the window.

$0000 The window has been deactivated

$0001 The window has been activated

The high-order word is undefined.

Parameter

Stack before call

Previous contents

- Space - Long—Spaceforresult

ctlMessage Word—ct lWindStateChange message

- ctlParam - Long—Low word contains new windowstate; high word undefined

—theControlHandle- Long—Handle to control

<—SP
Stack after call

Previous contents

- retValue - Long—Undefined

<—SP

Chapter 28 Control Manager Update 28-21

New Control Managercalls

The following sections describe new Control Managertoolcalls, in alphabetical order by
call name.

CallctlDefProc $2C10

This routine calls the specified control with the specified control message and parameter.
Set the ctlParam parameterto 0 if the control definition procedure does not accept an
input parameter (see “New Control Definition Procedure Messages”earlier in this chapter
for information on input parameters for defProc messages).

Parameters

Stack before call

Previous contents

- Space

- ctlHandle

ctlMessage

- ctlParam

Stack after call

Previous contents

- Result

Errors None

Long—Spacefor result from control definition procedure

Long—Handle of control to be called

Word—Control messageto send to control definition procedure

Long—Parameterto pass to control definition procedure

<—SP

Long—Result value from control definition procedure

<—SP

28-22 Apple IIGs Toolbox Reference, Volume 3

extern pascal Long CallCtlDefProc(ctlHandle,

ctlMessage, ctlParam);

Handle ctlHandle;

Word ctlMessage;

Long ctlParam;

Chapter 28 Control Manager Update 28-23

CMLoadResource $3210

This is an entry point to the internal Control Managerroutine that loads resources. You

specify the resource type and ID of the resource to be loaded. See Chapter 45, “Resource

Manager,” for more information on resources.

Anyerrors during resource load result in system death.

A Warning Applications must neverissue this call. a

Parameters

Stack before call

Previous contents

- Space -

resourceType

—- resourceID -

Stack after call

Previous contents

Long—Spaceforresult

Word—Type of resource to load

Long—ID ofresource to load

<—SP

— resourceHandle - Long—Handle of loaded resource

<—S$P

Errors None

C extern pascal Handle CMLoadResource (resourceType,

resourcelID);

Word resourceType;

Long resourcelID;

28-24 Apple Ics Toolbox Reference, Volume3

CMReleaseResource $3310

This is an entry pointto the internal Control Manager routine that releases resources. You
specify the resource type andID ofthe resource to be released. The resource is released
by marking it purgeable. See Chapter 45, “Resource Manager,” for more information on
resources.

Anyerrors result in system death.

A Warning

Parameters

Stack before call

Previous contents

resourceType

resourcelD

Stack after call

| Previous contents |

Errors None

Applications must neverissuethis call. a

- Word—Type ofresource to release

Long—ID of resource to release

<—SP

<—SP

extern pascal void CMReleaseResource (resourceType,

Word

Long

resourcelID);

resourceType;

resourcelID;

Chapter 28 Control Manager Update 28-25

FindTargetCtl $2610

Searches the controllist for the active window andreturns the handle ofthe target control
(the control that is currently the target of user keystrokes). FindTargetCt1 returns the

handleofthe first control that has the £ct 1Targetflag set to 1 in the ct 1MoreFlags

field of its control record. If no target control is found or an error occurs, then the call
returns an undefined value.

This call will return a handle only to an extended control.

Parameters

Stack before call

Previous contents

- Space -

Stack after call

Previous contents

Long—Spaceforresult

<—SP

- ctlHandle - Long—Handle of target control; undefined if none or error

<—SP

Errors $1004 noCtlError No controls in window.

$1005 noExtendedCtlError No extended controls in window.
$1006 noCtlTargetError No target extended control.
$100C noFrontWindowError There is no front window.

C extern pascal Handle FindTargetCtl();

28-26 Apple IlGs Toolbox Reference, Volume 3

GetCtlHandleFromID $3010

Retrieves the handleto the control record for a control with a specified ct 1ID field value.

The ct 11D field is an application-defined tag for a control. Set the ct 11D field with the
SetCt1lID or NewControl2 tool call; read the contents of the ct 11Dfield with

GetCtlID.

If an error occurs, the returned handle is undefined.

This call is valid only for extended controls.

Parameters

Stack before call

Previous contents

- Space - Long—Spacefor result

— ctlWindowPtr - Long—Pointer to window for control list search; NIL = top window

- ctlID - Long—ID value for desired control

<—SP
Stack after call

Previous contents

- ctlHandle - Long—Handle for specified control

<—§P

Errors $1004 noCtlError Nocontrols in window.

$1005 noExtendedCtlError No extended controls in window.

$1009 noSuchIDError The specified ID cannot be
found.

$100C noFrontWindowError There is no front window.

C extern pascal Long GetCtlHandleFromID (ctlWindowPtr,

ctlID);

Pointer ctlWindowPtr;

Long ctlID;

Chapter 28 Control Manager Update 28-27

GetCtlID $§2A10

Retums the ct.11D field from the control record of a specified control. The ct 11D field is

an application-defined tag for a control. Your application can use this field in many ways.
For example, since the value of ct 11D is known at compile time, you can construct
efficient routing code for handling control messages for many different controls.

Use the SetCt LID or NewCont ro12 Control Managertoolcall to set the ct 11D field.

If the specified control is not an extended control, the resulting ID is undefined, and an

error is returned.

Parameters

Stack before call

Previous contents

- Space -

- ctlHandle -

Stack after call

Long—Spaceforresult

Long—Handle to control

<—SP

Previous contents

- ctlID - Long—ct 11D for specified control

<—SP

Errors $1004 noCtlError No controls in window.

$1007 notExtendedCtlError Action valid only for extended

controls.

C extern pascal Long GetCtlID(ctlHandle);

Handle ctlHandle;

28-28 Apple IIGs Toolbox Reference, Volume 3

GetCtlMoreFlags $2E10

Gets the contents of the ct 1MoreF lagsfield of the control record for a specified

control. The ct lMoreF lagsfield contains flags governing target status, event

processing, and other aspects of the control.

Use the SetCt lMoreF lags Or NewCont ro12 Control Managertoolcall to set the
ctlMoreFlagsfield.

If the specified control is not an extended control, the result is undefined, and anerroris
returned.

Parameters

Stack before call

Previous contents

Space

- ctlHandle

Stack after call

Previous contents

Word—Space for result

Long—Handle to control

<—SP

ctlMoreFlags Word—ct 1MoreF lags for specified control

<—SP

Errors $1004 noCtlError Nocontrols in window.

$1007 notExtendedCtlError Action valid only for extended
controls.

C extern pascal Word GetCtlMoreFlags (ctlHandle);

Handle ctlHandle;

Chapter 28 Control Manager Update 28-29

GetCtlParamPtr $3510

Retrieves the pointer to the current text substitution array for the Control Manager. This
array contains the information used for text substitution in static text controls (see
“Static Text Control” earlier in this chapter for details).

Set the contents ofthis field with the SetcCt1ParamPtr or NewControl2 Control

Managertoolcall.

@ Note: This pointer is global to the Control Manager,it is not associated with a

specific control. For this reason, when usingthis feature with desk accessories be sure

to save and restore the previous contents ofthefield.

Parameters

Stack before call

Previous contents

- Space - Long—Space for result

 <—SP

Stack after call

Previous contents

- subArrayPtr - Long—Pointer to text substitution array

<—SP

Errors None

C extern pascal Pointer GetCtlParamPtr();

28-30 Apple IIGS Toolbox Reference, Volume 3

Invalctls $3710

Invalidates all rectangles for all controls in a specified window.

Parameters

Stack before call

Previous contents

— ctlWindowPtr - Long—Pointer to window for operation

<—SP
Stack after call

| Previous contents |

| | <—SP

Errors None

C extern pascal void InvalCtls(ctlWindowPtr);

Pointer ctlWindowPtr;

Chapter 28 Control Manager Update 28-31

MakeNextCtlTarget $2710

Makesthe next eligible control the target control. This routine searches the controllist of

the active window forthefirst target control (cct 1Target bit set to 1 in the

ct l1MoreF lagsfield of the control record). It then clears the targetflag for this control,

searches the controllist for the next control that can be the target (fct 1canBeTarget

bit set to 1 in ct lMoreFlags), and makesthat control the target. The call returns the

handle of the new target control. If no new target control is found, the Control Manager
returns the handle of the currenttargetcontrol.

Both affected controls (the old and newtarget) receive ct l1ChangeTarget messages
from the Control Manager.

If an error occurs, the returned handle is undefined.

This call is valid only for extended controls.

Parameters

Stack beforecall

Previous contents

- Space - Long—Spacefor result (handle)

 <—SP

Stack after call

Previous contents

- ctlHandle - Long—Handle of new target control; undefinedif error

<—SP

Errors $1004 noCtlError No controls in window.
$1005 noExtendedCtlError Noextended controls in window.
$100B noCtlToBeTargetError

No control could be madethe

target.

C extern pascal Handle MakeNextCtlTarget();

28-32 Apple IIGs Toolbox Reference, Volume 3

MakeThisCtlTarget $2810

Makesthe specified control the target. You specify the control that is to become the
target control by passing its handle to this routine. This call will work for both active and

inactive windows.

Both affected controls (the old and newtargets) receive ct lChangeTarget messages
from the Control Manager.

This call is valid only for extended controls.

Parameters

Stack before call

Previous contents

- ctlToBeTarget - Long—Handle to control to be madethetarget

<—SP
Stack after call

Previous contents

 <—SP

Errors $1007 notExtendedCctlError Action valid only for extended

controls.
$1008 canNotBeTargetError Specified control cannot be

madethetarget.

C extern pascal void MakeThisCtlTarget (ctlToBeTarget);

Handle ctlToBeTarget;

Chapter 28 Control Manager Update 28-33

NewControl2 $3110

Creates one or more new controls. You specify the parameters governing those controls in

control templates that are passed to NewCont rol2 (see “New Control Manager
Templates and Records” later in this chapter). If Newcont rol2 creates a single control,it
returns the handle to that control. If NewcControl2 creates two or more controls,it

retums 0. For sample code showing howto use the NewContro12toolcall, see “Control

Manager Code Example’later in this chapter.

All controls created by NewCont ro12 have newstyle control records and are extended
controls.

Parameters

Stack before call

Previous contents

- Space - Long—Spacefor result

- ownerPtr - Long—Pointer to window for control(s)

inputDesc Word—Describes contents of inputRef

- inputRef - Long—Reference of a type defined by inputDesc

<—SP
Stack after call

Previous contents

- ctlHandle - Long—Control handle (if single control created) or 0

<—SP

Errors None

C extern pascal Handle NewControl2(ownerPtr,

inputDesc, inputRef);

Pointer ownerPtr;

Word inputDesc;

Long inputRef;

28-34 Apple IIGs Toolbox Reference, Volume 3

inputDesc Defines the contents and type ofitem referenced by inputRef.
Possible values for inputDesc are

singlePtr 0

singleHandle 1

singleResource 2

ptrToPtr 3

ptrToHandle 4

ptrToResource 5

handleToPtr 6

handleToHandle 7

handleToResource 8

resourceToResource 9

inputRef is a pointer to a single-item
template.

inputRefis a handle for a single-item
template.
inputRefis a resource ID ofa single-
item template (resource type of

rControlTemplate, $8004).

inputRef is a pointerto a list of

pointers to item templates.

inputRef is a pointerto list of

handles for item templates.

inputRefis a pointer to a list of
resource IDs of item templates

(resource type of
rControlTemplate, $8004).

inputRefis a handle to list of
pointers to item templates.

inputRefis a handle to list of

handles for item templates.
inputRefis a handle to list of
resource IDs of item templates
(resource type of
rControlTemplate, $8004).

inputRefis a resourceID ofa list of

resource IDs of item templates (the
list reference is a resource of type

rControlList, $8003; each entry

in that list is a resource of type

rControlTemplate, $8004).

If inputRef defines a list, that list is a contiguous array of template
references (pointers, handles, or resource IDs), terminated with a

NULLentry.

Chapter 28 Control Manager Update 28-35

NotifyCtls $2D10

Calls the control definition procedures for extended controls in a specified window,
sending a specified control message and parameter. You determine which controls are to
be called by setting up the mask parameter. This routine compares the value of mask with

that of the ct lMoreF lagsfield of the control record for each control in the window.If

any of the bits you have specified in mask areset to 1 in ct lMoreF lags, the controlis

sent the message you have specified (the system performs a bitwise AND operation with

mask and ct1MoreFlags; a nonzeroresult yields a call to the control).

Set the param parameterto 0 if the control definition procedure does not accept an input

parameter (see “New Control Definition Procedure Messages”earlier in this chapter for
information on input parameters for definition procedure messages).

Parameters

Stack before call

Previous contents

mask Word—Bit mask to be compared with ct lMoreFlags

message Word—Control message to send to control definition procedures

- param - Long—Parameter to pass to control definition procedures

- window - Long—GrafPort of window whosecontrollist is to be searched

<—SP
Stack after call

| Previous contents |

| | <—SP

Errors None

C extern pascal void NotifyCtls(mask, message, param,

window);

Word mask, message;

Long param, window;

28-36 Apple IIGs Toolbox Reference, Volume 3

SendEventToCt1 $2910

Passes a specified extended task record (which must comply with the new format defined

in Chapter 52, “Window Manager Update,” in this book) to the appropriate control or
controls. This call returns a Boolean value indicating whether the event wasfielded by a
control and returns the handle of the control that serviced the event. That handle is
returned in taskDataz2ofthe task record for the event.

The targetOnlyFlag parameter governs how the Control Managersearchesfor a control to

field the event. If targetOnlyFlag is set to TRUE, SendEventToCt sends the event to

the target control. If there is no target control, the result is FALSE and taskDataz2is
undefined.

If targetOnlyFlag is set to FALSE, SendEventToCt1 conducts a two-part search for a

controlto field the event.First, the Control Manager looks for non-editfield controls that

want keystrokes (for example, buttons with keystroke equivalents). The Control Manager

tries to send the event to each such control (with the ct lHandleEventcontrol
message). If no control accepts the event, the Control Managerlooks for an edit field
control (LineEdit or TextEdit) that can becomethe target. If no control accepts the

event and thereis notarget, the result is FALSE and taskDataz2is undefined. Otherwise,

the result is TRUE and taskDataz2contains the handle of the accepting control.

This call is valid only for extended controls.

@ Note: Ifa control can be made the target (fct 1CanBeTargetis set to 1 in
ctlMoreFlagsofits control record), then the Control Managersends events to that

control regardless of the setting of the fct LWantEvents bit.

Parameters

Stack before call

Previous contents

Space Word—Space for result Boolean

targetOnlyFlag Word—(Boolean) TRUE = send to target only; FALSE = all controls

— ctlWindowPtr - Long—Pointer to window to search; NIL for top window

— eTaskRecPtr - Long—Pointer to extended task record for event

<—SP
Chapter 28 Control Manager Update 28-37

Stack after call

Previous contents

Result Word—(Boolean) TRUE if event accepted; otherwise FALSE

<—SP

Errors $1005 noExtendedCtlError No extended controls in window.

$100C noFrontWindowError Thereis no front window.

C extern pascal Boolean SendEventToCtl (targetOnlyFlag,

ctlWindowPtr, eTaskRecPtr);

Word targetOnlyFlag;

Pointer ctlWindowPtr, eTaskRecPtr;

28-38 Apple IIGS Toolbox Reference, Volume 3

SetCtlID $2B10

Sets the ct 11D field in the control record of a specified control. The ct 11D field is an

application-defined tag for a control. Your application can usethis field in many ways.
For example, since the value of ct LID is known at compile time, you can construct
efficient routing code for handling control messages for many different controls.

Use the GetCt LID Control Managercall to retrieve the contents ofthis field.

If the specified control is not an extended control, an error is returned.

Parameters

Stack before call

Previous contents

- newID - Long—New ct 11D valuefor the control

- ctlHandle - Long—Handle to control

<—SP
Stack after call

| Previous contents |

| | <—SP

Errors $1004 noCtlError No controls in window.

$1007 notExtendedCtlError Action valid only for extended
controls.

C extern pascal void SetCtlID(newID, ctlHandle);

Long newID;

Handle ctlHandle;

Chapter 28 Control Manager Update 28-39

SetCtlMoreFlags $2F10

Sets the contents of the ct 1MoreF lagsfield of the control record for a specified
control. The ct 1MoreF lagsfield contains flags governing target status, event
processing, and other aspects of the control.

Use the GetCt 1MoreFlags Control Managercall to retrieve the contents ofthis field.

If the specified control is not an extended control, an error is returned.

Parameters

Stack before call

Previous contents

newMoreFlags Word—New ct 1MoreF lagsvalueforthe control

- ctlHandle - Long—Handle to control

<—SP
Stack after call

| Previous contents |

| | <—SP

Errors $1004 noCtlError No controls in window.

$1007 notExtendedCtlError Action valid only for extended
controls.

C extern pascal void SetCtlMoreFlags (newMoreFlags,

ctlHandle);

Word newMoreFlags;

Handle ctlHandle;

2840 Apple IIGs Toolbox Reference, Volume 3

SetCtlParamPtr $3410

Sets the pointer to the currenttext substitution array for the Control Manager. This array
contains the information used for text substitution in static text controls (see “Static

Text Control” earlier in this chapter).

Use the GetCt 1ParamPtr Control Managertoolcall to retrieve the contents ofthis field.

@ Note: This pointer is global to the Control Manager;it is not associated with a specific

control. For this reason, when using this feature with desk accessories be sure to save
and restore the previous contents of the field.

Parameters

Stack before call

Previous contents

subArrayPtr

Stack after call

Previous contents |

|
|

Errors

|

None

Long—New pointer to text substitution array

<—SP

<—SP

extern pascal void SetCtlParamPtr(subArrayPtr) ;

Pointer subArrayPtr;

Chapter 28 Control Manager Update 28-41

Control Manager error codes

Table 28-1 lists the error codes that may be returned by Control Managercalls.

a Table 28-1 Control Managererror codes

Value Name Definition

$1001 wmNotStartedUp Window Managernotinitialized
$1002 cmNot Initialized Control Manager notinitialized

$1003 noCtlInList Control not in windowlist

$1004 noCtlError No controls in window

$1005 noExtendedCtlError No extended controls in window

$1006 noCt lTargetError No target extended control

$1007 notExtendedCtlError Action valid only for extended controls

$1008 canNotBeTargetError Specified control cannot be made the
target

$1009 noSuchIDError The specified ID cannot be found

$100A tooFewParmsError Too few parameters specified

$100B noCtlToBeTargetError No contro! could be madethetarget

$100C noFrontWindowError There is no front window

2842 Apple Ics Toolbox Reference, Volume 3

New Control Manager templates and records

This section describes the format and contentofall Control Manager control templates
and records. In addition, “Control Manager Code Example” shows howto usecontrol
templates with the NewControl2toolcall.

NewControl2 input templates

Each type ofcontrol has its own control template, corresponding to the control record
definition for the control type. The item template is an extensible mechanism for defining
new controls. Rather than placing all the control parameters on the stack at run time, the
template holds these parameters in a standard format that can be defined at compile
time. Furthermore, the templates can be created as a resource, simplifying program

development and maintenance, reducing code size, and reducing fixed memory usage.

Your program can pass more than oneinput template to NewCont ro12 at time.

All control templates have the same seven-field header. One of the headerfields is a
parameter count, allowing extensible support for templates of variable length. The value

of the parameter countfield tells the Control Manager how many parameters to use,
making optional template fields possible.

The following sections define the item templates for each control type. Field names

marked with an asterisk (*) represent optional fields.

Chapter 28 Control Manager Update 28-43

Control template standard header

Each control template contains the standard header, which consists of seven fields.

Following that header, some templates have additional fields that further define the
control to be created. The format and contentof the standard template header are shown
in Figure 28-1.

Custom control definition procedures establish their own item template layout. The only
restriction placed on these templates is that the standard header be present and well

formed. Custom data for the control procedure mayfollow the standard header.

a Figure 28-1 Control template standard header

S00 pCount + Word

$02 + an
— ID — Long

$06 : rect - Rectangle

SOE + =
— procRef 7” Long

$12 flag 4 Word

$14 moreFlags 4 Word

$16 a
L refCon = Long

pCount Count of parameters in the item template, not including the pcount
field. Minimum value is 6; maximum value varies according to the type
of control template.

ID Field that sets the ct 11D field of the control record for the new

control. The application may use the ct 11D field to provide a

straightforward mechanism for keeping track of controls. The control

ID is a value assigned by yourapplication for your convenience. Your

application can use the ID, which has a knownvalue,to identify a
particular control.

rect Field that sets the ct 1Rectfield of the control record for the new
control. Defines the boundary rectangle for the control.

28-44 Apple IIGs Toolbox Reference, Volume 3

procRef Sets the ct 1Procfield of the control record for the new control. This

field contains a reference to the control definition procedure for the
control. The value of this field is either a pointer to (or a resource ID
for) a control definition procedure or the ID of a standard routine. If

the fct 1ProcRefNotPtr flag in the moreFlagsfield is set to 0,

then procRef must contain a pointer. If the flag is set to 1, then the
Control Manager checks the low-order three bytes of procRef.If
these bytes are all zero, then procRef mustcontain the ID fora

standard routine; if these bytes are nonzero, procRef contains the

resource ID for a control routine.

The standard values are

simpleButtonControl $80000000

checkControl

iconButtonControl

editLineControl

listControl

pictureControl

popUpControl

radioControl

scrollBarControl

growControl

statTextControl

editTextControl

$82000000

$07FF0001

$83000000

$89000000
$8D000000
$87000000

$84000000

$86000000

$88000000

$81000000

$85000000

Simple button

Check box

Icon button

LineEdit

List

Picture

Pop-up menu

Radio button

Scroll bar

Size box

Static text

TextEdit

@ Note: The procRef value for iconButtonControlis nottruly a standard value.

Rather, it is the resource ID for the standard control definition procedure for icon
buttons.

flag A word used to set both ct 1Hilite and ct1Flagin the control

record for the new control. Since this is a word, the bytesfor
ctlHilite and ct1Flagare reversed. The high-order byte of flag
contains ct 1Hilite, and the low-order byte contains ct 1Flag. The
bits in flag are mappedasfollows:

Highlight bits15-8 Indicates highlighting style
0 = Control active, no highlighted parts
1-254 = Part code of highlighted part
255 = Control inactive

Chapter 28 Control Manager Update 28-45

Invisible bit 7 Governsvisibility of control

0 = Control visible

1 = Control invisible
Variable bits 6-0 Values and meaning dependoncontrol

type

moreFlags Used to set the ct IMoreFlags field of the control record for the

new control.

The high-order byte is used by the Control Managertostore its own

control information. The low-order byte is used by the control

definition procedure to define reference types.

The defined Control Managerflags are

fCtlTarget $8000 If this flag is set to 1, this control is currently the

target of any typing or editing commands.

f£Ct1CanBeTarget $4000 If this flag is set to 1, then this control can be

made the target control.

fCtlWantEvents $2000 If this flag is set to 1, then this control can be

called when events are passed via the

SendEventToCt 1 Control Managercall. Note

that if the fct LcanBeTargetflagis setto 1,

this control receives events sent to it regardless

of setting of this flag.
fCtlProcRefNotPtr $1000 If this flag is set to 1, then the Control Manager

expects procRef to contain the ID or resource
ID of a control procedure.If it is set to 0, then
procRef contains a pointer to a custom

control procedure.
fCtlTellAboutSize $0800 If this flag is set to 1, then this control needs to

be notified when the size of the owning window
has changed. This flag allows custom control

proceduresto resize their associated control

images in response to changes in windowsize.
fCtlIsMultiPart $0400 If this flag is set to 1, then this is a multipart

control. This flag allows control definition

procedures to manage multipart controls

(necessary since the Control Manager does not
know aboutall the parts of a multipart control).

2846 AppleIIGs Toolbox Reference, Volume 3

titleIsPtr

titleIsHandle

titleIsResource

The low-order byte uses the following convention to describe

references to color tables andtitles (note, though, that some control
templates do not follow this convention):

colorTableIsPtr

colorTableIsHandle

colorTableIsResource

refCon

$00 Title reference is by pointer.
$01 Title reference is by handle.

$02 Title reference is by resource ID (resource type
correspondsto string type).

$00 Color table reference is by pointer.
$04 Color table reference is by handle.
$08 Color table reference is by resource ID (resource

type is rCt 1ColorTbl, $800D).

Used to set the ct 1RefConfield of the control record for the new
control. Reserved for application use.

Keystroke equivalent information

Manyof these control templates allow you to specify keystroke equivalent information

for the associated controls. Figure 28-2 shows the standard format for that keystroke
information.

= Figure 28-2 Keystroke equivalent record layout

$00 keyl
S01 key2

$02 | keyModifiers —

$04 keyCareBits =

keyl

key2

Byte
Byte

Word

Word

This is the ASCII code for the uppercase or lowercase key equivalent.

This is the ASCII code for the lowercase or uppercase key equivalent.

Taken with key1, this field completely defines the values against

which key equivalents will be tested. If only a single key code is valid,

then set key1 and key2 to the same value.

Chapter 28 Control Manager Update 28-47

keyModifiers

keyCareBits

These modifiers must be set to 1 if the equivalence testis to pass.
The format of this flag word corresponds to that defined for the
event record in Chapter 7, “Event Manager,” in Volume1 of the
Toolbox Reference, Note that only the modifiers in the high-order

byte are used here.

These modifiers must match for the equivalence test to pass. The
format for this word correspondsto that for keyModifiers.This
word allows you to discriminate between double-modified
keystrokes. For example, if you want Control-7 to be an equivalent,
but not Option-Control-7, set the following three bits to 1: the

controlkeybit in keyModifiers and both the opt ionKey and

the cont rolKeybits in keyCareBits.If you want Return and Enter

to be treated the same, set the keyPadbitto 0.

Simple button control template

Figure 28-3 showsthe template that defines a simple button control.

= Figure 28-3 Item template for simple button controls

$00

$02

S06 !

SOE

$12

$14

$16

S1A

SIE

$22 !

L pCount Word—Parameter count for template: 7, 8, or 9

- ID - Long—Application-assigned control ID

rect - Rectangle—Boundary rectangle for control

H procRef 4 Long—simpleButtonControl =S80000000

L flag — Word—Highlight and controlflags for control

L moreFlags — Word—Additionalcontrolflags

- refCon 4 Long—Application-defined value

H titleRef 4 Long—Referencetotitle of button

- *colorTableRef - Long—Referenceto color table for control (optional)

De *keyEquivalent : Block, 6 bytes—Keystroke equivalent data (optional)

28-48 Apple Ics Toolbox Reference, Volume 3

Defined bits for flag are

Reserved

ctlinvis

Reserved

Button type

bits 15-8

bit 7

bits 6-2

bits 1-0

Defined bits for moreFlagsare

fCtlTarget

fCtlCanBeTarget

fCtlwWantEvents

fCtlProcRefNotPtr

f£CtlTellAboutSize

Reserved

Color table reference

Title reference

bit 15
bit 14

bit 13

bit 12
bit 11

bits 10-4

bits 3-2

bits 1-0

Mustbesetto 0.
0 = Visible, 1 = Invisible.

Mustbesetto 0.

Describes button type.
00 = Single-outlined, round-cornered button

01 = Bold-outlined, round-cornered button

10 = Single-outlined, square-cornered button
11 = Single-outlined, square-cornered, drop-

shadowed button

Mustbesetto 0.

Mustbesetto 0.

Set to 1 if button has keystroke equivalent.
Mustbesetto 1.
Mustbesetto 0.
Mustbesetto 0.

Defines type of reference in colorTableRef.

See Chapter 4, “Control Manager,” in Volume 1

of the Toolbox Referencefor the definition of

the simple button color table.

00 = Color table reference is by pointer
01 = Color table reference is by handle

10 = Color table reference is by resource ID

(resource type of rct 1ColorTbl, $800D)
11 = Invalid value

Defines type oftitle reference in titleRef.
00 = Title reference is by pointer
01 = Title reference is by handle

10 = Title reference is by resource ID (resource

type correspondsto string type)

11 = Invalid value

keyEquivalent Keystroke equivalent information stored at keyEquivalentis

formatted as shownin Figure 28-2.

Chapter 28 Control Manager Update 28-49

Check box control template

Figure 28-4 shows the template that defines a check box control.

a Figure 28-4 Control template for check box controls

$00 pCount

$02 a
pare ID =

$06
: rect

SOE |L —
— procRef 7

$14 moreFlags =

$16 7
C refCon _

SIA[_ a

— titleRef =

SIE initialValue —

$20 —
— *colorTableRef —

$24
*keyEquivalent

Defined bits for flag are

Reserved

ctlinvis

Reserved

Word—Parameter countfor template: 8, 9, or 10

Long—Application-assigned control ID

- Rectangle—Boundary rectangle for control

Long— checkBoxControl =$82000000

Word—Highlightand controlflags for control

Word—Additionalcontrolflags

Long—Application-defined value

Long—Referencetotitle of box

Word—Initial box setting: 0 for clear, 1 for checked

Long—Referenceto colortable for control (optional)

Block, 6 bytes—Keystroke equivalent data (optional)

bits 15-8 Must besetto 0.

bit 7 0 = Visible, 1 = Invisible.

bits 6-0 Mustbesetto 0.

28-50 Apple IIGs Toolbox Reference, Volume 3

Defined bits for moreFlagsare

fCtliTarget

fCtliCanBeTarget

FCtlwantEvents

fCtlProcRefNotPtr

fCtlTellAboutSize

Reserved
Color table reference

Title reference

bit 15
bit 14
bit 13

bit 12

bit 11

bits 10-4

bits 3-2

bits 1-0

Must be set to 0.
Must besetto 0.

Set to 1 if check box has keystroke equivalent.

Must besetto 1.

Mustbesetto 0.

Must besetto 0.

Defines type of reference in colorTableRef

(see Chapter 4, “Control Manager,” in Volume 1

of the Toolbox Reference for the definition of

the check box color table).

00 = Color table reference is by pointer

01 = Color table reference is by handle

10 = Color table reference is by resource ID

(resource type of rct 1ColorTb1l, $800D)
11 = Invalid value

Definestypeoftitle reference in tit leRef.
00 = Title reference is by pointer

01 = Title reference is by handle
10 = Title reference is by resource ID (resource
type corresponds to string type)
11 = Invalid value

keyEquivalent Keystroke equivalent information stored at keyEquivalentis

formatted as shownin Figure 28-2.

Chapter 28 Control Manager Update 28-51

Icon button control template

Figure 28-5 shows the template that defines an icon button control. For more information
about icon button controls, see “Icon Button Control”earlier in this chapter.

a Figure 28-5 Control template for icon button controls

$00 pCount

ya _

$06 : rect

SOE
— procRef =

$12 flag —

$14 moreFlags 4

$16 ~
—— refCon _

SIAL =
7 iconRef =

SIE —
— *ctitleRef —
L_ —

$22 L =
r= *colorTableRef —

$26 *displayMode =

$28 *keyEquivalent

Word—Parametercountfor template: 7, 8, 9, 10, or 11

Long—Application-assigned control ID

: Rectangle—Boundary rectangle for control

Long—iconButtonControl =$07FF0001

Word—Highlight and controlflags for control

Word—Additional controlflags

Long—Application-defined value

Long—Referenceto icon for control

Long—Referencetotitle for control (optional)

Long—Referenceto colortable for control (optional)

Word—Bit flag controlling icon appearance (optional)

Block, 6 bytes—Key equivalent information (optional)

2852 Apple IIGs Toolbox Reference, Volume 3

Defined bits for flag are

ctlHilite

ctliInvis

Reserved

showBorder

buttonType

bits 15-8

bit 7

bits 6-3
bit 2

bits 1-0

Defined bits for moreFlags are

f£CtlTarget

fCtlCanBeTarget

fCtlWantEvents

fFCtlProcRefNotPtr

£CtlTellAboutSize

Reserved

Icon reference

Color table reference

bit 15

bit 14

bit 13
bit 12

bit 11

bits 10-6

bits 5-4

bits 3-2

Sets the ct LHilite field of the control

record.

0 = Visible, 1 = Invisible.

Mustbeset to 0.

0 = Show border, 1 = No border.

Defines button type.

00 = Single-outlined, round-cornered button
01 = Bold-outlined, round-cornered button

10 = Single-outlined, square-cornered button

11 = Single-outlined, square-cornered, and drop-
shadowed button

Mustbeset to 0.

Mustbesetto 0.
Must besetto 0.
Mustbesetto 1.
Mustbesetto 0.
Mustbesetto 0.

Defines type of icon reference in iconRef.

00 = Icon reference is by pointer
01 = Icon reference is by handle

10 = Icon reference is by resource ID (resource

type of rIcon, $8001)
11 = Invalid value
Defines type of reference in colorTableRef;

the color table for an icon button is the same as

that for a simple button (see Chapter4,
“Control Manager,” in Volume 1 of the Toolbox
Reference forthe definition of the simple

button color table).

00 = Colortable reference is by pointer
01 = Color table reference is by handle
10 = Colortable reference is by resource ID
(resource type of rct 1ColorTb1, $800D)
11 = Invalid value

Chapter 28 Control Manager Update 28-53

Title reference

titleRef

displayMode

Backgroundcolor

Foreground color

Reserved

offLine

openicon

selectedIcon

keyEquivalent

bits 1-0 Defines typeoftitle reference in tit leRef.

00 = Title reference is by pointer

01 = Title reference is by handle

10 = Title reference is by resource ID (resource

type of rPSt ring, $8006)

11 = Invalid value

Reference tothetitle string, which must be a Pascalstring. If you are

not using a title but are specifying other optional fields, set bits 0 and

1 of moreF lagsto 0, andsetthis field to 0.

Passed directly to the DrawIconroutine, this field defines the
display modeforthe icon. The field is defined as follows (for more
information on icons, see Chapter 17, “QuickDraw II Auxiliary,” in

Volume 2 of the Toolbox Reference):

bits 15-12 Defines the background color to apply to the

black part of black-and-white icons.

bits 11-8 Defines the foreground color to apply to the

white part of black-and-white icons.
bits 7-3 Must besetto 0.

bit 2 0 = Don’t perform the AND operation on the
image.

1 = Perform logical AND operation with light-
gray pattern and image being copied.

bit 1 0 = Don’t copy light-gray pattern.

1 = Copylight-gray pattern instead of image.
bit 0 0 = Don’t invert image.

1 = Invert image before copying.

Color values (both foreground and background)are indexesinto the
currentcolor table. See Chapter 16, “QuickDraw II,” in Volume 2 of the
Toolbox Reference for details about the format and contentof these
color tables.

Keystroke equivalent information stored at keyEquivalentis

formatted as shownin Figure 28-2.

28-54 Apple IIGs Toolbox Reference, Volume 3

LineEdit control template

Figure 28-6 shows the template that defines a LineEdit control. For more information
about LineEdit controls, see “LineEdit Control” earlier in this chapter.

= Figure 28-6 Control template for LineEdit controls

$00 pCount — Word—Parameter countfor template:8

$02 L
— ID — Long—Application-assigned control ID

$06 rect - Rectangle—Boundary rectanglefor control

SOE =
— procRef — Long—editLineCont rol =S83000000

$12 - flag — Word—Highlight and controlflags for control

$14 moreFlags — Word—Additional control flags

$16 - ~
~ refCon — Long—Application-defined value

SIA maxSize 4 Word—Maximumlengthof inputline (in bytes)

SIC _
ome defaultRef Long—Referenceto default text

Defined bits for flag are

Reserved bits 15-8 Must besetto 0.

ctliInvis bit 7 0 = Visible, 1 = Invisible.

Reserved bits 6-0 Mustbesetto 0.

Chapter 28 Control Manager Update 28-55

Defined bits for moreFlags are

fCtlTarget bit 15 Mustbesetto 0.

fCtlCanBeTarget bit 14 Mustbesetto 1.

fCtlWantEvents bit 13 Must besetto 1.

fCtlProcRefNotPtr bit 12 Must besetto 1.

fCtlTellAboutSize bit 11 Mustbesetto 0.

Reserved bits 10-2 Must besetto 0.

Text reference bits 1-0 Defines type of text reference in

defaultRef.

00 = Text reference is by pointer

01 = Text reference is by handle
10 = Text reference is by resource ID (resource
type of rpsSt ring, $8006)
11 = Invalid value

maxSize Specifies the maximum numberof characters allowed in the LineEdit
field. Valid values are in the range 1 to 255, inclusive.

The high-order bit indicates whether the LineEditfield is a password

field. Password fields protect user input by echoing asterisks or any

application-defined character, rather than the actual user input. If this

bit is set to 1, then the LineEdit field is a passwordfield.

Note that LineEdit controls do not support colortables.

28-56 Apple IIGs Toolbox Reference, Volume 3

List control template

Figure 28-7 shows the template that defines a list control. For more information aboutlist
controls, see “List Control” earlier in this chapter.

= Figure 28-7 Control template for list controls

S00 | pCount — Word—Parametercount for template: 14 or 15

S02 }-- — ns ,
— ID —_ Long—Application-assigned control ID

$06 rect : Rectangle—Boundary rectangle for control

SOE |— =
— procRef — Long—listControl =$89000000

$12 flag — Word—Highlight and controlflags for control

$14 J moreFlags — Word—Additional control flags

$16 [— =
— refCon — Long—Application-defined value

S1A }— listSize — Word—Numberof membersin list

$1C | listView — Word—Number of membersvisible in window

S1E listType —| Word—Type oflist entries, selection options,etc.

$20 }— listStart — Word—First visible list member

$22 [_ _
— listDraw — Long—Pointer to member-drawingroutine

$26 | 1istMemHeight —{ Word—Heightofeachlist item (in pixels)

528 [| Listmemsize —| Word—Size oflist entry (in bytes)

S2A |__ a
— listRef — Long—Referencetolist of memberrecords

$2E }— —
i *colorTableRef Long—Referenceto colortable for control (optional)

Defined bits for flag are

Reserved bits 15-8 Must besetto 0.

ctlInvis bit 7 0 = Visible, 1 = Invisible.

Reserved bits 6-0 Mustbesetto 0.

Chapter 28 Control Manager Update 28-57

Defined bits for moreFlags are

f£CtlTarget

fCtlCanBeTarget

fCtlWantEvents

fCtiProcRefNotPtr

fCtlTellAboutSize

fCtlisMultiPart

Reserved
Color table reference

List reference

bit 15
bit 14

bit 13
bit 12

bit 11

bit 10

bits 9-4
bits 3-2

bits 1-0

Mustbeset to 0.

Mustbeset to 0.

Mustbesetto 0.
Mustbeset to 1.

Must besetto 0.

Mustbesetto 1.

Mustbesetto 0.
Defines type of reference in colorTableRef

(the colortable for a list control is described in

Chapter 11, “List Manager,” in Volume 1 of the
Toolbox Reference).
00 = Color table reference is by pointer
01 = Colortable reference is by handle
10 = Color table reference is by resource ID

(resource type of rct 1ColorTbl,$800D)

11 = Invalid value
Defines type of reference in ListRef (the
formatfor a list member record is described in

Chapter 11, “List Manager,” in Volume 1 of the

Toolbox Reference).

00 = List reference is by pointer

01 = List reference is by handle

10 = List reference is by resource ID (resource

type of rListRef, $801C)

11 = Invalid value

28-58 Apple IIGs Toolbox Reference, Volume 3

listType Valid values for ListType are

Reserved bits 15-3 Mustbesetto 0.

fListScrollBar bit 2 Allows you to control where the scroll bar for the
list is drawn.

0 = Scroll bar drawn on outside of boundary
rectangle

1 = Scroll bar drawn on inside of boundary

rectangle (The List Manager calculates space

needed, adjusts dimensions of boundary
rectangle, andresetsthis flag.)

fListSelect bit 1 Controls type of selection options available to
the user.

0 = Arbitrary and rangeselection allowed

1 = Only single selection allowed

fListString bit 0 Defines the type of strings used to definelist
items.

0 = Pascalstrings

1 = Cstrings ($00-terminated)

For details on the remaining custom fields in this template, see the discussion under“List

Controls and List Records” in Chapter 11, “List Manager,” of Volume 1 of the Toolbox

Reference.

Chapter 28 Control Manager Update 28-59

Picture control template

Figure 28-8 shows the template that defines a picture control. For more information about

picture controls, see “Picture Control” earlier in this chapter.

a Figure 28-8 Control template for picture controls

$00

$02

$06 |

SOE

$12

S14

$16

SIA

pCount 1

i
t
y

ID

|
|
)

rect

1
] procRef

|_
|

flag

moreFlags

refCon

| pictureRef
Defined bits for flag are

ctlHilite

ctliInvis

Reserved

Word—Parameter countfor template: 7

Long—Application-assigned control ID

- Rectangle—Boundary rectangle for control

Long—pictureControl =S8D000000

Word—Highlight and controlflags for control

Word—Additionalcontrol flags

Long—Application-defined value

Long—Reference to picture for control

bits 15-8

bit 7

bits 6-0

Specifies whether the control wants to receive
mouse selection events. The values for

ctlHilite are

0 = Control is active

255 = Control is inactive

0 = Visible, 1 = Invisible.

Mustbeset to 0.

28-60 Apple IIGS Toolbox Reference, Volume 3

Defined bits for moreFlags are

fCtlTarget bit 15 Mustbesetto 0.

fCtlCanBeTarget bit 14 Must besetto 0.

fCtlWantEvents bit 13 Must besetto 0.

fCtlProcRefNotPtr bit 12 Must besetto 1.

fCtlTellAboutSize bit 11 Mustbesetto 0.
Reserved bits 10-2 Must besetto 0.

Picture reference bits 1-0 Defines type of picture reference in
pictureRef.

00 = Invalid value

01 = Reference is by handle

10 = Reference is by resource ID (resource type
of rPicture, $8002)

11 = Invalid value

Chapter 28 Control Manager Update 28-61

Pop-up control template

Figure 28-9 shows the template that defines a pop-up control. For more information about

pop-up controls, see “Pop-up Control”earlier in this chapter.

a Figure 28-9 Control template for pop-up controls

S00 pCount — Word—Parameter count for template: 9 or 10

S02 - - —
C ID —| Long—Application-assignedcontrol ID

$06 : rect - Rectangle—Boundary rectangle for control

SOE - —
— procRef — Long—popUpCont ro1=$87000000

$12 [0 flag — Word—Highlight and controlflags for control

$14 L moreFlags — Word—aAdditional controlflags

$16 FT _
— refCon — Long—Application-defined value

SIAL eitiewiath — Word—Widthin pixels oftitle string area
$1C _

L menuRef 7 Long—Reference to menudefinition

$20 initialValue Word—item IDofinitial item

$22 / ~
-- ‘*colorTableRef - Long—Referenceto colortable for control (optional)

28-62 Apple IIGs Toolbox Reference, Volume 3

Definedbits for flag are

ctlHilite

ctlInvis

£Type2PopUp

fDontHiliteTitle

fDontDrawTitle

fDontDrawResult

fInWindowOnly

bits 15-8

bit 7

bit 6

bit 5

bit 4

bit 3

bit 2

Specifies whether the control wants to receive

mouse selection events. The values for

ctlHilite are

0 = Control is active

255 = Controlis inactive
0 = Visible, 1 = Invisible.

Tells the Control Manager whetherto create a

pop-up menuwith white space for scrolling (see

Chapter 37, “Menu Manager Update,” for details

on type 2 pop-up menus).

0 = Draw normal pop-up menu
1 = Draw pop-up menuwith white space
(type 2)
Controls highlighting of the menutitle.

0 = Highlighttitle

1 = Do nothighlighttitle

Allows you to prevent the title from being drawn

(note that you must supplya title in the menu
definition, whether or not it will be displayed);

if tit leWidthis defined andthis bit is set to
1, then the entire menuis offset to the right by

titleWidth pixels.

0 = Drawthetitle

1 = Do not drawthetitle

Allows you to control whetherthe selection is

drawnin the pop-up rectangle.
0 = Draw theresult

1 = Do not draw the result in the result area after
a selection
Controls how muchthe pop-up menu can
expand;this is particularly relevant to type 2
pop-up menus (see Chapter 37, “Menu Manager

Update,” for details on type 2 pop-up menus).

0 = Allow the pop-up menu to expandto the

size of the screen
1 = Keep the pop-up menuin the current
window

Chapter 28 Control Manager Update 28-63

fRightJustifyTitle bit 1 Controls title justification.
0 = Left-justify the title

1 = Right-justify the title; note that if the title is

right justified, then the control rectangle is

adjusted to eliminate unneededpixels (see

Figure 28-12) and the value for tit leWidthis
also adjusted

fRightJustifyResult bit 0 Controls result justification.

0 = Left-justify the selection tit leWidth
pixels from theleft of the pop-up rectangle
1 = Right-justify the selection

Defined bits for moreFlags are

f£CtlTarget bit 15 Mustbeset to 0.

fCtlCanBeTarget bit 14 Must besetto 0.

fCtlWantEvents bit 13 Mustbesetto 1 if the pop-up menu has any
keystroke equivalents defined.

fCtlProcRefNotPtr bit 12 Mustbesetto 1.

fCtlTellAboutSize bit 11 Mustbesetto 0.

Reserved bits 10-5 Must besetto 0.

Color table reference bits 4-3 Defines type ofreference in colorTableRef

(the color table for a menu is described in
Chapter 13, “Menu Manager,” in Volume1 ofthe
Toolbox Reference).

00 = Colortable reference is by pointer
01 = Color table reference is by handle

10 = Color table reference is by resource ID

(resource type of rct 1ColorTbl, $800D)
11 = Invalid value

fMenuDefIsText bit 2 Defines type of data referred to by menuRef.

0 =menuRefis a reference to a menu template
(See Chapter 13, “Menu Manager,” in Volume 1
of the Toolbox Reference for details on format
and content of a menu template.)

1=menuRefis a pointerto a text stream in
NewMenu format (Again, see Chapter 13, “Menu
Manager,” in Volume1 of the Toolbox Reference
for details.)

28-64 Apple IIGs Toolbox Reference, Volume 3

Menureference

rect

titleWidth

menuRef

initialValue

bits 1-0 Defines type of menu reference in menuRef (if
fMenuDefIsTextis set to 1, then thesebits

are ignored).

00 = Menureferenceis by pointer

01 = Menureference is by handle

10 = Menureferenceis by resource ID (resource

type of rMenu, $8009)
11 = Invalid value

Defines the boundary rectangle for the pop-up menuandits title,
before the menu has beenselected by the user. The Menu Manager
calculates the lower-right coordinates of the rectangle for you if you

specify those coordinates as (0,0).

Provides you with additional control over placement of the menu on

the screen. The tit leWidth field defines an offset from theleft
edge of the contro! (boundary) rectangle to the left edge of the pop-
up rectangle (see Figure 28-11). If you are creating a series of pop-up
menus, you can align them vertically by giving all menus the same x}

coordinate and t it lewidthvalue. You may use tit leWidthfor

this even if you are not goingto display the title (EDontDrawTitle
flag is set to 1 in fag). If you set tit lewidthto 0, then the Menu

Managerdeterminesits value accordingto the length of the menutitle,

and the pop-up rectangle immediately followsthetitle string. If the
actual width of yourtitle exceeds the value of tit leWidth,results

are unpredictable.

Reference to menudefinition (see Chapter 13, “Menu Manager,”in
Volume1 of the Toolbox Reference and Chapter 37, “Menu Manager

Update,” in this book for details on menu templates). The type of
reference contained in menuRef is defined by the menureferencebits

in moreFlags.

The initial value to be displayed for the menu.Theinitial value is the
default value for the menu andis displayed in the pop-up rectangle of
unselected menus. You specify an item byits ID, thatis, its relative
position within the array of items for the menu (see Chapter 37, “Menu

Manager Update,”for information on the layout and content of the

pop-up menu template). If you pass an invalid item ID, no item is

displayed in the pop-uprectangle.

Chapter 28 Control Manager Update 28-65

a Figure 28-10 Unselected pop-up menu

(Pop-uprectangle)

x
Baud rate:| 300

a Figure 28-11 Selected pop-up menuwith left-justified title

(control rectangle) "|

(x,Yp

PEPEGRE|||i
\x—titiewidth = 100 > 600 é y r (X9,Y2)

1200 @H

2400

4800

9600

a Figure 28-12 Selected pop-up menu withright-justified title

(control rectangle) —————>+

old

(x}Yp

M—titleWidth = 100—> 600 “y r

1200 €H

2400

4800

9600
28-66 Apple IIGs Toolbox Reference, Volume 3

Radio button control template

Figure 28-13 showsthe template that defines a radio button control.

s Figure 28-13 Control template for radio button controls

$00 pCount —| Word—Parametercountfor template: 8, 9, or 10

$02 + -
— ID — Long—Application-assigned control ID

$06 rect - Rectangle—Boundary rectangle for control

SOE }- -
— procRef + Long— radioButtonControl =$84000000

$12 flag — Word—Highlight and controlflags for control

$14[° moreFlags — Word—Additional controlflags

$16 + = a
— refCon — Long—Application-defined value

S1A[— -
— titleRef — Long—Referencetotitle of button

SIE initdalvalue —| Word—Initial setting: 0 for clear, 1 for set

$20 -
- *colorTableRef -{ Long—Referenceto colortable for control (optional)

$24 ! . .
> *keyEquivalent =: Block, 6 bytes—Keystroke equivalentdata (optional)

l

Defined bits for flag are

Reserved

ctlinvis

Family number

bits 15-8 Mustbesetto 0.
bit 7 0=Visible, 1=Invisible.

bits 6-0 Family numbers define associated groups of
radio buttons; radio buttons in the same family

are logically linked—thatis, setting one radio

button in a family clears all other buttons in the
same family.

Chapter 28 Control Manager Update 28-67

Defined bits for moreFlags are

fctiTarget

f£CtlCanBeTarget

fCtlWantEvents

fctlProcRefNotPtr

fCtlTellAboutSize

Reserved

Color table reference

Title reference

bit 15

bit 14

bit 13
bit 12

bit 11

bits 10-4

bits 3~2

bits 1-0

Mustbesetto 0.
Mustbesetto 0.
Set to 1 if button has keystroke equivalent.
Mustbesetto 1.
Must besetto 0.

Mustbesetto 0.
Defines type of reference in colorTableRef

(see Chapter 4, “Control Manager,” in Volume 1
of the Toolbox Referenceforthe definition of

the radio button colortable).

00 = Colortable reference is by pointer
01 = Color table reference is by handle
10 = Colortable reference is by resource ID
(resource type of rct 1ColorTbl, $800D)
11 = Invalid value

Defines type oftitle reference in titleRef.
00 = Title reference is by pointer
01 = Title reference is by handle
10 = Title reference is by resource ID (resource

type corresponds to string type)
11 = Invalid value

keyEquivalent Keystroke equivalent information stored at keyEquivalentis

formatted as shownin Figure 28-2.

28-68 Apple IIGs Toolbox Reference, Volume 3

Scroll bar control template

Figure 28-14 shows the template that defines a scroll bar control.

Control template for scroll bar controls

= Figure 28-14

500 pCount _

$02 =
a ID a]

$06 :
rect

SOE |- =
— procRef 7

$12 L flag —

$14 moreFlags =

$16 -
om refCon ~”

S1A = maxSize =

$1C = viewSize ”

S1E _ initialValue _

$20 -
— *colorTableRef —~—

Definedbits for flag are

Reserved

ctliInvis

Reserved

horScroll

rightFlag

leftFlag

downFlag

upFlag

Word—Parametercountfor template: 9 or 10

Long—Application-assigned control ID

: Rectangle—Boundary rectangle for control

Long—scrol1Control =$86000000

Word—Highlight and controlflags for control

Word—Additional conwolflags

Long—Application-defined value

Word—lInitial size of displayed item

Word—Amountofitem initially visible

Word—Initialsetting

Long—Referenceto colortable for control (optional)

bits 15-8 Must besetto 0.

bit 7 0 = Visible, 1 = Invisible.

bits 6-5 Mustbesetto 0.

bit 4 0 = Vertical scroll bar, 1 = Horizontal scroll bar.

bit 3 0 = Barhas norightarrow, 1 = Bar has right
arrow.

bit 2 0 = Bar has noleft arrow,1 = Barhas left arrow.
bit 1 0 = Bar has no downarrow, 1 = Bar has down

arrow.

bit 0 0 = Bar has no uparrow,1 = Barhas up arrow.

Note that extraneousflag bits are ignored, depending onthe state of horScrol1 flag.
For example,for vertical scroll bars, rightFlag and leftFlagareignored.

Chapter 28 Control Manager Update 28-469

Defined bits for moreFlags are

fCtlTarget

fCtlCanBeTarget

fctlwantEvents

f£CtlProcRefNotPtr

fFCtlTellAboutSize

Reserved

Color table reference

Reserved

bit 15
bit 14

bit 13
bit 12

bit 11

bits 10-4

bits 3-2

bits 1-0

Must beset to 0.
Mustbesetto 0.
Must beset to 0.

Mustbesetto 1.

Must besetto 0.

Mustbesetto 0.

Defines type of reference in colorTableRef
(see Chapter 4, “Control Manager,” in Volume 1

of the Toolbox Reference and “Clarifications”
earlier in this chapter for the definition of the
scroll bar colortable).
00 = Color table reference is by pointer

01 = Color table reference is by handle

10 = Colortable reference is by resource ID
(resource type of rct 1ColorTbl, $800D)
11 = Invalid value
Mustbe setto 0.

28-70 Apple IIGs Toolbox Reference, Volume 3

Size box control template

Figure 28-15 showsthe template that defines a size box control.

a Figure 28-15 Control template for size box controls

$00 pCount —| Word—Parameter countfor template: 6 or 7

$02 4
— ID — Long—Application-assigned control ID

$06 rect : Rectangle—Boundary rectangle for control

SOE - =
— procRef + Long—growControl =$88000000

$12 flag — Word—Highlight and controlflags for control

$14 moreFlags — Word—Additional controlflags

$16 - -
— refCon —| Long—Application-defined value

$1A 4
- *colorTableRef —{ Long—Reference to colortable for control (optional)

Defined bits for flag are

Reserved bits 15-8 Mustbe setto 0.

ctlinvis bit 7 0 = Visible, 1 = Invisible.

Reserved bits 6-1 Mustbesetto 0.
fCallWindowMgr bit 0 0 = Just highlight control,

1 = Call GrowWindow and SizeWindow to

track this control.

Chapter 28 Control Manager Update 28-71

Defined bits for moreFlagsare

fCtlTarget

fCtlCanBeTarget

fCtlWantEvents

fCtlProcRefNotPtr

fCt1lTellAboutSize

Reserved

Color table reference

Reserved

bit 15
bit 14

bit 13
bit 12

bit 11

bits 10-4
bits 3-2

bits 1-0

Mustbesetto 0.

Must be set to 0.
Mustbesetto 0.

Must besetto 1.

Mustbesetto 0.
Must besetto 0.
Defines type of reference in colorTableRef
(see “Error Corrections” at the beginning ofthis
chapter for the definition of the size box color
table).

00 = Colortable reference is by pointer

01 = Colortable reference is by handle

10 = Colortable reference is by resource ID
(resource type of rct 1ColorTbl, $800D)
11 = Invalid value
Mustbeset to 0.

28-72 Apple IIGS Toolbox Reference, Volume 3

Static text control template

Figure 28-16 showsthe template that defines a static text control. For more information
about static text controls, see “Static Text Control” earlier in this chapter.

= Figure 28-16

$00 - pCount

$02 - -

$06 !
: rect

SOE - -
— procRef

$12 - flag

$14 — moreFlags

$16
— refCon

SIAL _
— textRef

$1E - *textSize

$20 — *jJust

Control template for static text controls

— Word—Parameter count for template:7, 8, or 9

Long—Application-assigned control ID

: Rectangle—Boundary rectangle for control

—+ Long—statTextControl =$81000000

+ Word—Highlight and controlflags for control

— Word—Additional controlflags

= Long—Application-defined value

—| Long—Referenceto text for control

— Word—Text size field (optional)
 —| Word—Initialjustification for text (optional)

Defined bits for flag are

Reserved

ctlInvis

Reserved

fFSubstituteText

fSubTextType

bits 15-8 Must besetto 0.

bit 7 0 = Visible, 1 = Invisible.

bits 6-2 Must besetto 0.
bit 1 0 = No text substitution to perform,

1 = Thereis text substitution to perform.

bit 0 0 = C strings, 1 = Pascalstrings.

Chapter 28 Control Manager Update 28-73

Defined bits for moreFlags are

fCtlTarget bit 15
fCt1CanBeTarget bit 14

fCtlWantEvents bit 13

fCtlProcRefNotPtr bit 12

fCtlTellAboutSize bit 11

Reserved bits 10-2

Text reference bits 1-0

Mustbesetto 0.
Mustbeset to 0.
Mustbeset to 0.
Must besetto 1.

Mustbesetto 0.

Mustbesetto 0.

Defines type of text reference in text Ref.

00 = Text reference is by pointer

01 = Text reference is by handle
10 = Text reference is by resource ID (resource
type of rfextForLETextBox2, $800B)
11 = Invalid value

textSize The size of the referenced text in characters, but onlyif the text

reference in textRef is a pointer.If the text referenceis either a

handle or a resource ID, then the Control Managercan extract the

length from the handle.

just The justification word is passed to LETextBox2 (see Chapter 10,
“LineEdit Tool Set,” in Volume 1 of the Toolbox Reference for details

on the LETextBox2toolcall) and is used to set theinitial

justification for the text being drawn. Valid values for just are

leftJustify 0

centerJustify l

rightJustify -l

fulldJustify 2

Text is left justified in the display window.
Text is centered in the display window.
Text is right justified in the display

window.

Text is fully justified (both left and right) in
the display window.

Static text controls do not support color tables. To display text of different color, you
must embed the appropriate commands into the text string you are displaying. See the
discussion of LETextBox2 in Chapter10, “LineEdit ToolSet,” in Volume 1 of the Toolbox
Reference for details on command format and syntax.

28-74 Apple IIGs Toolbox Reference, Volume 3

TextEdit control template

Figure 28-17 shows the template that defines a TextEdit control. For more information
about TextEdit controls, see “TextEdit Control” earlier in this chapter.

= Figure 28-17 Control template for TextEdit controls

$00 F pcount — Word—Parameter countfor template: 7 to 23
$02 - =

— ID —| Long—Application-assigned control ID

$06 : rect - Rectangle—Boundary rectangle for control

SOE |- _
— procRef —| Long—editTextCont rol =$85000000

$12 L flag — Word—Highlight and controlflags for control

$14 moreFlags —| Word—Additionalcontrolflags

$16 L _
— refCon — Long—Application-defined value

SIAL 4
— textFlags — Long—Specific TextEdit control flags (see below)

SIE! . ; ,
: *indentRect : Rectangle—Text indentation from control rectangle (optional)

$26 =
— *vertBar — Long—Handleto vertical scroll bar for control (optional)

S2A}- *vertAmount — Word—Verticalscroll amount, in pixels (optional)

$2C -
— *horzBar ~— Long—Reserved; mustbe set to NIL (optional)

$30 *horzAmount — Word—Reserved; mustbe set to 0 (optional)

$32 L =
— *styleRef — Long—Referencetoinitial style information for text (optional)

$36 + *textDescriptor -~{ Word—Formatofinitial text andtextRef (optional)

$38 [7 =
— *textRef — Long—Referencetoinitial text for edit window (optional)

$3C FE =
Ts *textLength Long—Length ofinitial text (optional)

continued
Chapter 28 Control Manager Update 28-75

continued
$40 =

— *maxChars _

$447 _]

pe *maxLines =

$48 — *maxCharsPerLine —

$4A | *maxHeight =

$4C LE _
pe *colorRef =

$50 bem *drawMode =

$52 + _

— *filterProcPtr —

Defined bits for flag are

Reserved

ctlInvis

Reserved

Long—Maximum numberofcharacters allowed (optional)

Long—Reserved; must be set to 0 (optional)

Word—Reserved; must be set to 0 (optional)

Word—Reserved; must be set to 0 (optional)

Long—Reference to TextEdit color table (optional)

Word—QuickDrawII text mode for edit window (optional)

Long—Pointertofilter routine for this control (optional)

bits 15-8 Mustbesetto 0.

bit 7 0 = Visible, 1 = Invisible.

bits 6-0 Mustbeset to 0.

Defined bits for moreFlagsare

fCtlTarget

£CtliCanBeTarget

fCtlWantEvents

fCtlProcRefNotPtr

fCtlTellAboutSize

fCtlIsMultiPart

Reserved

Color table reference

bit 15 Mustbesetto 0.
bit 14 Mustbesetto 1.
bit 13 Must be setto 1.

bit 12 Mustbesetto 1.

bit 11 If this bit is set to 1, a size box is created in the

lower-right comer of the window. Wheneverthe

control window is resized, the edit text is
resized and redrawn.

bit 10 Mustbeset to 1.

bits 9-4 Mustbesetto 0.
bits 3-2 Defines type of reference in colorRef; the

color table for a TextEdit control
(TEColorTab1le)is described in Chapter 49,
“TextEdit Tool Set,” in this book.

00 = Colortable reference is by pointer
01 = Colortable reference is by handle
10 = Color table reference is by resource ID

(resource type of rct 1ColorTbl, $800D)
11 = Invalid value

28-76 Apple IIcs Toolbox Reference, Volume3

Style reference

L\ Important

bits 1-0

Valid values for textFlags are

fNotControl

fSingleFormat

fSingleStyle

fNoWordWrap

fNoScroll

fReadOnly

fSmartCutPaste

bit 31

bit 30

bit 29

bit 28

bit 27

bit 26

bit 25

Defines type of style reference in styleRef;

the format for a TextEdit style descriptor is

described in Chapter 49, “TextEdit Tool Set,” in

this book.
00 = Style reference is by pointer
01 = Style reference is by handle

10 = Style reference is by resource ID (resource

type of rStyleBlock, $8012)

11 = Invalid value

Do not set £Ct 1Te1 1AboutSize to 1 unless the text edit record also

has a vertical scroll bar. This flag works only for TextEdit records that

are controls. a

Mustbesetto 0.
Mustbe setto 1.
Allows you torestrict the style options available

to the user.
0 = Do notrestrict the numberofstyles in the

text

1 = Allow only onestyle in the text

Allows you to control TextEdit word wrap
behavior.
0 = Perform word wrapto fit the ruler
1 = Do not word wrapthe text; break lines only
on CR ($0D) characters
Controls user access to scrolling.

0 = Scrolling permitted
1 = Do not allow either manualor auto-scrolling
Restricts the text in the window to read-only

operations (copying from the window will still

be allowed).

0 = Editing permitted
1 = No editing allowed
Controls TextEdit support for smart cut and
paste (see Chapter 49, “TextEdit ToolSet,” for
details on smart cut and paste support).

0 = Do not use smart cut and paste

1 = Use smart cut and paste

Chapter 28 Control Manager Update 28-77

fTabSwitch bit 24 Defines behavior of the Tab key (see
Chapter 49, “TextEdit ToolSet,” for details).
0 = Tab inserted in TextEdit document
1 = Tab to next control in the window

fDrawBounds bit 23 Tells TextEdit whether to draw a box around the

edit window,just inside rect; the penfor this
box is 2 pixels wide and 1 pixel high.

0 = Do notdraw rectangle

1 = Draw rectangle

fColorHilight bit 22 Mustbesetto 0.

fGrowRuler bit 21 Tells TextEdit whether to resize the ruler in

response to the user's resizing of the edit
window;if this bit is set to 1, TextEdit

automatically adjusts the right margin value for
theruler.

0 = Do notresize the ruler

1 = Resize the ruler

fDisableSelection bit 20 Controls whether user can select text.

0 = User can select text

1 = User cannotselect text

fDrawInactiveSelection

bit 19 Controls how inactive selected text is

displayed.

0 = TextEdit does not display inactive
selections

1 = TextEdit draws a box aroundinactive

selections
Reserved bits 18-0 Must besetto 0.

indentRect Each coordinate of this rectangle specifies the amount of white space
to leave between the boundary rectangle for the control and the text

itself, in pixels. Default values are (2,6,2,4) in 640 mode and (2,4,2,2)

in 320 mode. Each indentation coordinate may be specified

individually. To assert the default for any coordinate, specify its value
as $FFFF.

vertBar Handle ofthe vertical scroll bar to use for the TextEdit window. If you

do not wanta scroll baratall, then set this field to NIL. If you want
TextEdit to create a scroll bar for you, just inside the right edge of the
boundary rectangle for the control, then setthis field to $FFFFFFFF.

vertAmount Specifies the numberof pixels to scroll wheneverthe user presses the

up or down arrow onthevertical scroll bar. To use the default value (9

pixels), set this field to $0000.

28-78 Apple IIGs Toolbox Reference, Volume 3

horzBar

horzAmount

styleRef

Mustbe setto NIL.

Must besetto 0.

Referenceto initial style information for the text. See the description
of the TEFormat record in Chapter 49, “TextEdit Tool Set,” for

information about the format and content of a style descriptor. Bits 1
and 0 of moreF1lags define the type of reference (pointer, handle,
resource ID). To use the default style and ruler information, set this

field to NULL.

textDescriptor

textRef

textLength

Input text descriptor that defines the reference type for theinitial
text (which is in text Ref) and the formatofthat text. See

Chapter 49, “TextEdit Tool Set,” for detailed information on text and

reference formats.

Referenceto initial text for the edit window.If you are not supplying
any initial text, then set this field to NULL.

If textRef is a pointerto theinitial text, then this field must contain

the length of theinitial text. For other reference types, TextEdit
extracts the length from the referenceitself.

@ Note: You must specify or omit the textDescriptor, textRef, and textLength

fields as a group.

maxChars Maximum numberofcharacters allowed in the text. If you do not
want to define any limit to the number of characters, then set this
field to NULL.

maxLines Mustbesetto 0.

maxCharsPerLine

Must be set to NULL.

maxHeight Mustbesetto 0.

colorRef Reference to the color table for the text. This is a TextEdit color table

(see Chapter 49, “TextEdit Tool Set,” for format and content of
TEColorTable). Bits 2 and 3 of moreF1lags define the type of
reference stored here.

Chapter 28 Control Manager Update 28-79

drawMode This is the text mode used by QuickDraw II for drawingtext. See
Chapter 16, “QuickDrawII,” in Volume 2 of the Toolbox Referencefor
details on valid text modes.

filterProcPtr Pointer to a filter routine for the control. See Chapter 49,
“TextEdit Tool Set,” for details on TextEdit generic filter routines.

If you do not wantto use filter routine for the control, set this field

to NIL.

28-80 Apple IIGS Toolbox Reference, Volume 3

Control Manager code example

This section contains an example of howtocreate list of controls for a window with a
single NewContro12 call. If you wish to try this in your own program, you will need to
create a windowthat is 160 lines high and 600 pixels wide.

eo

; ctlMoreFlags

a

fctlTarget

f£CtlCanBeTarget

fCtlwantEvents

fCtlProcRefNotPtr

fCtlTellAboutSize

fMenuDefIsText

titleIsPtr

titleIsHandle

titleIsResource

colorTableIsPtr

colorTableIsHandle

colorTableIsResource

e
ov

equ

equ

equ

equ

equ

equ

equ

equ

equ

equ

equ

equ

$8000

$4000

$2000

$1000

$0800

$0004

$0000

$0001

$0002

$0000

$0004

$0008

; Equates for the new control manager features

+ NewControl2 ProcRef values for standard control types

simpleButtonControl

checkControl

radioControl

scrollBarControl

growControl

statTextControl

editLineControl

editTextControl

popUpControl

listControl

iconButtonControl

pictureControl

equ

equ

equ

equ

equ

equ

equ

equ

equ

equ

equ

equ

$80000000

$82000000

$84000000

$86000000

$88000000

$81000000

$83000000

$85000000

$87000000

$89000000

SO7FFOOO1

$8D000000

Chapter 28 Control Manager Update 28-81

w
e

=
e

=
e

w
e

™
e

MyControls

Here is the definition of my control list; note it is simply a list

of pointers. These do not have to be in any special order. This list

should always be terminated with a zero.

dc.L theButton, theScroll,theCheck

dc.L Radiol, Radio2,StatControl

dc.L LEditControl, PopUp, IconButton, 0

7 Scroll bar color table as defined by the original control manager.

; The structure of these tables has not changed for the existing

MyColorTable

dc .w

dc.w

dc.w

dc.w

dc.w

dc.w

dc.w

dc .w

°
ao

control types.

0

SOOFO

$0005
SOOFO
SOOFO

$0000
$0030

SOOFO

=
e

n
e

-
e

-
e

%
e

=
e

=
e

=
e

outline color

arrow unhilited black on

white

arrow hilite blue on black

arrow background color

thumb unhilited

thumb hilited

page region solid

black/white

inactive bar color

; Definition of a simple vertical scroll bar

eo

theScroll dc.w

dc.L

dc .w

dc.L

dc .w

dc.w

dc.L

dc .w

dc.w

dc.w

dc.L

28-82 Apple IIGs Toolbox Reference, Volume 3

10

1

10,10,110, 36

scrollBarControl

3

fCtlProcRefNotPtr

0

100

10

5

MyColorTable

7
)

7
)

™
~
e

m
e

=
e

m
e

™
e

"
=
e

w
e

™
e

m
e

=
e

number of params

application ID

rectangle

scrollbar def proc

vertical scroll bar w/

arrows

set procnotptr flag

refcon

max size

size of view

initial value

color table to use

3; Definition of a simple button

a

SimpTitle

theButton

w
e

r
e

e
o

CheckTitle

theCheck

w
e

w
e

=
e

str 'Button'

num params

app ID

a 25x30 button

7 Simple button

visible, round corner

button title

dc.W 7 7

dc.L 2 ;

dc.W 10, 40,0,0 ;

dc.L simpleButtonControl

dc.w 0 ;

dc.W fCtlProcRefNotPtr+fCtlWantEvents

dc.L 0

dc.L simpTitle ;

Definition of a check box control

str 'CheckBox'

dc.wW 8

dce.L 3

dc.W 25,40,0,0

dc.L checkControl

dc.w 0

dc.W fCtlProcRefNotPtr

dc.L 0

dc.L CheckTitle

dc.W 0

n
e

=
e

z
e

™
e

=
e

™
e

w
e

™
e

RadiolTitle str 'Radiol'

Radiol dc.W 8

dc.L 4

dc.W 45,40,0,0

dc.L radioControl

dc.W 1

dc.W fCtlProcRefNotPtr

dc.L 0

dc.L RadiolTitle

dc.w 1

num params

app ID

bounding rect

control type

flags

MoreFlags

RefCon

TitlePointer

Definition of a radio button control

Chapter 28 Control Manager Update 28-83

e
oe

: Definition of another radio button control

°

Radio2Title

Radio2

str 'Radio2'

dc.wW 8

dc.L 5

dc.W 65, 40,0,0

dc.L radioControl

dc.w l

dc.W £CtlProcRefNotPtr

dce.L 0

dc.L Radio2Title

dc.W 0

;

; Definition of a static text control

StatTitle

StatControl

EditDefault

dc.B 'This is stat text'

dc.w 8

dc.L 6

dce.W 120,10,135,210

dc.L statTextControl

dc.wW 0

dc.W fCtlProcRefNotPtr

de.L 0

dc.L StatTitle

dc.W 17

Definition of an edit line control

str 'DefaultText'

LEditControl

dc.W 8

dc.L 7

dc.W 120,240,135, 440

dc.L editLineControl

dc.W O

dc.W £CtlProcRefNotPtr

dc.L 0

dc.W 30

dc.L EditDefault

28-84 Apple IIGs Toolbox Reference, Volume 3

;

3; Definition of a pop-up menu control (and its menu)

PopUpMenu dc.B

dc.B

dc.B

dc.B

dc.B

de.b

PopUp dc.w

dc.L

dc.w

dc.L

dc.w

dc .w

dc.L

dc.w

dc.L

dc.w

e
eo

e
ce

.
4

'$SPopUpMenu: \N6', $00
'--Selection 1\N259',$00
'~-~Selection 2\N260',$00
'--Selection 3\N261',$00
'--Selection 4\N262',$00

9

8

25,140, 40, 380

popUpControl

0

fCctlProcRefNotPtr+fMenuDefIsText

0

100

PopUpMenu

259 ; initial value

Definition of an icon button control

IconButtonTitle

str 'Icon Button'

Icon dc.w 0 7black-and-white icon

dc.w 200

dc.w 10 zicon height in pixels

dc.w 40 zicon width in pixels

Chapter 28 Control Manager Update 28-85

Data for icon goes here (omitted)

=
e

w
e

~
e

IconButton

dc.w 10

dc.1 1

dc.w 40,40,80,100

dc.1l iconButtonControl

dc.w 0

dc.w FctlProcRefNotPtr

dc.1 0

dc.1 Icon

dadc.1 IconButtonTitle

dc.l1 MyColorTable

dc.w 0

R
e

™
—
e

=
e

m
e

e
e

w
e

™
e

e
e

pCount

ID

button rectangle

defproc

Single outline,

round-cornered

get defproc from

resource

pointer to icon

pointer to p-string

title

pointer to color table

standard drawing of icon

To create the above new controls in a window use the NewControl2call:

pha

pha

PushLong WindPointer

PushWord #ptrToPtr

PushLong #MyControls

_NewControl2

pla

pla

28-86 Apple IIGS Toolbox Reference, Volume 3

w
e

w
e

~
e

™
e

™
e

room for result

pointer to owner window

input verb for ptr to table

pointer to table of templates

discard these bytes, only verb

for single ctl returns a value

New control records

The NewContro12 tool call creates extended control records (as discussed earlier in this

chapter in “New and Changed Controls”). This section describes the format and content
of the control records created by NewCont ro12.

A Warning All control record layouts and field descriptions are provided so that
programs mayread these records for needed information. Your
program should neverset values into control records. «

Generic extended control record

Currently, the Control Manager’s standard, or generic, control record is $28 bytes long (see

Chapter 4, “Control Manager,” in Volume 1 of the Toolbox Reference for information about
existing control records). To support the new controls (those created with
NewCont ro12), the generic control record has several new fields. Figure 28-18 shows the

layout of the new generic control record.

Chapter 28 Control Manager Update 28-87

=» Figure 28-18 Generic extended control record

$00 LL
— ctlNext = Long

S04 =
— ctlOwner _ Long

$08: ctlRect - Rectangle

$10 ctlFlag Byte
$11 ctlHilite Byte

SI2- ct. value + Word

$14 -
— ctlProc = Long

$18 L -
— set 1Action — Long

S1C L |
— ctlData = Long
= —

$20 L _
— ctlRefCon = Long

$24 4
— ctlColor = Long
Lo =

$28 - ctlReserved : Block, $10 bytes

$38
— ctlID — Long

$3C — ctlMoreFlags — Word

S3E ctlVersion + Word

ctlNext A handle to the next control associated with this control’s window.All
the controls belonging to a given window arekeptin a linkedlist,
beginning in the wcont rol field of the window record and chained
together through the ct 1Next fields of the individual control
records. The endofthelist is marked by a 0 value; as new controls are
created, they're added to the beginningofthelist.

ctlowner A pointer to the window port to which the control belongs.

ctlRect The rectangle that defines the position and size of the control in the
local coordinates of the control’s window.

28-88 Apple IIGS Toolbox Reference, Volume 3

ctlFlag

ctlHilite

ctlValue

ctlProc

A bit flag that further describes the control. The appropriate values are
shownfor each control in the sections that follow.

Specifies whether and how the control is to be highlighted and
indicates whetherthe control is active or inactive. This field also
specifies whether the control wants to receive selection events. The
values for ct LHilite are

0 Control active; no highlighted parts—this value causes
events to be generated whenthe mouse button is pressed in
the control

1-254 Part code ofa highlighted part of the control
255 Control inactive—this value indicates that no events are to

be generated when the mouse buttonis pressed in the

control

Only onepart of a control can be highlighted at any one time, and no
part can be highlighted on aninactive control. See Chapter 4, “Control
Manager,” in Volume 1 of the Toolbox Reference for more information
on highlighting.

The current setting of the control. For check boxes and radio buttons,
a zero value indicates that the control is off, and a nonzero value

indicates thatit’s on. For scroll bars, the value is between 0 and the

data size minus the view size. Thefield is also available for use by

custom controls as appropriate.

For standard controls, this field indicates the control type, identified
by its ID or resource ID. For custom controls, this field contains a
pointer to the control definition procedure (defProc) for this type of

control.

For controls created with NewCont rol,valid ID values are

simpleProc $00000000 Simple button
checkProc $02000000 Check box

radioProc $04000000 Radio button

scrollProc $06000000 Scroll bar

growProc $08000000 Size box

Chapter 28 Control Manager Update 28-89

For controls created with NewControl2, the fCt 1ProcRefNotPtr

flag in ct LMoreFlagsallows the Control Manager to discriminate
between pointers and IDs or resource IDs. Valid ID values (used with
fCtlProcRefNotPtrSetto 1) are

simpleButtonControl $80000000

checkControl

iconButtonControl

editLineControl

listControl

pictureControl

popUpControl

radiocControl

scrollBarControl

growControl

statTextControl

editTextControl

$82000000
$07FF0001
$83000000
$89000000
$8D000000
$87000000
$84000000
$86000000
$88000000
$81000000
$85000000

Simple button
Check box

Icon button

LineEdit

List

Picture

Pop-up menu
Radio button

Scroll bar

Size box
Static text

TextEdit

@ Note: The ct 1Proc value for iconButtonCont rolis nottruly a standard value, but
rather the resource ID for the standard control definition procedure for icon buttons.

ctlAction

ctlData

ctlRefCon

Pointer to the custom action procedure for the control, if there is one.

The TrackControl routine may call the custom action procedure in

responseto the user’s dragging an icon inside the control. See

Chapter 4, “Control Manager,” in Volume 1 of the Toolbox Reference for
more information about TrackControl.

Reserved for use by the control definition procedure, typically to hold

additional information for a particular control type. For example, the

standard definition procedurefor scroll bars uses the low-order word

as the view size and the high-order word as the data size. The standard

definition procedures for simple buttons, check boxes, and radio

buttons store the address of the controltitle.

This field is reserved for application use.

28-90 Apple IIGs Toolbox Reference, Volume 3

ctlColor

ctlReserved

ctlID

ctlMoreFlags

fCtlTarget

This field contains a reference to the color table to use when the
control is drawn.If the field is set to NIL, the Control Manageruses a
default color table defined by the control’s definition procedure.
Otherwise, ct 1Color references which colortable to use by a
pointer, handle, or resource ID. Bits 2 and 3 of ct 1MoreFlags

usually allow the Control Managerto discriminate between these

different data types.

This space is reserved for use by the control definition procedure. In
somecases,the use is prescribed by the system. For example,

keyboard equivalent information is stored here for controls that

support keyboard equivalents.

This field may be used bythe application to provide a straightforward
mechanism for keeping track of controls. The control ID is a value
assigned by your application with the 1D field of the control template

used to create the control. Your application can use the ID, which has

a knownvalue,to identify a particular control.

This field contains bit flags that provide additional control

information needed for new-style controls (those created with

NewCont rol2). You can use the GetCt 1MoreFlagsControl

Managercall to read the valueofthis field from a specified control
record. Use the SetCt 1MoreFlagscall to changethe value.

The Control Manageruses the high-order byte to store its own control
information. The control definition procedure uses the low-order byte
to define reference types.

The defined Control Managerflags are

$8000 If this flag is set to 1, this control is currently the
target of any typing or editing commands.

fCt1CanBeTarget $4000 If this flag is set to 1, this control can be made

fCtlWantEvents

the target control.

$2000 If this flag is set to 1, then this control can be
called when events are passed via the

SendEventToCt1 Control Managercall. Note

that if the fct 1CanBeTargetflagis setto 1,

this control receives events sent to it regardless
of the setting of this flag.

Chapter 28 Control Manager Update 28-91

fCtlProcRefNotPtr $1000

fCtlTellAboutSize $0800

fCtlIsMultiPart $0400

If this flag is set to 1, the Control Manager
expects ct 1Procto contain the ID or resource

ID of a control procedure.If this flag is set to 0,
ct1Proc contains a pointer to a custom
control procedure.
If this flag is set to 1, this control needs to be
notified when the size of the owning window

has changed.This flag allows custom control

procedures to resize their associated control
images in response to changes in windowsize.

If this flag is set to 1, this is a multipart control.
This flag allows control definition procedures to
manage multipart controls (necessary since the

Control Manager does not know aboutall the
parts of a multipart control).

The low-order byte uses the following conventions to describe

references to color tables andtitles (note, though, that some control

templates do not follow this convention):

titleIsPtr $00

titleIsHandle $01

titleIsResource $02

colorTableIsPtr $00

colorTableIsHandle $04

colorTableIsResource $08

Title reference is by pointer.

Title reference is by handle.
Title reference is by resource ID (resource type
corresponds to string type).

Color table reference is by pointer.

Colortable reference is by handle.

Colortable reference is by resource ID (resource

type of rct 1ColorTbl, $800D).

ctlVersion This field is reserved for future use by the Control Managerto
distinguish between different versions of control records.

28-92 Apple IIGS Toolbox Reference, Volume 3

Extended simple button control record

Figure 28-19 shows the format of the extended control record for simple button controls.

a Figure 28-19

$00 7
ctlNext 7

=
=

S04 - 7= ctlOwner 7

$08 ctlRect

$10 ctlFlag

$11 ctlHilite
$12 = ctlValue -

$14 7
— ctlProc ™

$18 7
a ctlAction _

$1C 7
= ctlData =

$20 - 7
— ctlRefCon ™

$24 7
ae ctlColor 7

$28 keyEquiv ;

7
S2E ctlReserved

$38 7
poe ctlID 7

$3C Le ctlMoreFlags =

S3E = ctlVersion

Extended simple button control record

Long—Handleto next control; NIL for last control

Long—Pointer to window to which control belongs

- Rectangle—Button boundary rectangle

Byte—Buttonstyle
Byte—Currenttype of highlighting
Word—Notused; set to 0

Long—simpleButtonCont ro1=S80000000

Long—Pointerto custom procedure;NIL if none

Long—Referenceto buttontide string

Long—Reservedfor application use

Long—Optionalcolortable reference; NIL if none

Block, $06 Bytes—Key equivalent record

: Block, SOA bytes—Reserved

Long—Application-assigned ID

Word—Additional controlflags

Word—Setto 0

Chapter 28 Control Manager Update 28-93

Valid values for ct 1Flag are

ctliInvis

Reserved

Button type

bit 7

bits 6-2

bits 1-0

Valid values for ct IMoreF lagsare

0 = Visible, 1 = Invisible.

Must besetto 0.

Describes button type.

00 = Single-outlined, round-cornered button
01 = Bold-outlined, round-cornered button

10 = Single-outlined, square-cornered button

11 = Single-outlined, square-cornered, drop-
shadowed button

fCtlTarget bit 15 Mustbesetto 0.

fCt1lCanBeTarget bit 14 Mustbesetto 0.

fCtlWantEvents bit 13 Set to 1 if button has keystroke equivalent.
fCtlProcRefNotPtr bit 12 Must besetto 1.

fCtlTellAboutSize bit 11 Must besetto 0.

Reserved bits 10-4 Mustbesetto 0.
Color table reference bits 3-2 Definestype of reference in ct 1Color (ifit is

not NIL). See Chapter 4, “Control Manager,” in
Volume1 of the Toolbox Reference for the
definition of the simple button colortable.

00 = Colortable reference is by pointer
01 = Colortable reference is by handle

10 = Colortable reference is by resource ID

(resource type of rct 1ColorTbl, $800D)
11 = Invalid value

Title reference bits 10 Definestypeoftitle reference in ct LData.
00 = Title reference is by pointer
01 = Title reference is by handle

10 = Title reference is by resource ID (resource
type corresponds to string type)
11 = Invalid value

keyEquiv Keystroke equivalent information stored at keyEquiv is formatted

as shownin Figure 28-2.

28-94 Apple IIGs Toolbox Reference, Volume 3

Extended check box control record

Figure 28-20 showsthe formatof the extended control record for check box controls.

Extended check box control record

Long—Handle to nextcontrol; NIL for last control

Long—Pointer to window to which control belongs

- Rectangle—Check box boundary rectangle

Byte—Check boxvisibility
Byte—Currenttype of highlighting
Word—0 if not checked;1 if checked

Long—checkCont ro1=$82000000

Long—Pointerto custom procedure;NILif none

Long—Referenceto check boxtitle string

Long—Reserved for application use

Long—Optionalcolortable reference; NIL if none

Block, $06 Bytes—Key equivalentrecord

- Block, SOA bytes—Reserved

ws Figure 28-20

$00 —
-— ctlNext =

$04 EF 4
— ctlOwner =

$08 !
: ctlRect

$10 ctlFlag

$11 ctlHilite

$12 — ctlValue =

$14 - -
— ctlProc =

$18 =
— ctlAction =

S1C —
= ctlData =“

$20 +
— ctlRefCon =

$24 -
— ctlColor =

$28 ! :
: keyEquiv :

l J

$2E!
: ctlReserved

$38 L _
— ctlID =

$3C pe ctlMoreFlags =

$3E — ctlVersion

Long—Application-assigned ID

Word—aAdditional controlflags

Word—Setto 0

Valid values for ct 1Flag are

ctliInvis

Reserved

bit 7 0 = Visible, 1 = Invisible.

bits 6-0 Mustbesetto 0.

Chapter 28 Control Manager Update 28-95

Valid values for ct lMoreFlags are

fCtlTarget

fCtlCanBeTarget

fCtlWantEvents

fCtlProcRefNotPtr

fCtlTellAboutSize

Reserved

Color table reference

Title reference

bit 15
bit 14

bit 13

bit 12

bit 11

bits 10-4

bits 3-2

bits 1-0

Mustbesetto 0.
Mustbesetto 0.

Set to 1 if check box has keystroke equivalent.
Mustbesetto 1.
Must besetto 0.
Mustbesetto 0.
Defines typeof reference in ct 1Color (Ifit is
not NIL). See Chapter 4, “Control Manager,” in

Volume 1 of the Toolbox Reference for the

definition of the check box color table.

00 = Colortable reference is by pointer

01 = Color table reference is by handle

10 = Colortable reference is by resource ID
(resource type of rct 1ColorTbl, $800D)

11 = Invalid value

Definestype oftitle reference in ct 1Data.

00 = Title reference is by pointer

01 = Title reference is by handle
10 = Title reference is by resource ID (resource

type corresponds to string type)

11 = Invalid value

keyEquiv Keystroke equivalent information stored at keyEquivis formatted
as shownin Figure 28-2.

28-96 Apple IIGs Toolbox Reference, Volume 3

Icon button control record

Figure 28-21 showsthe formatof the control record for icon button controls.

Icon button control record

Figure 28-21

$00
=ctlNext 7

$04 =L ct lOwner —

$08 !
ctlRect

$10 ctlFlag
$11 ctlHilite

$12 ctlValue 7

$14
- ctlProc 4

$18
_= ctlAction 7

$1CL
_Le ctlData ~

$20 L
_= ctlRefCon ~

$24
_L ctlCcolor 7

$28 !
:keyEquiv :
]

$2E! :: ctlReserved

$38 |
= ctlID a=

7

$3C = ctlMoreFlags 7

$3EL ctlVersion 7

$40 L
_- iconRef _

S44|.

s

s

dispiayMode

Long—Handleto next control; NILforlast control

Long—Pointer to windowto which control belongs

: Rectangle—Icon boundary rectangle

Byte—Controlvisibility and buttonstyle
Byte—Highlighting

Word—Notused; set to 0

Long— iconButtonCont rol=S07FF0001

Long—Pointer to custom procedure; NILif none

Long—Optionalreferencetotitle string of button

Long—Reserved for application use

Long—Optionalcolor table reference; NILif none

Block, $06 bytes—Key equivalentrecord

: Block, SOA bytes—Reserved

Long—Application-assigned ID

Word—Additional controlflags

Word—Setto 0

Long—Referenceto icon

Word—Bit flag defining appearanceoficon

Chapter 28 Control Manager Update 28-97

Valid values for ct 1Flag are

ctlInvis

Reserved

showBorder

buttonType

bit 7
bits 6-3
bit 2

bits 1-0

Valid values for ct IMoreFlagsare

fCtlTarget

fCtiCanBeTarget

fCtlWantEvents

fCtlProcRefNotPtr

fCtlTellAboutSize

Reserved

Icon reference

Color table reference

Title reference

bit 15
bit 14

bit 13
bit 12

bit 11

bits 10-6
bits 5-4

bits 3-2

bits 1-0

0 = Visible, 1 = Invisible.
Mustbesetto 0.
1 = No border, 0 = Show border.

Defines button type.
00 = Single-outlined, round-cornered button

01 = Bold-outlined, round-cornered button

10 = Single-outlined, square-cornered button
11 = Single-outlined, square-cornered, and drop-

shadowed button

Mustbesetto 0.
Must beset to 0.

Mustbeset to 0.

Must besetto 1.

Mustbeset to 0.
Mustbesetto 0.
Defines type of icon reference in iconRef.
00 = Icon reference is by pointer
01 = Icon reference is by handle
10 = Icon reference is by resource ID (resource

type of rIcon, $8001)

11 = Invalid value

Defines type of reference in ct 1Color (ifit is

not NIL). The color table for an icon button is

the sameas that for a simple button. See

Chapter 4, “Control Manager,” in Volume 1 of
the Toolbox Reference for the definition of the
simple button colortable.

00 = Colortable reference is by pointer

01 = Color table reference is by handle

10 = Color table reference is by resource ID

(resource type of rct 1ColorTbl, $800D)
11 = Invalid value

Definestype oftitle reference in ct 1Data.
00 = Title reference is by pointer
01 = Title reference is by handle
10 = Title reference is by resource ID (resource

type of rpst ring, $8006)
11 = Invalid value

28-98 Apple IIGs Toolbox Reference, Volume 3

ctlData Holds the reference to thetitle string, which must be a Pascalstring.

displayMode Passed directly to the DrawIconroutine, and defines the display
modefor the icon. The Control Managersets this field from the
displayModefield in the icon button control template used to
create the control.

keyEquiv Keystroke equivalent information stored at keyEquiv is formatted
as shownin Figure 28-2.

Chapter 28 Control Manager Update 28-99

LineEdit control record

Figure 28-22 showsthe formatofthe control record for LineEdit controls.

LineEdit control record

w Figure 28-22

$00 [-
fp ctlNext _

$0410 —
— ctlOwner =

$08: ctlRect

$10 ctlFlag

$11 ctlHilite

$12 = ctlValue =

$14 =
— ctlProc =

$18} =
— ctlAction =
pa ao

$iCL _
— ctlData =

$20 4
— ctlRefCon =

$24{_ -
— ctlColor =

$28!
. ctlReserved

$38 LL =
— ctlID =

$3C — ctlMoreFlags =

S3E ctlVersion

Long—Handleto next control; NIL forlast control

Long—Pointer to window to which control belongs

: Rectangle—Control boundary rectangle

Byte—Controlvisibility
Byte—Highlighting
Word—Not used; must be set to 0

Long— editLineContro1=$83000000

Long—Pointer to custom procedure; NILif none

Long—Handle to LineEdit edit record

Long—Reserved for application use

Long—Not used; must be set to 0

: Block, $10 bytes—Not used; must be set to 0

Long—Application-assigned ID

Word—Additionalcontrolflags

Word—Setto 0

Valid values for ct 1Flag are

ctlinvis

Reserved

bit 7 0 = Visible, 1 = Invisible.
bits 6-0 Mustbesetto 0.

28-100 Apple IIGs Toolbox Reference, Volume 3

Valid values for ct 1MoreFlags are

fCtlTarget bit 15 Must besetto 0.

fCtlCanBeTarget bit 14 Mustbesetto 1.

fCtlWantEvents bit 13 Must besetto 1.

fCtlProcRefNotPtr bit 12 Must besetto 1.

fCtlTellAboutSize bit 11 Mustbesetto 0.

Reserved bits 10-2 Must besetto 0.

Text reference bits 1-0 Defines type of text reference in ct l1Data.
00 = Text reference is by pointer
01 = Text reference is by handle

10 = Text reference is by resource ID (resource

type of rpst ring, $8006)

11 = Invalid value

ctlData The Control Managerstores the handle to the LineEdit edit record in

the ct 1Data field. If you want to issue LineEdit toolcalls directly,

you canretrieve the handle from thatfield.

Note that LineEdit controls do not support color tables.

Chapter 28 Control Manager Update 28-101

List control record

Figure 28-23 shows the formatof the control record forlist controls.

w Figure 28-23

$00 7
ctlNext =

$04 [F _
— ctlOwner =

$08

: ctlRect

$10 ctlFlag

$11 ctlHilite

$12 ctlValue aa

$14 =
— ctlProc =

$18 —
— ctlAction =

$1CL _
— ctlData =

$20 =
— ctlRefCon =

$24 L a
— ctliColor 4

$28 F a
— ctlMemDraw =

$2C |_ ctlMemHeight =

$2E ctlMemSize =

$30 [— a
_ ctlListRef ~

$34 _
— ctlListBar =

$38 [— _

= ctlID =

$3C — ctlMoreFlags =

$3E — ctlVersion —

28-102

List control record

Long—Handleto next control; NIL for last control

Long—Pointer to window to which control belongs

- Rectangle—Control boundary rectangle

Byte—Style of scroll bar forlist window
Byte—Not used; mustbe set to 0
Word—Reserved

Long—1istCont rol =$89000000

Long—Pointer to custom procedure; NILif none

Long—High-word is listSize ; low-word is viewSize

Long—Reserved forapplication use

Long—Referenceto the colortable for the control

Long—Pointerto list member drawing routine

Word—List memberheightin pixels

Word—List memberrecord size in bytes

Long—Referenceto list member records

Long—Handleof control's scroll bar control

Long—Application-assigned ID

Word—aAdditional controlflags

Word—Setto 0

AppleIIcs Toolbox Reference, Volume 3

Valid values for ct 1Flag are

ctlInvis

Reserved

bit 7

bits 6-0

Valid values for ct1MoreFlagsare

£CtlTarget

fCt1lCanBeTarget

fCtlWantEvents

£CtlProcRefNotPtr

£CtlTellAboutSize

£FCtlIsMultiPart

Reserved

Color table reference

List reference

bit 15
bit 14

bit 13
bit 12

bit 11

bit 10

bits 9-4
bits 3-2

bits 1-0

0 = Visible, 1 = Invisible.

Mustbesetto 0.

Mustbesetto 0.

Mustbesetto 0.

Mustbesetto 0.

Mustbesetto 1.

Mustbe setto 0.

Mustbesetto 1.

Mustbesetto 0.

Defines type of reference in ct 1Color(if it is
not NIL). The colortable for a list controlis
described in Chapter 11, “List Manager,” in
Volume1 of the Toolbox Reference.
00 = Color table reference is by pointer

01 = Color table reference is by handle

10 = Colortable reference is by resource ID

(resource type of rct 1ColorTbl, $800D)
11 = Invalid value

Defines type of reference in ListRef. The
format for a list memberrecord is described in
Chapter 11, “List Manager,” in Volume 1 of the

Toolbox Reference.

00 = List reference is by pointer

01 = List reference is by handle

10 = List reference is by resource ID (resource

type of rListRef, $801C)

11 = Invalid value

Chapter 28 Control Manager Update 28-103

Picture control record

Figure 28-24 showsthe formatof the control record for picture controls.

= Figure 28-24 Picture control record

$00 =
— ctlNext — Long—Handle to next control; NILforlast control

$04 =
— ctlOwner — Long—Pointerto windowto whichcontrol belongs

: ctlRect - Rectangle—Picture boundary rectangle

$10 ctlFlag Byte—Picture visibility
$11 ctlHilite Byte—Event generation for control
$12 - ctlValue — Word—Not used;set to 0

$14 4
— ctlProc — Long—pictureControl =$8D000000

$18 -
— ctlaction — Long—Pointerto custom procedure; NIL if none

SIC
— ctlData — Long—Referenceto picture

$20 5
— ctlRefCon Long—Reserved for application use

$24 _
— ctlColor — Long—Notused; mustbe set to 0

$28 °
° ctlReserved . Block, $10 bytes—Not used

$38 | -
— ctlID — Long—Application-assigned ID

S3CL ct.Moreriags —| Word—aAdditional control flags

S3E ctlVersion + Word—Setto0
Valid values for ct1Flag are

ctlinvis bit 7 0 = Visible, 1 = Invisible.
Reserved bits 6-0 Mustbesetto 0.

28-104 Apple IIGs Toolbox Reference, Volume 3

Valid values for ct lMoreFlagsare

fCtlTarget bit 15 Must besetto 0.

fCtlCanBeTarget bit 14 Must be setto 0.

fCtlWantEvents bit 13 Mustbesetto 0.
fCtlProcRefNotPtr bit 12 Must besetto 1.
fCtlTellAboutSize bit 11 Must besetto 0.

Reserved bits 10-2 Mustbesetto 0.

Picture reference bits 10 Defines type of picture reference in ct 1Data.
00 = Invalid value

01 = Reference is by handle

10 = Reference is by resource ID (resource of
type rPicture, $8002)

11 = Invalid value

ctlHilite Specifies whether the control wants to receive mouseevents. The

values for ct lHilite are

Q Events are generated when the mouse button is pressed in the
control

255 No events are generated when the mouse buttonis pressed in the
control

Chapter 28 Control Manager Update 28-105

Pop-up control record

Figure 28-25 showsthe format of the control record for pop-up menucontrols.

a Figure 28-25 Pop-up control record

$00 [C _
— ctlNext — Long—Handleto next control; NIL for last control

$04 F 7 ; ;— ctlOwner ~| Long—Pointer to windowto which control belongs

$08 !
ctlRect - Rectangle—Control boundary rectangle

$10 ctlFlag Byte—Controlvisibility and otherattributes
$11 ctlHilite Byte—Notused; must be set to 0
$12 + ctlValue — Word—Currently selected item
$14 [L —

— ctlProc — Long—popUpControl =$87000000

$18 a
— ctlAction — Long—Pointerto custom procedure; NIL if none

$1C L
— — Long—Notused; mustbe set to 0
r ctlData 7

$20 _ a
— ct1lRefCon —| Long—Reserved for application use

$24 _
- ctlColor — Long—Referenceto the colortable for the control

$28 |_ 4
— menuRef — Long—Reference to menudefinition

$2C [7
— menuEnd — Long—Must be set to 0

$30 |
; popUpRect : Rectangle—Calculated by Menu Manager

$38 |- -
— ctlID — Long—Application-assigned ID

S3C | ctaMorerlags —| Word—Additionalcontrolflags

S3E |L ctlVersion + Word—Setto 0

$40} catiewiaeh

=

| Word—Pixel width oftitle position of menu
28-106 Apple IIGs Toolbox Reference, Volume 3

Valid values for ct 1Flag are

ctliInvis bit 7

fType2PopUp bit 6

fDontHiliteTitle bit 5

fDontDrawTitle bit 4

fDontDrawResult bit 3

fInWindowOnly bit 2

fRightJustifyTitle bit 1

fRightJustifyResult bit 0

0 = Visible, 1 = Invisible.
Indicates type of pop-up menu.
0 = Draw normal pop-up menu
1 = Draw pop-up menuwith white space

(type 2)
Controls highlighting of the controltitle.
0 = Highlighttitle

1 = Do nothighlighttitle
Indicates whether the Control Manageris to
draw the menutitle.
0 = Drawthetitle

1 = Do notdrawthetitle
Indicates whetherresult is shown.

0 = Drawtheresult
1 = Do not draw theresult in the result area after

a selection
Controls how muchthe pop-up menucan

expand;this is particularly relevant to type 2

pop-up menus(see Chapter 37, “Menu Manager
Update,” for details on type 2 pop-up menus).

0 = Allow the pop-up menuto expandto the

size of the screen
1 = Keep the pop-up menuin the current
window

Controls title justification.
0 = Left-justify the title
1 = Right-justify the title; note that if the title is
right justified, then the control rectangle is

adjusted to eliminate unneeded pixels (see
Figure 28-12) and the value for tit leWidthis
also adjusted
Controls result justification.
0 = Left-justify the selection tit lewidth
pixels from the left of the pop-up rectangle
1 = Right-justify the selection

Chapter 28 Control Manager Update 28-107

Valid values for ct lMoreFlagsare

fctlTarget

f£Ct1lCanBeTarget

fCtlwWantEvents

fCtlProcRefNotPtr

fCtlTellAboutSize

Reserved

Color table reference

fMenuDefIsText

Menureference

bit 15

bit 14

bit 13

bit 12

bit 11

bits 10-5

bits 4-3

bit 2

bits 1-0

Mustbesetto 0.
Mustbesetto 0.

Must besetto 1 if the pop-up menuhas any
keystroke equivalents defined.
Mustbeset to 1.
Mustbesetto 0.
Mustbesetto 0.
Defines type of reference in colorTableRef
(the color table for a menuis described in

Chapter 13, “Menu Manager,” in Volume1 of the
Toolbox Reference).

00 = Colortable reference is by pointer

01 = Color table reference is by handle

10 = Color table reference is by resource ID

(resource type of rct 1ColorTbl, $800D)
11 = Invalid value

Defines type of data referred to by menuRef.

0 =menuRefis a reference to a menu template

(See Chapter 13, “Menu Manager,” in Volume 1
of the Toolbox Referencefor details on format
and content of a menu template.)

1 =menuRefis a pointerto a text stream in

NewMenu format(Again, see Chapter 13, “Menu
Manager,” in Volume 1ofthe Toolbox Reference
for details.)
Defines type of menureference in menuRef Cif

fMenuDefIsTextis set to 1, then thesebits
are ignored).

00 = Menureferenceis by pointer

01 = Menureference is by handle

10 = Menureference is by resource ID (resource
type of rMenu, $8009)
11 = Invalid value

ctlRect Defines the boundary rectangle for the pop-up menuandits title,
before the menuhas beenselected by the user. The Menu Manager
calculates the lower-right coordinates of the rectangle for youif you
specify those coordinates as (0,0).

ctlvalue Contains the item numberofthe currently selected item.

28-108 Apple IIGs Toolbox Reference, Volume 3

menuRef Reference to menu definition (see Chapter 13, “Menu Manager,” in
Volume1 of the Toolbox Reference and Chapter 37, “Menu Manager
Update,” in this book for details on menu templates). The type of
reference contained in menuRef is defined by the menureference bits
in ct lMoreFlags. Thisfield is set from the menuRe field of the

pop-up menu control template used to create the control.

titleWidth Contains the value set in the t it leWidthfield of the pop-up menu
control template used to create the control.

Chapter 28 Control Manager Update 28-109

Extended radio button control record

Figure 28-26 shows the format of the extended control record for radio button controls.

= Figure 28-26 Extended radio button control record

S00 - _
— ct lNext — Long—Handle to next control; NIL for last control

S04 4
— ct lOwner — Long—Pointer to window to whichcontrol belongs
— 7

$08 ! :
: ctlRect - Rectangle—Radio button boundary rectangle

$10 ctlFlag Byte—Button visibility and family affinity
S11 ctlHilite Byte—Currenttype ofhighlighting
$12 + ctlvalue + Word— if off; 1 if on

$14 - 4
at ctlProc — Long—radioCont ro1=$84000000
— —

$18 _
— ctlAction — Long—Pointerto custom procedure; NIL if none

s1C =
— ctlData — lLong—Referenceto radio buttontitle string

$20 - -
— ct1RefCon — Long—Reserved for application use

— ctlColor — Long—Optional color table reference; NIL if none

$28 | ;
; keyEquiv : Block, $06 Bytes—Key equivalent record

sor |
. ctlReserved : Block, SOA bytes—Reserved

$38 L a
— ctlID — Long—Application-assigned ID

S3C }- ct.MoreFlags — Word—Additional controlflags

S$3E ctlVersion | Word—Setto 0

28-110 Apple IIGs Toolbox Reference, Volume3

Valid values for ct 1Flag are

ctlInvis

Family number

bit 7

bits 6-0

Valid values for ct lMoreFlagsare

0 = Visible, 1 = Invisible.

Family numbers define associated groups of
radio buttons. Radio buttons in the same family
are logically linked. Thatis, setting one radio
button in a family clears all other buttons in the
same family.

fCtlTarget bit 15 Must beset to 0.

fCt1lCanBeTarget bit 14 Must besetto 0.

fCtlWantEvents bit 13 Set to 1 if button has keystroke equivalent.

fCtlProcRefNotPtr bit 12 Mustbesetto 1.
fCtlTellAboutSize bit 11 Mustbesetto 0.

Reserved bits 10-4 Mustbesetto 0.
Color table reference bits 3-2 Defines type of reference in ct 1Color (ifit is

not NIL). See Chapter 4, “Control Manager,” in
Volume1 of the Toolbox Reference for the

definition of the radio button colortable.

00 = Color table reference is by pointer
01 = Color table reference is by handle

10 = Color table reference is by resource ID
(resource type of rct 1ColorTbl, $800D)
11 = Invalid value

Title reference bits 1-0 Defines typeof title reference in ct 1Data.

00 = Title reference is by pointer
01 = Title reference is by handle

10 = Title reference is by resource ID (resource

type correspondsto string type)

11= Invalid value

keyEquiv Keystroke equivalent information stored at keyEquiv is formatted
as shownin Figure 28-2.

Chapter 28 Control Manager Update 28-111

Extended scroll bar control record

Figure 28-27 showsthe format of the extended control record for scroll bar controls.

Extended scroll bar control record

Long—Handle to next control; NILforlast control

Long—Pointerto window to which control belongs

- Rectangle—Scroll bar boundary rectangle

Byte—Style ofscroll bar
Byte—Currenttype of highlighting

Word—Thumbposition between 0 and (dataSize- viewSize)

Long—scrol1Cont ro1=$86000000

Long—Pointerto custom procedure; NIL if none

Long—High-order word= dataSize,low-order word= viewSize

Long—Reserved for application use

Long—Optionalcolor table reference; NIL if none

- Rectangle—Defines thumbrectangle

: Rectangle—Defines page region, thumb.bounds

a Figure 28-27

$00 —
— ctlNext =

S04 _
— ctlOwner =~
besos —

$08 !
: ctlRect

$10 ctliFlag

$11 ctlHilite

$12 L ctlValue _

$14 _
— ctlProc 7

— ctlAction =

$1C 4
— ctlData =

$20 —
— ctlRefCon =

$24 _
— ctlColor =

$28 ! -
: thumbRect

LL J

$30 ! !
: pageRegion

$38 LL _
— ctliID _

$3C [L ctlMoreFlags =

$3E ctlVersion _

Long—Application-assigned ID

Word—Additional controlflags

Word—Setto 0

28-112 Apple IIGS Toolbox Reference, Volume 3

Valid values for ct 1Flag are

ctliInvis

Reserved

horScroll

rightFlag

leftFlag

downFlag

upFlag

bit 7

bits 6-5
bit 4

bit 3

bit 2

bit 1

bit 0

0 = Visible, 1 = Invisible.

Must be set to 0.

0 = Vertical scroll bar, 1 = Horizontal scroll bar.

0 = Bar has noright arrow,1 = Bar has right
arrow.

0 = Bar has noleft arrow, 1 = Bar has left arrow.

0 = Bar has no down arrow,1 = Bar has down

arrow.

0 = Bar has no up arrow,1 = Barhas up arrow.

Note that extraneousflag bits are ignored, dependingon thestate of the horScroll

flag. For example,for vertical scroll bars, rightFlag and leftFlagare ignored.

Valid values for ct IMoreFlagsare

fctliTarget

f£CtlCanBeTarget

fCtlWantEvents

fCtlProcRefNotPtr

£CtlTellAboutSize

Reserved

Color table reference

Reserved

bit 15
bit 14

bit 13
bit 12
bit 11

bits 10-4

bits 3-2

bits 1-0

Mustbesetto 0.

Mustbesetto 0.

Mustbeset to 0.
Must besetto 1.
Mustbesetto 0.
Must besetto 0.

Defines type of reference in ct 1Color(if it is
not NIL). See Chapter 4, “Control Manager,” in
Volume1 of the Toolbox Reference and

“Clarifications” earlier in this chapter for the
definition of the scroll bar color table.

00 = Colortable reference is by pointer
01 = Color table reference is by handle
10 = Colortable reference is by resource ID

(resource type of rct 1ColorTb1, $800D)
11 = Invalid value

Mustbesetto 0.

Chapter 28 Control Manager Update 28-113

Extended size box control record

Figure 28-28 showsthe format of the extended control record for size box controls.

a Figure 28-28

$00 4
a ctlNext =

$04 4
— ctloOwner =

$08 !
: ctlRect

$10 ctlFlag

$11 ctlHilite

$12 _— ctlValue —

$14 L _
— ctlProc =
_. —

$18 _
— ctlAction =

$1C —
— ctlData _

$20 —
a ctlRefCon =

$24 -_
— ctlColor _

$28 !
: ctlReserved

$38 L _
me ctlIpD _

$3C jae ctlMoreFlags —

$3E = ctlVersion =

Extended size box control record

Long—Handle to next control; NIL for last control

Long—Pointer to window to which control belongs

- Rectangle—Size box boundary rectangle

Byte—Size boxvisibility
Byte—Currenttype ofhighlighting
Word—Notused;set to 0

Long—growCont ro1=$88000000

Long—Pointerto custom procedure; NIL if none

Long—Not used;set to 0

Long—Reservedfor application use

Long—Optional colortable reference; NIL if none

- Block, $10 bytes—Not used; set to 0

Long—Application-assigned ID

Word—Additional controlflags

Word—Setto 0

28-114 Apple IIGs Toolbox Reference, Volume 3

Valid values for ct 1Flag are

ctliInvis bit 7 0 = Visible, 1 = Invisible.
Reserved bits 6-1 Mustbesetto 0.

fCallWindowMgr bit 0 0 = Just highlight control,

1 = Call GrowWindow and SizeWindowto

track this control.

Valid values for ct lMoreFlags are

fCtlTarget bit 15 Mustbesetto 0.

fCtlCanBeTarget bit 14 Mustbesetto 0.

fCtlWantEvents bit 13 Mustbesetto 0.

fCtlProcRefNotPtr bit 12 Mustbe setto 1.

fCtlTellAboutSize bit 11 Must besetto 0.

Reserved bits 10-4 Mustbesetto 0.
Color table reference bits 3~2 Defines type of reference in ct 1Color (ifit is

not NIL). See “Error Corrections” at the

beginning of this chapter for the definition of

the size box colortable.
00 = Colortable reference is by pointer
01 = Color table reference is by handle

10 = Colortable reference is by resource ID
(resource type of rct 1ColorTb1l,$800D)
11 = Invalid value

Reserved bits 1-0 Mustbesetto 0.

Chapter 28 Control Manager Update 28-115

Static text control record

Figure 28-29 showsthe format of the control record for static text controls.

a Figure 28-29 Static text control record

$00 4
— ctNext — Long—Handleto next control; NILforlast control

$04 L
— ctlOwner Long—Pointer to window to which control belongs

$08 : ctlRect - Rectangle—Text window boundary rectangle

$10 ctlFlag Byte—Text display andstorageattributes
$il ctlHilite Byte—Eventgeneration for control
$12 + ctlValue — Word—Text size field, ifct 1Data contains a pointer
$14 =

— ctlProc — Llong—statTextCont ro1=$81000000

$18 | 4
— ctlAction — Long—Pointerto custom procedure; NIL if none

SIC =
— ctlData — Long—Referenceto text for window

$20 4
— ctlRefCon — Long—Reservedfor application use

$24 =
— ct1Color — Long—Notused; must be set to 0

$28 | ctlJust + Word—Initial justification word

$2A: ctlReserved : Block, $OE bytes—Not used

$38 L =
— ctlID — Long—Application-assigned ID

S3C}- ct1Morerlags —| Word—Additional controlflags

$3E ctlVersion Word—Setto 0
28-116 Apple IIGs Toolbox Reference, Volume 3

Valid values for ct 1Flag are

ctliInvis bit 7 0 = Visible, 1 = Invisible.

Reserved bits 6-2 Mustbeset to 0.
fSubstituteText bit 1 0 = No text substitution to perform,

1 = There is text substitution to perform.
fSubTextType bit 0 0 = C strings, 1 = Pascalstrings.

Valid values for ct LMoreFlags are

fCtlTarget bit 15 Must besetto 0.

fCt1CanBeTarget bit 14 Mustbeset to 0.

fCtlWantEvents bit 13 Must besetto 0.

fCtlProcRefNotPtr bit 12 Mustbesetto 1.

fCtlTellAboutSize bit 11 Must besetto 0.

Reserved bits 10-2 Mustbesetto 0.

Text reference

ctlHilite

ctlValue

bits 10 Defines type of text reference in ct 1Data.
00 = Text reference is by pointer
01 = Text reference is by handle

10 = Text reference is by resource ID (resource

type of rTextForLETextBox2, $800B)

11 = Invalid value

Specifies whether the control wants to receive mouse selection
events. The values for ct LHilite are

0 Events are generated when the mousebutton is pressed in the
control

255 No events are generated when the mousebuttonis pressed in the
control

Contains the size of the referenced text in characters, but only if the
text reference in ct 1Datais a pointer. If the text reference is either a

handle or a resource ID, then the Control Manager can extract the

length from the handle.

Chapter 28 Control Manager Update 28-117

ctlJust The justification word is passed to LETextBox2 (see Chapter10,
“LineEdit ToolSet,” in Volume 1 of the Toolbox Referencefor details
on the LETextBox2 toolcall) and is used to set the initial
justification for the text being drawn. Valid values for ct 1Just are

leftJustify 0 Text is left justified in the display window.
centerJustify 1 Text is centered in the display window.

rightJustify -1 Text is right justified in the display

window.
fulldustify 2 Text is fully justified (both left and right) in

the display window.

Static text controls do not support color tables. To display text of different color, you

must embed the appropriate commands into the textstring you are displaying. See the

discussion of LETextBox2 in Chapter 10, “LineEdit ToolSet,” in Volume 1 of the Toolbox

Reference for details on command format and syntax.

28-118 Apple IIGs Toolbox Reference, Volume 3

TextEdit control record

Figure 28-30 shows the format of the control record for TextEdit controls.

= Figure 28-30

$00 FT —
Le ctlNext —~

$04 CT =
_. ctlOwner 7

$08
: ctlRect

$10 ctlFlag

$11 ctlHilite
$12 L ctlValue =”

$14 L
L ctlProc 7

$18 7= ctlAction 7

$1C L ~]Le ctlData -

$20 ~Le ctlRefCon ™

$24 L _= ctlColor 7

$28 L —= textFlags —“

$2C 7pm textLength 7

$30 !
. blockList

$38 7Le ctlID 7

S3C {LL octaMoreFlags —

$3E _. ctlVersion =

$40 !
viewRect

$48 7. totalHeight 7

continued

TextEdit control record

Long—Handle to next control; NIL forlast control

Long—Pointer to window to which control belongs

: Rectangle—Boundary rectangle for control

Byte—Controlvisibility
Byte—Notused; must be set to 0
Word—Last reported TextEdit error code

Long—editTextCantrol =$85000000

Long—Pointer to custom procedure; NILif none

Long—Pointertofilter procedure

Long—Reserved for application use

Long—Referenceto the colortable for the control

Long—TextEditbit flags

Long—Length oftext

> TextList—Cachedlink into TextBlocklist

Long—Application-assigned ID

Word—Additional controlflags

Word—Setto 0

: Rectangle—Boundary rectangle for text

Long—Height,in pixels, of text

Chapter 28 Control Manager Update 28-119

$4c |
: lineSuper

t _]

$58 * !
. styleSuper

$64 =
— styleList =

— rulerList =

S6C ban lineAtEndFlag =

S6E L 4
pe selectionStart —

— selectionEnd =

$76 — selectionActive —

$78 MH selectionState —

S7A | —
L caretTime =

S7E mH nullStyleActive —

$80 !
: nullStyle

S8C —
— topTextOffset =

‘S90 topTextVPos +

$92 —
— vertScrollBar =

$96 4
— vertScrollPos =

S9A [7 _
— vertScrollMax ~

S9E Mm vertScrollAmount —

SA0 [= =
— horzScrollBar =

— -
$a4[C 7

Z horzScrollPos =

SA8 —
— horzScrol1Max _

continued

28-120

| continued

- SuperHand1e—Cachedlink into text lines

- SuperHandle—Cachedlink intostylelist

Long—Handle to array of TEStyle records

Long—Handle to array of TERulerrecords

Word—Line breakflag

Long—Starting text offset for currentselection

Long—Endingtext offset for current selection

Word—Flag indicating whether current selection is active

Word—State information aboutcurrent selection

Long—Blink interval for insertion point, in system ticks

Word—Flagindicating whethernull style is active

- TEStyle—Nullstyle definition

Long—Offsetto topline of displayed text

Word—Position ofdisplay windowinto text, in pixels

Long—Handleto vertical scroll bar control record

Long—Currentposition of vertical scroll bar

Long—Maximum allowable vertical scroll

Word—Numberofpixels to scroll on each click

Long—Currently not supported

Long—Currently not supported

Long—Currently not supported

Apple IIGs Toolbox Reference, Volume 3

SAC

SAE

SB2

SBG

SBA

SBC

SBE

Sco

$C4

Sc8

Scc!

$D4 [7

SD6

SD8'

SEG

SEA

SEC

SEE !

SF6

SFA

SFC

$100

$102

continued

horzScrollAmount —

I
t
t

growBoxHandle

r
T

I

maximumChars

P
p
t
i
t
s

t
i
d

maximumLines

|
j
t

maxCharsPerLine

maximumHe ight

textDrawMode

i
t
d

wordBreakHook

|
i
J

wordWrapHook

|

keyFilter

1
ji

1

theFilterRect

theBufferVPos

theBufferHPos

theKeyRecord

T
T cachedSelcOffset

| cachedSelcVPos

| cachedSelcHPos
mouseRect

T
C
U
t

mouseTime

|
i
)

| mouseKind

I
t
t

lastClick

savedHPos

r
t
d anchorPoint

Word—Currently not supported

Long—Handleofsize box control record

Long—Maximum numberofcharacters allowed in text

Long—Currently not supported

Word—Currently not supported

Word—Currently not supported

Word—QuickDraw II drawing modefor text

Long—Pointer to word break hookroutine

Long—Pointer to word wrap hook routine

Long—Pointerto keystrokefilter routine

: Rectangle—Rectangle for genericfilter procedure

Word—Vertical componentof current position

Word—Horizontal componentofcurrentposition

> KeyRecord—Parameters for keystrokefilter routine

Long—Cachedselection text offset

Word—Vertical componentof cached buffer position

Word—Horizontal component ofcached buffer position

: Rectangle—Boundary rectangle for multiclick mouse commands

Long—Timeoflast mouseclick

Word—Kind of mouse click last performed

Long—Location oflast mouse click

Word—Cached horizontal character position

Long—Starting pointof current selection

Chapter 28 Control Manager Update 28-121

Valid values for ct 1Flag are

ctliInvis

fRecordDirty

Reserved

bit 7

bit 6

bits 5-0

Valid values for textFlags are

fNotControl

fSingleFormat

fSingleStyle

fNoWordwrap

fNoScroll

fReadOnly

fSmartCutPaste

fTabSwitch

bit 31

bit 30

bit 29

bit 28

bit 27

bit 26

bit 25

bit 24

0 = Visible, 1 = Invisible.
Indicates whethertext or style information for

the record has changed (TextEdit sets this bit
but never clears it—your application must set
the bit to 0 wheneverit saves the record).

0 = No textor style information has changed
1 = Text or style information has changed

Mustbesetto 0.

Mustbesetto 0.
Must besetto 1.
Indicates the style options available to the user.

0 = Do notrestrict the numberofstyles in the

text
1 = Allow only onestyle in the text
Indicates TextEdit word wrap behavior.

0 = Perform word wraptofit the ruler

1 = Do not word wrapthe text; break lines only
on CR ($0D) characters
Controls user access to scrolling.

0 = Scrolling permitted
1 = Do not allow either manual or auto-scrolling

Restricts the text in the window to read-only

operations (copying from the windowwillstill

be allowed).
0 = Editing permitted
1 = No editing allowed
Controls TextEdit support for smart cut and
paste (see Chapter 49, “TextEdit Tool Set,” for

details on smart cut and paste support).

0 = Do not use smart cut and paste

1 = Use smart cut and paste
Defines behavior of the Tab key (see
Chapter 49, “TextEdit Tool Set,” for details).

0 = Tab inserted in TextEdit document
1 = Tab to next control in the window

28-122 Apple IIGs Toolbox Reference, Volume 3

fDrawBounds bit 23

fColorHilight bit 22

fGrowRuler bit 21

fDisableSelection bit 20

fDrawInactiveSelection

Indicates whether TextEdit will draw a box

around the edit window,just inside ct 1Rect
(the penforthis rectangle is 2 pixels wide and 1

pixel high).
0 = Do not draw rectangle
1 = Draw rectangle
Mustbesetto 0.
Indicates whether TextEdit will resize the ruler

in responseto the user's resizing of the edit

window.If this bit is set to 1, TextEdit

automatically adjusts the right margin value for
the ruler.

0 = Do notresize the ruler

1 = Resize the ruler

Controls whether user can select text.

0 = User can select text

1 = User cannotselect text

bit 19 Controls how inactive selected text is
displayed.
0 = TextEdit does nothing special when
displaying inactive selections
1 = TextEdit draws a box around inactive
selections

Reserved bits 18-0 —_Mustbe set to 0.

textLength Number ofbytes of text in the record. Your program must not modify

this field.

blockList Cachedlink into the linkedlist of TextBlock structures, which

contain the actual text for the record. The actual Text List structure

resides here. Your program must not modify this field.

Valid values for ct IMoreFlags are

fCtlTarget bit 15
fCtlCanBeTarget bit 14

fCtlWantEvents bit 13

fCtlProcRefNotPtr bit 12

fCtlTellAboutSize bit 11

fCtlIsMultiPart bit 10

Must besetto 0.

Must besetto 1.

Mustbesetto 1.

Mustbesetto 1.

If this bit is set to 1, a size box is created in the

lower-right corner of the window. Wheneverthe
control window is resized, the edit text is

resized and redrawn.

Mustbesetto 1.

Chapter 28 Control Manager Update 28-123

Reserved bits 9-4 Mustbesetto 0.

Color table reference bits 3-2 Defines type of reference in ct 1Color (ffit is

Style reference

A, Important

viewRect

totalHeight

lineSuper

styleSuper

styleList

rulerList

not NIL). The color table for a TextEdit control
(TEColorTable) is described in Chapter 49,
“TextEdit Tool Set,” in this book.

00 = Color table reference is by pointer

01 = Colortable reference is by handle

10 = Color table reference is by resource ID

(resource type of rct 1ColorTb1,$800D)
11 = Invalid value

bits 1-0 Defines type ofstyle reference in styleRef.
The format for a TextEdit style descriptoris

described in Chapter 49, “TextEdit Tool Set,”
later in this book.

00 = Style reference is by pointer
01 = Style reference is by handle

10 = Style reference is by resource ID (resource
type of rStyleBlock,$8012)

11 = Invalid value

Do not set £Ct 1TellAbout Sizeto 1 unless the text edit record also

has a vertical scroll bar. This flag works only for TextEdit records that
are controls. a

Boundary rectangle for the text, within the rectangle definedin
boundsRect,which surrounds the entire record, includingits
associated scroll bars and outline.

Total height of the text in the TextEdit record, in pixels.

Cachedlink into the linked list of superBlockstructures that define
the text lines in the record.

Cachedlink into the linkedlist of superBlock structures that define
the styles for the record.

Handle to array of TESty1e structures, containing the uniquestyles
for the record. Thearray is terminated with a long set to $FFFFFFFF.

Handle to array of TERuler structures, defining the formatrulers for
the record. Notethat only the first ruler is currently used by TextEdit.
The array is terminated with a long set to $FFFFFFFF.

28-124 Apple IIGs Toolbox Reference, Volume 3

lineAtEndFlag Indicates whether the last character was a line break. If so, this field is

set to $FFFF.

selectionStart

Starting text offset for the current selection. Must always be less than
or equal to selectionEnd.

selectionEnd Ending text offset for the current selection. Must always be greater
than or equal to selectionStart.

selectionActive

Indicates whether the current selection (defined by
selectionStart and selectionEnd)is active.

$0000 Active
$FFFF Inactive

selectionState Containsstate information about the current selection range.

$0000 Off screen
$FFFF On screen

caretTime Blink interval for cursor, expressed in system ticks.

nullStyleActive

Indicates whetherthe null style is active for the current selection.

$0000 Do notusenull style wheninserting text
$FFFF Use null style wheninserting text

nullStyle TESty1estructure defining the null style. This may be the default

style for newly inserted text, depending on the value of
nullStyleActive.

topTextOffset Text offset into the record corresponding to the top line displayed on
the screen.

topTextvPos Difference, in pixels, between the topmostvertical scroll position

(corresponding to the top of the vertical scroll bar) and the topline
currently displayed on the screen.

vertScrollBar Handle to the vertical scroll bar control record.

Chapter 28 Control Manager Update 28-125

vertScrollPos Currentposition of the vertical scroll bar, in units defined by

vertScrollAmount.

@ Note: Although TextEdit defines the vertScro11Posfield as a long word, standard
Apple Ilcs scroll bars support only the low-order word. This leads to unpredictable

scroll bar behavior during the editing of large documents.

vertScrollMax Maximum allowable vertical scroll, in units defined by

vertScrollAmount.

vertScrollAmount

Numberofpixels to scroll on each vertical arrow click.

horzScrollBar Currently not supported.

horzScrollPos Currently not supported.

horzScrollMax Currently not supported.

horzScrollAmount

Currently not supported.

growBoxHandile Handle of size box control record.

maximumChars Maximum numberof characters allowed in the text.

maximumLines Currently not supported.

maxCharsPerLine

Currently not supported.

maximumHeight Currently not supported.

textDrawMode QuickDraw II drawing mode for the text. See Chapter16,
“QuickDrawII,” in Volume 2 of the Toolbox Reference for more

information on QuickDraw II drawing modes.

wordBreakHook Pointer to the routine that handles word breaks. See Chapter49,

“TextEdit Tool Set,” for information about word break routines. Your

program may modify this field.

wordWrapHook Pointerto the routine that handles word wrap. See Chapter49,

“TextEdit Tool Set,” for information about word wrap routines. Your

program may modify this field.

28-126 Apple IIGs Toolbox Reference, Volume 3

keyFilter

theFilterRect

theBufferVPos

theBufferHPos

theKeyRecord

Pointer to the keystroke filter routine. See Chapter 49,
“TextEdit Tool Set,” for information about keystroke filter routines.

Your program may modify thisfield.

Defines a rectangle used by the genericfilter procedure for someofits
routines. See Chapter 49, “TextEdit Tool Set,” for information about

genericfilter procedures and their routines. Your program may modify

this field.

Vertical componentofthe current position of the buffer within the
port for the TextEdit record, expressed in the local coordinates
appropriate for that port. This value is used by somegenericfilter
procedure routines. See Chapter 49, “TextEdit ToolSet,” for
information about generic filter procedures and their routines. Your
program may modify this field.

Horizontal componentof the current position of the buffer within the
port for the TextEdit record, expressed in the local coordinates
appropriate for that port. This value is used by some generic filter
procedure routines. See Chapter 49, “TextEdit ToolSet,” for
information about generic filter procedures and their routines. Your

program may modify this field.

Parameter block, in KeyRecord format, for the keystrokefilter
routine. Your program may modify this field.

cachedSelcOffset

Cached selection text offset. If this field is set to $FFFFFFFF, then the

cacheis invalid and will be recalculated when appropriate.

cachedSelcvVPos

Vertical componentof the cached buffer position, expressed in local

coordinates for the output port.

cachedSelcHPos

mouseRect

mouseTime

Horizontal componentof the cached buffer position, expressed in
local coordinates for the output port.

Boundary rectangle for multiclick mouse commands.If the user clicks

more than oncein the region defined bythis rectangle during the time

period defined for multiclicks, then TextEdit interprets those clicks
as multiclick sequences (double ortriple clicks). The user sets the time
period with the Control Panel.

System tickcount whenthe userlast released the mouse button.

Chapter 28 Control Manager Update 28-127

mouseKind

lastClick

savedHPos

anchorPoint

Type of last mouseclick.

0 Single click
1 Double click

2 Triple click

Location of last user mouseclick.

Cached horizontal character position. TextEdit uses this value to

determine where on line the cursor should appear whenthe user

presses the up or downscroll arrow.

Defines the character at which the user began toselect the text in the

current selection. When TextEdit expands the currentselection (as a

result of user keyboard or mouse commands,orat the direction ofa
custom keystrokefilter procedure), it always does so from the
anchorPoint,not selectionStart Of selectionEnd.

28-128 Apple IIGs Toolbox Reference, Volume 3

Chapter 29 Desk Manager Update

This chapter documents new features of the Desk Manager. The
complete reference to the Desk Manageris in Volume1, Chapter 5 of the
Apple IIGs Toolbox Reference.

29-1

New features of the Desk Manager

It is now possible for a new desk accessory (NDA) to support a modal dialog box. When

an NDAis selected, it returns a pointerto its window. The Desk Managersavesthis pointer
and marks the NDAas selected. The current version of the Desk Manager checks the
retumed windowpointer.If its value is 0 Cif it is a null pointer), the Desk Manager does
not mark the NDA as selected. Subsequentattempts to select the NDA simply select the

open window until the NDAis deselected. A programmercan therefore write an NDAthat

opens a modal dialog box when the NDAis selected. When the dialog boxis closed, the

NDA can be selected again without having been explicitly deselected.

Scrollable CDA menu

Theclassic desk accessory (CDA) menuis nowscrollable. Previously, the menu held a

maximum of 13 commands in fixed display. Now, up to 249 desk accessories can be
installed and displayed.

Scrolling takes place only on systems with 14 or more CDAs installed. When the menuis

scrollable, the system displays a more message (@@@ more #@¢@) at eachscrollable end

of the menu.Thatis, if there are additional commands abovethose currently visible, the

more message appearsat the top of the menu.Similarly, if there are more commands
below those currently visible, a more message appears at the bottom of the menu.
Messages may beplaced at both the top and bottom of the menu,if appropriate.

The new menu behaves somewhatdifferently from the old one. When the user returns to

the CDA menufrom an accessory, the nameof that accessory is highlighted (previously,

the Control Panel entry was highlighted). In addition, the user can no longer wrap from the
bottom of the menutothe top,or vice versa.

29-2 Apple IIGs Toolbox Reference, Volume 3

The valid keystrokes for the CDA menu are

Keystroke

Up Arrow

Command-Up Arrow

Down Arrow

Command—Down Arrow

Enter or Return

Esc

Effect

Moves the selection box up oneentry in the menu; noeffect
if the selection boxis at the top of the menu

Movesthe selection box up one pagein the menu;noeffect
if the selection box is at the top of the menu

Movesthe selection box downoneentry in the menu; no

effect if the selection box is at the bottom of the menu

Movesthe selection box down one page in the menu; no

effect if the selection box is at the bottom of the menu

Selects the highlighted item

Selects Quit

Run queue

The run queueallowsyou to install tasks (run items) that need to be called periodically.

You establish the periodicity of the call by managing field in the run item header. The
Desk Managerhas two newsystem calls, AddToRunQ and RemoveFromRunqQ,thatallow

youto install and removerun items from the queue.

The system examines the run queueat system task time, when the system is guaranteed to

be free and all tools are available. For each run item in the queue, the system adjusts the
period headerfield. If the specified time period has elapsed, the system thencalls the
run item.

The run queueis quite similar to the heartbeat queue and should be usedin its place.

Chapter 29 Desk Manager Update 29.3

Each mun item must be preceded by a header formatted as in Figure 29-1.

a Figure 29-1 Run item header

$00 +
— Reserved — Long—wsedby system aslink to next run queueitem

$04 L period — Word (unsigned)—Period to wait,in ticks

$06 L signature — Word—Headersignature, to ensure integrity—set to SA55A

$08 _
Reserved — Long—Usedby system to determine whenitem waslast executed

period Specifies the minimum numberofsystem ticks that are to elapse
between runitem executions. Each system tick represents 1/60th ofa
second. A value of 0 indicates that the item is to be called as often as
possible. A value of $FFFF indicates that the item should never be

called. Although the run queue supports call frequencies up to

approximately 60 calls per second, the timing is less accurate for

periods shorter than one second.

Z\ Important Runitem code must reset the periodfield before returning controlto

the system.Failure to do so will result in a period of 0, which will
cause the item to be called constantly. a

signature Used by the system to ensure that the headeris well formed. The value

of this field must be $A55A.

The entry point must immediately follow the header. Run items need not check the busy
flag, since the system is guaranteed to be free before any nun item is invoked. However,

you must ensurethat run items save and restore the operating environment, since they may
be invoked from TaskMaster, as well as from an application. You should also be careful to
either unload yourrun itemsat application termination or ensure that remaining items are
not purgeable.

Although the run queue and heartbeat queue (see Chapter 14, “Miscellaneous ToolSet,” in
Volume1 of the Toolbox Reference for information about the heartbeat queue) are quite

similar, there are somesignificant differences. First, the run item header has an additional

field (the second Reservedfield). Second, the system does not remove items from the run

queue whentheir period reaches 0.

29-4 Apple IIGs Toolbox Reference, Volume 3

Run queue example

The following sample run item causes the speaker to beep every 15 minutes:

; task header.

BeepHdr Record

ds.L l ;

period dc.W SD2FO ;

dc.W SASSA ;

dc.L 0 ;

EndR

~
e

=
e

N
e

BeepTask Proc

with BeepHdr

_SysBeep ;

lda #S$D2FO ;

sta >period ;

rtl

EndP

"
e
e

; RunQ example task that beeps every 15 minutes.

; It is provided in MPW IIgs assembler format. The first portion is the

reserve 1 long for link to next runQ entry

number of 60th of a sec (54000=15 minutes)

Signature used to test for queue integrity

used by desk mgr to keep track of the time

Now the actual code of the task goes here.

beep the speaker once

and now recharge the period for next call

NOTE:Use long addressing: DataBank unknown

and to exit use an RTL

The following codeinstalls the preceding item into the run queue:

PushLong #BeepHdr

ldx #$1F05
jsl >$E10000

Chapter 29 Desk Manager Update 29-5

New Desk Managercalls

The following new Desk Managercalls support the run queue and desk accessory removal.

AddToRung $1F05

Adds the specified routine to the head of the run queue.

Parameters

Stack before call

Previous contents

- runitemPtr - Long—Pointer to run item to add

 <—SP

Stack after call

| Previous contents

—

Errors None

C extern pascal void AddToRunQ(runItemPtr);

Pointer runitemPtr;

29-6 Apple IIGs Toolbox Reference, Volume 3

RemoveCDA $2105

Removesthe specified CDA from the Desk Manager CDAlist. This routine does not

dispose of the memory used by the desk accessory.

This routine is the complement of Insta11cpa (whichis described in Chapter 5, “Desk
Manager,” in Volume1 of the Toolbox Reference).

Issue this call with caution. Users generally install desk accessories for their own use; you
should not spontaneously remove them from the system. Also, note that many desk

accessoriesinstall other custom code (in the run queue, for example); you should not
remove them unless you knowthat the other code has been removedas well.

Parameters

Stack before call

Previous contents

~ idHandle - Long—Handle to CDA header

<—SP
Stack after call

| Previous contents |

| | <—SP

Errors $0510 daNotFound Specified desk accessory not
found.

C extern pascal void RemoveCDA(idHandle);

Handle idHandle;

Chapter 29 Desk Manager Update 29-7

RemoveFromRung $2005

Removes the specified run item from the run queue.

Parameters

Stack before call

Previous contents

—- runltemPtr - Long—Pointer to run item to remove

<—S§P

Stack after call

| Previous contents |

| | <—SP

Errors None

C extern pascal void RemoveFromRunQ (runItemPtr) ;

Pointer runItemPtr;

29-8 Apple IIcs Toolbox Reference, Volume 3

RemoveNDA $2205

Removesthe specified NDA from the Desk Manager NDAlist. This routine does not
dispose of the memory used by the desk accessory.

This routine is the complement of Instal1NDA (whichis described in Chapter 5, “Desk
Manager,” in Volume1 of the Toolbox Reference).

This call does not rebuild the Apple menu. Yourapplication must rebuild the menu by
issuing the FixAppleMenutoolcall.

Parameters

Stack before call

Previous contents

- idHandle - Long—Handle to NDA header

<—SP

Stack after call

| Previous contents |
 pss

Errors $0510 daNotFound Specified desk accessory not
found.

C extern pascal void RemoveNDA(idHandle);

Handle idHandle;

Chapter 29 Desk Manager Update 29-9

Chapter 30 Dialog Manager Update

This chapter documents error corrections to the documentation of the

Dialog Manager. The complete reference to the Dialog Manageris in

Volume1, Chapter6 of the Apple Ics Toolbox Reference.

30-1

Error corrections

This section documents errors in Chapter 6, “Dialog Manager,” in Volume1 of the Toolbox
Reference.

= statement about SetDItemType on page 6-82 of Volume1 of the Toolbox Reference

is in error. This call is mot used to change a dialog item to a differenttype. In fact,
SetDItemTypeshould be used only to change thestate of an item from enabled to
disabled or vice versa.

a An entry in Table 6-3 on page 6-12 of Volume1 of the Toolbox Referenceis incorrect.
The Dialog Manager does not support dialog item type values of picItem or
iconiItem.

30-2 Apple IIs Toolbox Reference, Volume 3

Chapter 31 Event Manager Update

This chapter documents newfeatures of the Event Manager. The
complete reference to the Event Manageris in Volume 1, Chapter7 ofthe
Apple IIcs Toolbox Reference.

31-1

Error correction

This section documents an error in Chapter 7, “Event Manager,” in Volume 1 of the

Toolbox Reference.

= The description of the EMShutDowntool call incorrectly states that the call returns no

errors. This call can retum any valid Event Managererror code.

New features of the Event Manager

The following sections discuss new features of the Event Manager.

Journaling changes

Previously, journaling did not capture operations that involved the ReadMouse

Miscellaneous ToolSetcall, because that call did not support journaling. As discussed in

Chapter 39, “Miscellaneous Tool Set Update,” in this book, ReadMouse has been changed

to support journaling. As a result, journaling routines must now handle a new journalcode.

Whenan application calls ReadMousewhile joumalingis enabled, your journaling routine
will be called with a journal code of 6 and resultPtr will point to a 6-byte record containing
ReadMousedata. This record (called EventJournalRec) has the format shownin

Figure 31-1.

= Figure 31-1 Joumal record for mouse event

$00 | statusMode —| Word—Mouse status/modebytes

$02 |— yLocation — Word—Absolute y location of pointing device

S04 xLocation — Word—Absolute x location of pointing device

statusMode Mousestatus and modebytes, as described on pages 14-35 and 14-36
of the Toolbox Reference, Volume1.

31-2 Apple IIGs Toolbox Reference, Volume 3

Keyboard input changes

The system now processes keyboard input througha translation routine, allowing

Apple IIcs and Macintosh® keystrokes to match. The translation routine uses a resource-
based keystroke translation table, which is identified by a unique resource ID. You can
assign other tables to suit the needs of a particular language or keyboard. The Event

Managerprovides newcalls to read or write the current keyboardtranslation table
resource ID.

Note that the system translates keystrokes before performing dead key replacements. To

modify dead key sequences, you mayfind it easier to modify the appropriate
transTable entry thanthe entries in deadKeyTable and replacementTable,since

the first table is more straightforward than the last two.

The keystroke translation table must be formatted as shownin Figure 31-2.

a Figure 31-2 Keystroke translation table

$000 | ,; transTable : 256 bytes—Keystroke translation array
f j

$100 ! «aes
deadKeyTable : xx bytes—Deadkeyvalidation array

{ i
$100+xx |

- replacementTable : yy bytes—Dead key replacement array
J

transTable This is a packed array of bytes used to map the ASCII codes produced
by the keyboard into the character value to be generated. Each cell in

the array directly corresponds to the ASCII code that is equivalent to
the cell offset. For example, the transTablecell at offset $0D (13
decimal) contains the character replacement value for keyboard code

$0D, which,for a straight ASCII translation table, is a carriage return

character (CR). The transTablecells from 128 to 255 ($80 to $FF)

contain values for Option-key sequences (such as Option-S).

Chapter 31 Event Manager Update 31-3

deadKeyTable This table contains entries used to validate dead keys—keystrokes

used to introduce multikey sequencesthat result in single characters.

For example, pressing Option-U followed bye yields the characteré.

Thereis one entry in deadKeyTab1efor each defined dead key. The
last entry must be set to $0000. Each entry must be formatted as
follows:

deadKey Byte—Character code for dead key

 offset Byte—Offset from deadKeyTableinto replacementTable

deadKey

offset

Contains the character code for the dead key. The system uses

this value to check for user input of a dead key. The system
compares this value with the first user keystroke.

Byte offset from beginning of deadKeyTab1einto relevant
subarray in replacementTable,divided by 2. The system
uses this value to access the valid replacementvalues for the

dead key in question.

replacementTable

This table contains the valid replacement values for each dead key
combination. This table is made upofa series of variable-length
subarrays, each relevantto a particular dead key. Thelast entry in each
subarray must be set to $0000. Each entry in the replacementTable

must be formatted as follows:

scanKkey Byte—Character code for dead key combination

 replaceValue Byte—Result character code for dead key combination

scanKey Contains a valid character code for a dead key replacement. The
system uses this field to determine whetherthe user entered a

valid dead key combination. The system comparesthis value

with the second user keystroke.

replaceValue Contains the replacementvalue for the character specified in

scankeyforthis entry. The system delivers this value as the

replacementfor a valid dead key combination.

314 Apple Ilcs Toolbox Reference, Volume 3

New Event Managercalls

This section describes several new Event Managercalls, many concerning the new

keyboard translation feature.

GetKeyTranslation $1B06

Returns the identifier for the currently selected keystroke translation table. Before setting
a newtranslation table, your application should read and save the currentidentifier. When

your application terminates, it should restore the previous keystroke translation table.
Use the SetKeyTranslationcall to modify the current identifier.

Parameters

Stack before call

Previous contents

Space

Stack after call

Previous contents

Word—Spacefor result

<—SP

kTransID Word—Keyboard translation identifier ($0000 to $00FF)

<—SP

Errors None

C extern pascal Word GetKeyTranslation ();

Chapter 31 Event Manager Update 31-5

SetAutoKeyLimit $1A06

Controls how repeated keystrokes are inserted into the event queue. The default value for

the limit is 0, which specifies that auto-key events are inserted only if no other events are

already in the queue. The newLimit parameter determines how many auto-key events must

be in the event queue before PostEventceases to add them. For example, if newLimitis
0, then the default condition is maintained: PostEvent will not add auto-key events
unless the queue is empty. However, if newLimit is 5, then PostEventwill add five auto-
key events to the queue beforeit reverts to the rule that no more auto-key events are to
be posted.

Parameters

Stack before call

Previous contents

newLimit Word—Limit for inserted auto-key events

<—SP

Stack after call

| Previous contents |

| | <—SP

Errors None

C extern pascal void SetAutoKeyLimit (newLimit) ;

Word newLimit;

314 Apple IIGs Toolbox Reference, Volume 3

SetKeyTranslation $1C06

Sets a new keystroke translation table. Onceset, the selected keystroke translation table

stays in effect until this call is issued again, irrespective of application termination,

system resets, or system poweroff. Before setting a new value for the keystroke

translation table, your application should read and savethe current value, using the
GetKeyTranslationtoolcall. Your application should thenrestore that previous value

whenit is finished.

The system reads keystroketranslation tables from resources of type rkTransTable
($8021) and ID $0FFF06xx, where xx derives from the low-order byte of the kTransID

parameter.

This call uses the current resource search path tofind the specified resource. If you want
yourtranslation to stay in effect after your application has terminated, you must place
the translation table resource in the system resourcefile.

If the system cannotfind a resource correspondingto the value specified in kTransID, the

keyboard defaults to the standard keystroke translation table ($00FF).

Parameters

Stack beforecall

Previous contents

kTransID Word—Keystroke translation table identifier (low-order byte)

<—SP

Stack after call

| Previous contents |

| <—SP

Errors None

Cc extern pascal void SetKeyTranslation(kTransID);

Word kTransID;

kTransID The following are standard values for kTransID:

$0000 Use old-style Apple IIGs keyboard mapping
$00FF Use standard keyboard remapping (makes Apple IIGs key

sequences match Macintosh sequences)

Chapter 31 Event Manager Update 31-7

Chapter 32 Font Manager Update

This chapter documents new features of the Font Manager. The complete
reference to the Font Manageris in Volume 1, Chapter 8 of the
Apple IIGs Toolbox Reference.

32-1

Error corrections

On page 8-4 of Volume1 of the Toolbox Reference, the font family numberfor the
Shaston font is given as 65,524. This is incorrect. The correct decimal value is 65,534
($FFFE).

Page 8-24, Volume 1 of the Toolbox Referenceincorrectly describes the newSpecs
parameter, indicating that it contains a word of Font SpecBits. Actually, this

parameter contains Font StatBits for the new font.

Contrary to the call description in the Toolbox Reference, the FMSet SysFonttoolcall

does not load orinstall the indicated font.

New features of the Font Manager

The current version of the Font Managerincorporates several changes. In previous

versions, FMSt artUp openedeachfontfile in the FONTS folder and constructedlists

of information for all available fonts. These lists contained font IDs, font names, and

so forth for every font in the FONTS folder. The present version of the Font Manager

does this same workthefirst time it starts up but cachesall the information it
compilesin a file called FONT.LISTS in the FONTS folder.

The next time the Font Managerstarts up, it checksall the creation and modification
dates and times in fontfiles against the information in FONT.LISTS.It compiles new

FONT.LISTS information only if it finds new font files or other evidence of change.
Otherwise, it simply starts up with the information stored in the FONT.LISTSfile. In

most cases, because it doesn’t have to open every fontfile, the Font Managercanstart
up much more quickly.

A bughas beenfixed in the ChooseFontcall. Previously, chooseFont would hang
the system if any update events were pending when the call was made. Now,
ChooseFontwill not hang the system under these circumstances; the system leaves
update events in the event queue for processing by the application.

In addition, the Choose Font dialog box now uses NewWindow2,with a control

template that can be kept in a resourcefile. As a result, this dialog box can be
translated to languages other than English moreeasily.

Scaled fonts may now contain more than 65,535 bytes of data. See Chapter43,
“QuickDraw II Update,” in this book for the layout of the new font record.

32-2 Apple IIGs Toolbox Reference, Volume 3

= A bugthat corrupted the font family list has been fixed. This bug had varied
symptoms, including incorrect font name displays in the Choose Font dialog box and
in the Font menu, and Font Managercrashes, amongothers.

Chapter 32 Font Manager Update 32-3

New Font Manager call

The new call InstallWithStats is provided to simplify the processofinstalling fonts. It allows an
application to preserve certain information that is normally lost during fontinstallation.

InstallwWithStats S$1C1B

Installs a font and returns information about that font. When an application requests the
installation of a font, the Font Manager attemptstoinstall the requested font, but it may
not be available. In such cases, the Font Managerinstalls the font that matches the
requested font most closely.

The InstallwithStats callinstalls a fontjust as if the application had called
InstallFont,butit returns a Font StatRecrecord in the buffer pointed to by
resultPtr. This record contains the ID ofthe installed font, which may bedifferent from
the ID of the font requested. It also contains the purge status of the font before it was
installed. Because purge status can be changedbyinstallation, this information can make
it easier to restore the purge status of a font. If you need to know the purgestatus of an
installed font, use FindFontStats.

Parameters

Stack before call

Previous contents

- desiredID - Long—Font ID ofdesired font

scaleWord Word—Desired font size

—- resultPtr - Long—Pointer to buffer to receive Font StatRec

<—SP
Stack after call

| Previous contents |

| | <—SP

324 Apple IIGS Toolbox Reference, Volume 3

Errors

resultPtr

$00

$04

None

extern pascal void InstallWithStats (desiredID,

scaleWord, resultPtr);

Long desiredID;

Word scaleWord;

Pointer resultPtr;

On retum from InstallwWithStats,the buffer pointed to by
resultPtr contains a Font StatRec record formatted as follows:

I
T

J
j
f

Long—FontID recordresultID

 resultStats Word—FontStatBits defining font status

Chapter 32 Font Manager Update 32-5

Chapter 33 Integer Math Tool Set Update

This chapter documents changesto the Integer Math Tool Set. The

complete reference to Integer Math is in Volume 1, Chapter 9 of the
Apple IIGs Toolbox Reference.

33-1

Clarification

This section presents new information about the Long2DecInteger Math toolcall.

a The Long2DecInteger Math tool call now correctly handles input long values whose
low-order three bytes are set to zero.

33-2 Apple IIGs Toolbox Reference, Volume 3

Chapter 34 LineEdit Tool Set Update

This chapter documents new features of the LineEdit Tool Set. The
complete reference to LineEdit is in Volume 1, Chapter 10 of the
Apple Ilcs Toolbox Reference.

34-1

New features of the LineEdit Tool Set

The LineEdit Tool Set supports a numberof new features. The following section discusses
these new featuresin detail.

a The LineEdit Tool Set now works within controls. See Chapter 28, “Control Manager
Update,” in this book for details.

= LineEdit now supports password fields. Password fields do not echo userinput as

typed. Instead, each input character is echoed with a special character. Your

application can set the echo character; the default is the asterisk (°).

The LineEdit edit record has a new field, 1ePWChar, that supports the password

feature. This field defines the screen echo character for passwordfields. It is located
at the end of the edit record. Figure 34-1 shows the new format of the LineEdit record.

To indicate that a LineEdit field is a passwordfield, set the high-order bit of the
maxSizefield in the LineEdit control template to 1 (see “LineEdit Control Template”

in Chapter 28, “Control Manager Update,” in this book for more information).

342 Apple IIGs Toolbox Reference, Volume 3

= Figure 34-1 LineEdit edit record (new layout)

S00 =
— leLineHandle -4 Long—Handleto text

$04 leLength — Word—Integer; currenttext length

$06 [F leMaxLength — Word—Integer; maximumtext length

S08 ! ae
leDestRect - Rectangle—Destination rectangle

__}
$10 ! ,

leViewRect : Rectangle—Viewrectangle

$18 L a
— lePort — Long—Pointer to GrafPort

$1C leLineHite + Word—Integer; used for highlighting

SIE leBaseHite —| Word—Integer; used for drawing text

$20 leSelStart — Word—Integer; used for start of selection range

$22 leSelEnd — Word—Integer, used for endof selection range

$24 L leActFlg —_| Word—Reserved for internal use

$26 L leCarAct —| Word—Reservedforinternal use

$28 | leCarOn —| Word—Reserved for internal use

S2A | =
— leCarTime —| Long—Reservedfor internal use

$2E =
- leHiliteHook — Long—Pointer to highlight routine

$32 L =
— leCaretHook —| Long—Pointerto caret routine

$36 leJust + Word—Justification control word

$38 |- lePWChar — Word—Passwordfield screen echo character
leMaxLength Indicates the maximum text length allowed in the LineEdit field. Valid

values range from 1 to 255. The high-order bit governs whether the
field is a password field. If the bit is set to 1, then the field is a
passwordfield, and user input is echoed with character values

specified by the contents of the 1ePWChar field.

lePWChar Defines the character to be echoed in passwordfields. This field
contains the ASCII code for the echo character in its low-order byte.
The default system valueis the asterisk (*).

Chapter 34 LineEdit Tool Set Update

New LineEdit call

This new LineEdit tool call returns the address of the current LineEdit control definition

procedure.

GetLEDefProc $2414

Returns the address of the current LineEdit control definition procedure. When the
Control Managerstarts up, the system issuesthis call to obtain the address of the LineEdit

control definition procedure. This call is not intended for application use.

Parameters

Stack before call

Previous contents

- Space ~ Long—Spacefor result

<—S§P

Stack after call

Previous contents

- defProcPtr - Long—Pointer to LineEdit control definition procedure

<—S§P

Errors None

C extern pascal Pointer GetLEDefProc();

344 Apple IIcs Toolbox Reference, Volume 3

Chapter 35 List Manager Update

This chapter documents new features of the List Manager. The complete
reference to the List Manageris in Volume 1, Chapter 11 of the
Apple lIGs Toolbox Reference.

35-1

Clarifications

The following items provide additional information about features previously described
in Volume 1 of the Toolbox Reference.

= The Toolbox Reference states that a disabled item of a list cannot be selected. In fact, a
disabled item can be selected, but it cannot be highlighted. The List Manager provides

the ability to select disabled (dimmed) items so that a user can,for instance, select a

disabled commandas part of a help dialog box. To make an item unselectable, makeit

inactive (see “List Manager Definitions” later in this chapter).

= AnyList Managertoolcall that draws will change fields in the GrafPort record.If you

are using List Managertoolcalls, you must set up the GrafPort correctly and save any

valuable GrafPort data before issuing thecall.

a Item text is now drawnin 16 colors in both 320 and 640 mode.

= Previous versions of List Manager documentation do notclearly define the relationship

between the ListView, listMemHeight, and listRectfields in the list record.

To understand this relationship, note that the following formula must be truefor values

in any list record:

(listView * listMemHeight) +2=listRect.v2-listRect.vl

If you set ListViewto 0, the List Manager automatically adjusts the ListRect.v2
field and sets the 1istViewfield so thatthis formula holds. Note that if you pass a 0
value for 1istView, the bottom boundary of 1istRect may changeslightly.

35-2 Apple JIGS Toolbox Reference, Volume 3

List Managerdefinitions

The following terms define the valid states of a list item:

inactive

disabled

enabled

selected

highlighted

Inactive items appear dimmed and cannot be highlighted or selected.

Bit 5 of thelist item’s memF lagfieldis setto 1.

Disabled items appear dimmedand cannotbehighlighted. Bit 6 of the
list item’s memFlagfield is set to 1.

Enabled items are not dimmed andcan behighlighted. Bit 6 of the list

item’s memFlagfield is set to 0.

This bit is set when a userclicks thelist item or when the item is within a
range ofselected items. A selected item appears highlighted only ifit is
also enabled. Bit 7 of thelist item’s memF 1aqfield is set to 1.

An item in a list appears highlighted only whenit is both selected and
enabled. A highlighted item is drawn in the highlight colors. Bit 7 of the
memF lagfield is set to 1 and bit 6 is set to 0.

Chapter 35 List Manager Update 35-3

New features of the List Manager

The List Manager now supports a numberof new features. This section discusses these new
features in detail.

m Thelatest revision of the List Manager includes new versionsofthetoolcalls that

provide moreflexible interfaces for application programmers in two ways. First, these

new List Managerroutines allow your application to pass an item number, rather than a

list record pointer, to identify an item to process. This frees you from tracking pointer

values and allows you to focus on the more useful item number. Second, your

application need no longer maintain the list record. All new toolcalls allow you to

identify the list by a handle to thelist control record. The List Managerreturnsthis
handle when your program issues the CreateList List Managertoolcall, or
preferably, the NewCont ro12 Control Managertoolcall.

a The listTypefield now supports a flag that governs wherethe scroll bar is to be

created. Bit 2 of ListType determines whetherthe scroll bar is created inside or

outside of ListRect. If the bit is set to 1, the List Manager adjusts the right side of
listRect to accommodate the scroll bar, creates the scroll bar inside the adjusted

listRect, andthensets the flag to 0. If the bit is set to 0, the scroll bar resides

outside 1istRect. This works the same waywith old-style control records.

“A, Important Whenusing resources with the List Manager, be careful to define the
memory referenced by ListRef (see “NewList2 $161C”laterin this

chapter) as unpurgeable if you plan to use the Sort Listcall.
Otherwise, in response to a memory allocation request, the sorted list

may be purged from memory. Then, when your application next issues
a List Managercall, the system will reload the unsortedlist. a

35-4 Apple IIGS Toolbox Reference, Volume 3

New List Managercalls

The following new List Managercalls support a new, moreflexible programminginterface.

In general, these calls provide the same functionality as the old versions.

DrawMember2 $111C

Draws oneorall membersofa specified list. If your application goes directly to the

memberrecord to changethe state of a member, the application should then call

DrawMemberOf DrawMember2. Unlike DrawMember,this call accepts an item number

specification for the member to draw. Passing an item numberof0 causes theList

Managerto redraw theentirelist.

Parameters

Stack before call

Previous contents

itemNumber

ctlHandle

Stack

| Previous contents |

after call

Errors None

Word—Item numberto redraw

Long—Handleofthelist control

<—SP

<—SP

extern pascal void DrawMember2 (itemNumber,

Word

Handle

ctlHandle) ;

itemNumber;

ctlHandle;

Chapter 35 List Manager Update 35-5

NewList2 $161C

Resets the list control according to a specified list record. Your application passes the

parameters controlling the creation of the list on the stack, rather than in a list record (as

with NewList). The routine uses the /istStart, listSize, and listRefparameters to reset the
list control. |

Parameters

Stack before call

Previous contents

drawProcPtr —

listStart

listRef -

listRefDesc

listSize

ctlHandle -

Stack

aftercall

Previous contents |

Errors None

35-6

Long—Pointer to member-drawing routine; NIL for default routine

Word—Item numberoffirst displayed list member

Long—Referencetolist

Word—Descriptor for listRef

Word—Numberof itemsin thelist

Long—Handle ofthelist control returned by NewCont rol2

<—SP

<—SP

extern pascal void NewList2(drawProcPtr, listStart,

Pointer

Word

Long

Handle

listRef, listRefDesc, listSize,

ctlHandle);

drawProcPtr;

listStart, listRefDesc, listSize;

listRef;

ctlHandle;

Apple IIGS Toolbox Reference, Volume 3

drawProcPtr Pointer to custom list member-drawing routine. NIL value causes the

List Managerto use its standard routine.

listStart Item numberofthefirst list item to display. A value of $FFFFtells the
List Managerto usethe value currently stored in the list control record.
Neverset this parameterto 0.

listRef Reference (pointer, handle, or resource ID)to the list. The value of

listRefDesc governs how the List Managerinterprets this field. A value

of $FFFFFFFF tells the List Managerto use the value currently stored in
the list control record.

listRefDesc Defines the type of reference stored in /istRef.

0 listRefreference is a pointer
1 listRefreference is a handle

2 listRefreference is a resource ID

$FFFF nochange

@ Note: If you set either listRefor listRefDesc to -1, then you must setthe otherfield to

the samevalue.

listSize Numberofentries in thelist. A value of $FFFF tells the List Managerto
use the value currently stored in thelist control record.

Chapter 35 List Manager Update 35-7

NextMember2 $121C

Searches a specified list record, starting with a specified item, and returns the item

numbercorresponding to the next selected item. This call accepts an item number and

control handle as input. If you pass an item numberof0,the List Managerstarts its search
from the beginningofthelist.

Parameters

Stack before call

Previous contents

Space Word—Spaceforresult

itemNumber Word—Numberofitem at which search begins

- ctlHandle - Long—Handle ofthe list control

<—SP
Stack after call

Previous contents

itemNumber Word—Item numberof selected member; 0 if no more

<—SP

Errors None

C extern pascal Word NextMember2 (itemNumber,

ctlHandle);

Word itemNumber;

Handle ctlHandle;

35-8 Apple IIGS Toolbox Reference, Volume 3

ResetMember2 $131C

Searches a specified list control, starting with thefirst list member, and returns the item

numberofthe first selected memberin thelist. A list member is considered selected if bit

7 of the member's memFiagfield is set to 1. If the user has not selected a member, then
the returned item numberis 0. This call accepts a control handle as input.

Parameters

Stack before call

Previous contents

Space Word—Space for result

- ctlHandle - Long—Handle ofthe list control

<—SP
Stack after call

Previous contents

itemNumber Word—Item numberof selected member; 0 if no more

<—SP

Errors None

C extern pascal Word ResetMember2 (ctlHandle) ;

Handle ctlHandle;

Chapter 35 List Manager Update 35-9

SelectMember2 $141C

Selects a specified member, deselects any other selected membersofthe list, and scrolls

the list display so that the specified memberis at the top of the display. This call accepts
a control handle and an item numberasinput.

Parameters

Stack before call

Previous contents

itemNumber Word—Item number of memberto select

- ctlHandle - Long—Handleofthelist control

<—SP
Stack after call

| Previous contents |

| <—SP

Errors None

C extern pascal void SelectMember2 (itemNumber,

ctlHandle);

Word itemNumber;

Handle ctlHandle;

35-10 Apple IIGS Toolbox Reference, Volume 3

SortList2 $151C

Alphabetizes a specified list by rearranging the array of memberrecords. This call accepts
a control handle and a pointer to a custom comparison routine as input.

Parameters

Stack before call

Previous contents

- comparePtr — Long—Pointer to comparison routine; NIL for standard compare

- ctlHandle - Long—Handle ofthe list control

<—SP
Stack after call

| Previous contents |

| | <—SP

Errors None

C extern pascal void SortList2(comparePtr, ctlHandle);

Pointer comparePtr;

Handle ctlHandle;

Chapter 35 List Manager Update 35-11

Chapter 36 Memory Manager Update

This chapter documents new features of the Memory Manager. The
complete reference to the Memory Manageris in Volume 1, Chapter 12 of
the Apple lIGs Toolbox Reference.

36-1

Error correction

Figure 12-7 on page 12-10 of Volume1 ofthe Toolbox Reference shows the low-orderbit of
the user ID as reserved. This is not correct. The figure should show that the mainID field

comprises bits 0-7 and that the mainID value of $00 is reserved.

Clarification

The Toolbox Reference documentation of the Set HandleSizecall ($1902) includes the
statement, “If you need more room to lengthen a block, you may compact memory or

purge blocks.” This is misleading.In fact, to satisfy a request the Memory Managerwill

compact memory or purge blocksto free sufficient contiguous memory. Therefore, the

sentence should read, “If your request requires more memory thanis available, the Memory

Manager may compact memory or purge blocks, as needed.”

New features of the Memory Manager

The Memory Managerallocates handles muchfaster than before. The Memory Manager

remembersthe last handle allocated andstarts its search for new memory from that

location, shortening allocation time.

Out-of-memory queue

The out-of-memory queue allows application code to recover gracefully from low-
memory conditions in the system. The out-of-memory queue consists of a series of out-
of-memory routines, which are created andinstalled by application programs. When the

Memory Managercannotcreate a handle from memory currently available,it calls each of

the out-of-memory routines. These routines can then either free memory thatis not crucial

to the function of an application or notify the application to tell the user to save and exit.

36-2 Apple IIGs Toolbox Reference, Volume 3

When the Memory Manager encounters a low-memory condition,it performs the following
steps:

1. Invokes each out-of-memory routine until a routine reports that it has freed enough
memory to satisfy the request. If a routine does free enough memory, the Memory
Managerthenallocates the handle and returns controlto the calling application.

2. Compacts memory andretries theallocation. If the allocation is successful, the

Memory Managerreturns control to the calling application.

3. Purges level 3 handles. If this frees enough memory, the Memory Manager compacts
memory,allocates the handle, and returnsto the calling application.

4. Purges level 2 handles. If this frees enough memory, the Memory Manager compacts
memory,allocates the handle, and returns to the calling application.

5. Purges level 1 handles. If this frees enough memory, the Memory Manager compacts
memory, allocates the handle, and returns to the calling application.

6. Again invokes each out-of-memory routine.If a routine frees enough memory,the

Memory Managerallocates the handle andreturns to the application. Otherwise, the

Memory Managerreports an out-of-memory condition to the application.

Note that the Memory Manager may invoke an out-of-memory routine twice during the
same low-memory condition. In the invocation parameter block for an out-of-memory
routine, the Memory Managerpassesa flag indicating whetherthisis the first or second
time through the out-of-memory queue. By examining this flag, routines can react
differently based upon the urgency of the low-memory condition.

Any application, desk accessory, or initialization resource thatinstalls an out-of-memory

routine must also removethat routine from the out-of-memory queue. Add routines to the
queue with the AddToOOMQueuetool call; remove them with the

RemoveFromOOMQueuetoolcall.

Out-of-memory routines may use any Memory Managertool call. However, routines issuing

calls that allocate memory (such as NewHand1e)should reserve the needed memory at

initialization, so that the space will be available during a low-memory condition. For

example, if you want your out-of-memory routine to save someuser data to disk before
purging a memory block, your application should reserve enough memory forthefile open
before installing the routine. When the routine gains control, it can then free the reserved

memory,issue the file system calls, and purge the unneeded application memory without
creating a recursive low-memory condition. See the code example (shownin “Out-of-
Memory Routine Example”later in this chapter) for sample application and out-of-
memory routine code.

Chapter 36 Memory Manager Update 363

An out-of-memory routine must be preceded by a header formatted as shownin
Figure 36-1.

a Figure 36-1 Out-of-memory routine header

S00 4
— Reserved —| Long—Usedbysystem aslink to next queue item

$04 version — Word—Mustbe set to 0

$06 signature — Word—Headersignature,to ensure integrity—set to SA55A

version Allows the system to discriminate between current and future types of

out-of-memory routines. Must beset to 0.

signature Used bythe system to ensurethat the headeris well formed. The value
of this field must be $A55A.

The out-of-memory routine code must immediately follow the signature word.If the
Memory Managerfinds an invalid header for any out-of-memory routine,it terminates
with a system death error code of $0209.

Whenthe out-of-memory routine gets control, the Memory Managerwill have formatted
the input stack as follows:

Previous contents

- Space

— bytesNeeded

stage

- RTLAddr

Long—Spaceforresult

Long—Numberof bytes the Memory Manager needs

Word—Flag word indicating stage of low-memory condition

3 bytes—Return address

<—SP

36-4 Apple IIGs Toolbox Reference, Volume 3

stage Indicates the stage of the low-memory condition. This flag allows the
routine to determine whetherthis is the first or second invocation for

this condition. If the field is set to 0, then this is the first invocation,

and the Memory Managerhas not done anythingelse.If the field is set

to 1, then this is the second invocation for this low-memory
condition, and the Memory Managerreports an out-of-memory

condition to the calling application if it cannot find enough memory

to satisfy the request.

The out-of-memory routine muststrip off the input parameters and return the numberof

bytes freed in the space provided. On exit, therefore, the routine should format the stack
as follows:

Previous contents

— amountFreed - Long—Numberof bytes of memory freed by routine

- RTLAddr— - 3 bytes—Return address

<—SP

Chapter 36 Memory Manager Update 36-5

Out-of-memory routine example

The following code example has two parts: the first shows how yourapplication can install
a routine in the out-of-memory queue; the second is a sample out-of-memory routine.
°
a

e
e

e
e

first allocate a handle with enough memory for our low-memory exit

this example will use a 16k handle

pha

pha

PushLong #$4000

PushWord MyID

PushWord #0

PushLong #0

_NewHandle

PullLong ResvHand

PushLong #MyOOMRtn

_AddToOOMQueue

Stz OOMFlag

m
e

™
e

w
e

m
e

’

ce

room for result

size of handle

my applications ID

no bits set, unlocked and movable

address (not used)

and pull off the reserve handle

address of the OOM header

zero our low-memory indicator

Note that this application maintains the OOMF 1aqfield in its global storage area.

36-6 AppleIIGs Toolbox Reference, Volume 3

The following is the actual out-of-memory queue entry. It has been written for the MPW™

Apple IIGs assembler.
e
tf

This is the OOMQueue header for our routine.

MyOOMRtn

e
a

e
’

es

Record

dc.L 0 ; used by queue manager

dc.wW 0 ; OOMEntry version

dc.W SA5S5A 7; queue entry signature

EndR

Now for my out-of-memory routine.

MyOOM

e
e

o

°
c

o

First set

RTLAdr

Stage

BytesNeeded

Result

°
oe

°
a’

m
e

s
e

~
e

=
e

w
e

™
e

w
e

w
e

=
e

™
~
e

Before we

proc

up the equates for the stack frame passed to us by the

memory mgr.

equ 1 7; return address we will go back to

equ RTLAdr+3 ; indicates when called

equ Staget2 ; number of bytes the mem mgr needs

equ BytesNeeded+4 return number of bytes freed=
e

start we should zero out the result.

lda #0

sta Result,s ; zero the result on the stack

sta Result+t+2,s

Since this routine can be called before and after purging data

we want to wait till the memory manager has purged everything it can

before we panic. So the first thing we do is test the stage.

lda Stage,s 7; get the passed stage

beq OOMEnd ; if 0 then don't free anything

Now that we know that the memory manager has tried everything else,

we test to see if we have done this before by testing

the OOMFlag.

lda >OOMFlag 7; must use long address DB=unknown

bne OOMEnd ; if nonzero then memory already free

Chapter 36 Memory Manager Update 36-7

m
e

; Since we know that we have not freed the reserve memory yet,

we will do so now and set the flag.=
e

m
e

PushLong >ResvHand ; handle to our reserve space

_DisposeHandle z and dispose of it

lda #SFFFF 7; now set our flag to true

sta >OOMFlag ; so that the event loop knows low mem

lda #$4000 ; and signal the memory manager how

Sta Result,s ; Much mem we freed

Now return to the memory manager first adjusting the stack to remove

he(
t

s
e

S
e

=
e passed params.

OOMEnd

LongA Off 7; turn on 8-bit accumulator

SEP #$20

pla ; load the return address for safe

ply ; keeping for a sec

plx ; now pull off 6 bytes of parameters

plx

plx

phy ; put the return addr back

pha

LongA On * turn on 16-bit accumulator

REP #$20

RTL 7 and return

36-8 Apple IIGs Toolbox Reference, Volume 3

New Memory Managercalls

The new Memory Managercall RealFreeMemis designed to provide accurate

information about available memory. Other new Memory Managercalls support the out-
of-memory queue.

AddToOOMQueue $0C02

Adds the specified out-of-memory routine to the head of the out-of-memory queue. The
input routine pointer should contain the address of the routine headerblock.

Parameters

Stack before call

Previous contents

- headerPtr - Long—Pointer to out-of-memory routine

<—SP
Stack after call

| Previous contents |

| | <—SP

Errors $0381 invalidTag Correct signature value not found

in header.

C extern pascal void AddToOOMQueue (headerPtr);

Pointer headerPtr;

Chapter 36 Memory Manager Update 369

RealFreeMem $2F02

Returms the numberof bytes in memory that are free, plus the numberthat could be made

free by purging. The FreeMem routine returns only the numberof bytes that are actually

free, ignoring memory that is occupied by unlocked purgeable blocks. Since unlocked
blocks of allocated memory can be freed by purging, FreeMem doesnot provide an

accurate picture of the memory thatis actually available. RealF reeMem provides a more

accurate value.

Parameters

Stack before call

Previous contents

- Space - Long—Spaceforresult

<—SP
Stack after call

Previous contents

- freeBytes —- Long—Numberofavailable bytes in memory

<—SP

Errors None

C extern pascal Long RealFreeMem() ;

36-10 Apple IIGs Toolbox Reference, Volume 3

RemoveFromOOMQueue S$0D02

Removesthe specified out-of-memory routine from the queue as described earlier (see
“Out-of-Memory Queue”earlier in this chapter). The headerPtr parameter should contain

the address of the routine header block.

Parameters

Stack before call

Previous contents

- headerPtr - Long—Pointer to out-of-memory routine

 <—SP
Stack after call

| Previous contents|

| | <—SP

Errors $0381 §invalidTag Correct signature value not found
in header.

$0380 notInList Specified routine not found in
queue.

C extern pascal void RemoveFromOOMQueue (headerPtr) ;

Pointer headerPtr;

Chapter 36 Memory Manager Update 36-11

Chapter 37 Menu Manager Update

This chapter documents new features of the Menu Manager. The
complete reference to the Menu Manageris in Volume 1, Chapter 13 of
the Apple Iics Toolbox Reference.

37-1

Error corrections

This section documents errors in Chapter 13, “Menu Manager,” in Volume 1 of the Toolbox

Reference.

Part of the description of the Set SysBartoolcall (pages 13-3 and 13-86) in Volume 1
of the Toolbox Referenceis incorrect. It includes the mistaken statementthat, after an

application issues this call, the new system menu bar becomesthe current menubar. In

reality, your application must issue the SetMenuBartoolcall to make the new menu

bar the current menubar.

In the definition of the menu bar record (pages 13-17 and 13-18), Volume 1 of the
Toolbox Reference showsthatbits 0-5 of the ct 1F1lagfield are usedto indicate the
starting position ofthe first title in the menu bar. This is incorrect. The ct LHilite
field defines the starting position of the first title. Note further that the entire
ctlHilitefield is used in this manner. The documented purpose of the ct LHilite

field (numberof highlightedtitles) is not supported by the menu barrecord.

The descriptions for the MenuKey and MenuSelecttool calls are incorrect. Thecalls

do notreturn selection status information in the when field of the event record.

Rather, these calls both return selection status information in the TaskData field of

the task record.

Clarifications

The following items provide additional information aboutfeatures previously described
in Volume 1 of the Toolbox Reference.

The SetBarColorstoolcall changes the colortable for all menu bars in a window.If

you wantto use separate color tables for different menu bars, your application must
build a menu barcolortable and modify the ct 1color field of the appropriate

control record to point to this custom colortable. See “SetBarColor” in Chapter 13,

“Menu Manager,” in Volume 1 of the Toolbox Reference for the format and contentsofa
menubarcolortable.

The description of the InsertMenutoolcall should also note that your application
must call FixMenuBarbeforecalling DrawMenuBarto display the modified menubar.

The description of the InitPalettetoolcall in the Toolbox Reference should also
note that the call changes colortables 1 through 6 to correspondto the colors needed
for drawing the Apple logoin its standard colors.

37-2 Apple IIGs Toolbox Reference, Volume 3

a The CalcMenuSizecall uses the newWidth and newHeight parameters to compute
the size of a menu. These parameters may contain the width and height of the menu or
maycontain the values $0000 or $FFFF. A value of $0000 tells calcMenuSize to
calculate the parameter automatically. A value of $FFFFtells it to calculate the

parameteronlyif the currentsetting is 0.

Theseare the effects of all three uses:

o Pass the new value. The value passed determines thesize of the resulting menu.
Use this method when you need a menuofa specific size.

o Pass $0000. Thesize value is automatically computed. This option is useful if

commands are addedordeleted, resulting in an incorrect size. The height and
width of the menu can be automatically adjusted by calling calcMenuSize with

newWidth and newHeight equal to $0000.

o Pass $FFFF. The width and height of a menu are 0 whenit is created.

FixMenuBarCalls CalcMenuSize with newWidth and newHeight equal to $FFFF
to calculate the sizes of those menus with heights and widths of0.

= To provide the user with a consistent visual interface, you should always pad your

menutitles with leading andtrailing space characters. The Apple IIGS Finder™ uses two
spaces.

Chapter 37 Menu Manager Update 37.3

New features of the Menu Manager

This section lists several new features of the Menu Managerandclarifies some information
given previously.

Menusin windowscan now display the Apple character (ASCII $14), although notas a
multicolored image.

Thecolor of the menu outline is now also used forlines separating commands.

The NewMenuBarCall automatically sets bit 31 of the ct LOwner field in the menu bar

record to 1, if the designated menu bar is a window menubar (the value passedfor the
windowis not 0).

The default position of the first menutitle in a menu bar is 10 pixels from the left edge
of the screen in 640 mode; in 320 mode thetitle is indented 5 pixels.

The Menu Manager’s justification procedures adjust menu bars in windows. Menutitles

are movedtothe left if they would otherwise appearto the right of the right edge of

the menubar.

The default menu barhasthe following coordinates: top = 0; left = 0; height = 13;
width = the width of the screen.

MenuShutDown doesnotreturn an errorif the Menu Managerhasalready been

shut down.

Your application can now create empty menus. To create an empty menu,setthefirst
byte in the first menuline item to either NULL ($00) or Return ($0D), signifying the end
of the menu definition. Here’s an example:

dc.b 'S$$ Empty Menu \N1',$00 ; menu title and ID

dc.b $00 ; first character in first

; item to null (or return)

; indicates end of menu def

Or, using a menu template:

EmptyMenu

dc.W 0 ; version

dc.w 1 ; menu id

dc.W 0 ; menu flag

dc.L Title ; menu title

dc.L $00000000 ; indicates end of item list

Title str ‘Empty Menu'

374 Apple IIcs Toolbox Reference, Volume 3

m The Menu Manager nowcorrectly supports outline and shadowtext styles. As a result,
the existing Toolbox Reference description of the SetMItemSty1etoolcall and the
menu text style word defined in that description are now correct.

In addition, the Menu Manager now supports two newspecial characters for menu

definition:

O Outline the text
S Shadow thetext

Otherspecial characters are listed on page 13-14 of Volume 1 of the Toolbox Reference.
Note that this feature requires the QuickDraw II Auxiliary Tool Set.

= Menus nowscroll up or downif their contents do notfit on the screen. Scrollable menus
have an arrow at the top and/or bottom,indicating in which directions the menuis

scrollable. See Figure 37-1.

The arrowindicatoris not highlighted, but the menu contents scroll when the user drags

onto the arrow indicator. When the previously hidden contents are displayed, the

indicator disappears.

Menusscroll at two speeds, depending on what part of the indicator is dragged.If the
user drags within thefirst five pixels of an indicator, scrolling occurs at slow speed.
Dragging anywhere beyondthis point results in fast scrolling.

a Figure 37-1 Scrolling menus with indicator at bottom

2400

4800

9600

a

@ Note: If your application defines menus within a movable window,dragging that
window close to the bottom of the screen may force some of the menusto be

scrollable. If there is not enough room forthree visible items (up and downindicators
and one menuitem), then the menu dropsbelowthevisible screenarea.

Chapter 37 Menu Manager Update 37-5

= The menurecord has beenslightly modified. The first Item and numOf Items byte

fields have been combined into a single word field, numofItems,at offset $0C into
the record. This field specifies the numberof items in the menu.

a Bit 8 ofthe flagfield in the menu record is now defined as the alwaysCallmChoose
flag. Whenthis flag is set to 1, the Menu Managercalls the mchoose routine in the

defProc for a custom menu even whenthe pointer is not in the menu rectangle. This
feature supports tear-off menus.

a Keyboard equivalents and check marks now appearin plain text regardless ofthe style
of the associated menu item.

a The Menu Managercan now handle large fonts in menus.

= The Menu Manager GetMenuTitle and GetMItemtool calls can now return pointers,
handles, or resource IDs, depending on how the menudata wasoriginally specified to

the NewMenutoolcall. The type of reference you use when you specify data for the

Menu Manager governs how thatdatais later accessed.

Menu caching

The current version of the Menu Managerintroduces new menucaching features. Menu
caching provides faster display of menus undercertain circumstances. When a menuis
drawn onthe screen, the area ofthe screen that it covers.is copied into a buffer. When the

menu disappears from the screen, the contents of the saved buffer are copied back to the
screen.

With the menu caching feature, when a saved screen image is copied back to the screen,
the menu that disappears from the screen is copied into the buffer. In other words, the
Menu Manager swaps the menu image with the screen image. Therefore, the next time that

menuis pulled down, the Menu Managercan copyit from the buffer instead of drawing a
new image.

If the menu image changes—for example, if a commandis disabled or the items on the
menu change—thenthe cached image is inaccurate, and the Menu Manager must redraw

the menu. When a menu image does not change, however, the menu bar can respondto the

user more quickly.

Menucaching should not increase memory requirements, because menu images are
purgeable whennot displayed on the screen.

374 Apple IIGs Toolbox Reference, Volume 3

This menu caching scheme should work properly withall existing standard menus. You will

have to alter custom menus, however, so that they can take advantage of menu caching.

Custom menuswill still function normally as long as they do not change the menu record

directly, but they will not be able to take advantage of the menu caching scheme to speed

display.

Because caching does not work with menus in windows, the InsertMenucall
automatically disables caching for such menus.

Caching with custom menus

Bit 3 of the menuF1lagfield in a menu record indicates whetherthe definition procedure

of a menu knows aboutcaching. A value of 1 indicates that the menu in questionis

cacheable. A custom menuthat uses caching must define a menu record that sets this flag
andallocates an extra field, a handle to the cache in which the menu imagewill be stored,
as shownin Figure 37-2.

= Figure 37-2 Menu record layout for cached menu

S00 menuID — Word—Menu's ID number

$02 + menuWidth — Word—Width of menu

S04+- menueight —| Word—Height of menu

$06 - | _
z= menuProc — Long—Pointer to menudefinition procedure

SOA menuFlag Byte—Flags(bit 3 set to 1 for cached menus)
SOB menuRes Byte—Reserved

SOC} numofitems — Word—Numberof menuitems

SOE |} titleWidth + Word—Width oftitle

$10 - -
Lo titleName - Long—Pointerto title string of menu

$14 ~
LW menuCache — Long—Handle to cache for menu image

Chapter 37 Menu Manager Update 37-7

Pop-up menus

The Menu Managernow supports pop-up menus. Pop-up menusexist in a window,not in

the menubar. Figure 37-3 shows a window with pop-up menus. The screen representation

of a pop-up menuis a box with a drop shadowthat is one pixel thick. When the user clicks

inside the pop-up box, the menu appears, with the current value highlighted underthe

arrow, as shownin Figure 37-4. If the menuhasa title, thetitle is highlighted wheneverthe

menuis visible.

Pop-up menusworkin the same wayas other menus: the user can movethe pointerin the

menu, select an item by positioning the pointer overit and clicking, or not select any item
by dragging the pointer outside the menu. Pop-up menus support scrolling,if it is needed

to view all the menu items. Pop-up menusare usefulfor setting values or choosing from
lists of related values.

Pop-up menussupport most of the standard features and calls available with standard

menus:

= Pop-up menuitems support keystroke equivalents, which are displayed in the menu
(Apple logo with character). Note that if a pop-up keystroke equivalentconflicts with
a standard menu equivalent, the pop-up menu maynotreceive the keystroke.
TaskMaster passes the keystroke to the system first, unless the tmcont rolKeyflag in
the wmTaskMaskfield of the task record is set to 0 (do not pass keys to controls in

the active window).

a Pop-up menu items can be dimmedto indicate that they are disabled and cannot be
chosen.

= Eachitem in a pop-up menu canhaveits owntext style.

37-8 Apple IIGS Toolbox Reference, Volume 3

= Figure 37-3 Window with pop-up menus

Pop-uptitle Pop-up box/
\

aT L

XY Modem setup... J

Baud rate:| 300

Bits per character:| ¢ |

Stop bits:| 1 |

Parity:| Even

Chapter 37. Menu Manager Update 37-9

a Figure 37-4 Dragging through a pop-up menu

Pop-up item

Inverted /

pop-uptitle

 Baud Fate

Pop-up menuscrolling options

There are two types of pop-up menus, which are distinguished by their support for
scrolling: type 1 pop-up menus andtype 2 pop-up menus.

The Menu Managerdeterminesthesize of the rectangle in which to draw a type 1 pop-up
menu accordingto therelative position of the current item in the menu and the window

constraints of the pop-up menu(see Figure 37-5). The Menu Manager draws the pop-up

menu with the current item highlighted and positioned adjacent to the menutitle. The

menu extends up and downonlyasfar as is necessary to display the remaining itemsin

each direction, and indicators as appropriate, within the boundary rectangle for the

window.Therefore, with type 1 pop-up menus,it is possible to obtain a display such as

that shownin Figure 37-5, in whichthe usercan display only a single item.

37-10 Apple IIGs Toolbox Reference, Volume 3

= Figure 37-5 Type 1 pop-up menu

Baud rate:

Bits per character:| ? |

Stop bits:[| 1 |

Parity:| Even

When the Menu Managerneeds-to makea type 2 pop-up menuscrollable, it creates a menu

that is long enoughto receive all the menu items, within the boundsofthe screen.In this
manner,the user never sees a menu with too few item lines to be useful. Figure 37-6 shows

how the Baud Rate pop-up menufrom Figure 37-5 would appearif it had been defined as a

type 2 pop-up menu.

Chapter 37. Menu Manager Update 37-11

= Figure 37-6 Type 2 pop-up menu

a, | ON

Baud tate@ 9000 Baud rate: Beit

9600

By dragging overthe scroll indicator, the user can eventually scroll into view all menu items

that will fit on the screen, regardless of the menu’s proximity to the top or bottom of

screen. :

How to use pop-up menus

Your application can define pop-up menusin two ways, as controls or menus.

If your application defines its pop-up menusas controls, using the NewCont ro12 Control
Managertoolcall, then drawing, updating, resizing, and trackingare all handled by
TaskMaster and TrackCont rol automatically. TaskMaster also deals with any

keystroke equivalents you have defined. See Chapter 28, “Control Manager Update,” for
details on how to create a pop-up control template and invoke NewControl2.

By contrast, if your application defines its pop-up menus as menus,it gains flexibility but
has more responsibility. Your application must draw the pop-up box andtitle, highlight
the title, recognize mouse-downevents in the pop-up boxortitle, and change the current
entry in responseto user choices. Your application must also deal with keystroke

equivalents. Once your program detects a mouse-downeventinside the pop-up box or
title, it must call PopUpMenuSelectto display the menu and track the mouse.Thiscall
returns the item ID ofthe selected item (0 if noneis selected). Your program can use this

item ID to determine which item was selected. Your program mustpassthis item ID to
PopUpMenuSelectthe next timethe userclicks in the pop-up menu.

37-12 Apple IIGs Toolbox Reference, Volume 3

@ Note: When you create a pop-up control with NewCont ro12, calling setmItem,

SetMItem2, SetMItemName, SetMItemName2, SetMItemStyle,

SetMenuTitle, or SetMenuTit1le2 does not change the appearance of the pop-up

menu until it is redrawn. If your application changes the pop-uptitle, the system does

not change the control rectangle to account for a length change. Toresize the control
rectangle, your program mustdispose of the existing control and create a new one
with NewControl2.

Table 37-1 lists the Menu Managerroutines that work with pop-up menus. Referto the call

descriptions in either the Toolbox Referenceor in this chapterfor details on eachcall.

= Table 37-1 Menu Managercalls that work with pop-up menus

CalcMenuSize

CheckMItem

CountMItems

DeleteMItem

DisableMItem

EnableMItem

GetMenuFlag

GetMenuTitle

GetMHandle

GetMItem

GetMItemFlag

GetMItemMark

GetMItemStyle

GetMTitleWidth

InsertMIitem

SetMenuBar

SetMenuFlag

SetMenuID

SetMenuTitle

SetMenuTitle2

SetMItem

SetMItem2

SetMItemBlink

SetMItemFlag

SetMItemMark

SetMItemName

SetMItemName2

SetMItemStyle

SetMTitleWidth

Chapter 37 Menu Manager Update 37-13

Each ofthe routines listed in Table 37-1 operates on the current menubar. If your

application defines its pop-up menus using NewCont ro12, then it must make the pop-up

menuthe current menubyissuing the SetMenuBar call and specifying the control handle
for the pop-up menuasinput.

If your application uses PopUpMenuSelectrather than NewCont rol2, thenit must

insert the pop-up menuinto the current menubarbycalling InsertMenu,issue the

desired Menu Managertoolcalls, then remove the pop-up menu from the menubar by

calling DeleteMenu. Your program passes the handle to the pop-up menuto each of
these routines.

37-14 Apple IIGS Toolbox Reference, Volume 3

New Menu Manager data structures

The new Menu Managercalls allow you to define menus using templates, analogousto the
templates used by the NewCont rol2 Control Managertoolcall. These templates can be
stored in fixed memory,in allocated memory referenced by handle, or in resources. When
using any of these new calls, your program mustspecify the input data with the

appropriate templates. The type of reference you use when you specify data for the Menu
Manager governs howthatdata is later accessed. For example,if you originally specify the
title for a menu with a handle, then anytime the system returns a reference to that menu

title, the reference is a handle; similarly, your application must alwaysrefer to thattitle

with a handle.

@ Note: Any strings referenced in these data structure descriptions are Pascal strings.

Note as well thatall flag bit definitions are backward compatible. That is, no existing
bits have been redefined. In addition, the menuF lagfield is now defined as a word

rather than a byte. The byte following the old menuF1ag byte, menuRes,was never
used and has been collapsed into menuFlag.

Menu item template

Figure 37-7 showsthe template that defines the characteristics of a menu item. Use it with
new Menu Managercalls that require menu item templates.

e Figure 37-7 MenuItemTemplatelayout

$00 version | Word—Version numberfor template; must be set to 0

S02 itemID | Word—Menuitem ID

S04 itemChar Byte—Primary keystroke equivalent character
S05 itemAltChar Byte—Alternate keystroke equivalent character
S06 itemCheck _| Word—Character code for checked items

$08 itemFlag _| Word—Menuitemflag word

SOA [- = seo pt ;
— itemTitleRef Long—Referenceto item title string

version Identifies the version of the menu item template. The Menu Manager
uses this field to distinguish between different revisions of the menu
item template. Must be set to 0.

Chapter 37 Menu Manager Update 37-15

itemID Uniqueidentifier for the menu item. See Chapter 13, “Menu Manager,”
in Volume1 of the Toolbox Reference for information on valid values

for itemID.

itemChar, itemAltChar

Thesefields define the keystroke equivalents for the menu item. The

user can select the menu item by pressing the Commandkeyalong with

the key corresponding to oneof these fields. Typically, these fields

contain the uppercase and lowercase ASCII codes for a particular

character. If you have only a single key equivalence,set both fields

with that value.

itemCheck Defines the character to be displayed nextto the item whenit is
checked.

itemFlag Bit flags controlling the display attributes of the menu item. Valid
values for itemFlag are

titleRefType bits 15-14 Defines the type ofreference in itemTitleRef.

00 = Reference is by pointer

01 = Referenceis by handle

10 = Reference is by resource ID

11 = Invalid value

Reserved bit 13 Mustbesetto 0.

shadow bit 12 Indicates item shadowing.

0 = No shadow

1 = Shadow
outline bit 11 Indicates item outlining.

0 = Notoutlined
1 = Outlined

Reserved bits 10-8 Mustbesetto 0.

disabled bit 7 Enables or disables the menu item.

0 = Item enabled

= Item disabled

divider bit 6 Controls drawing divider below item.

0 = No divider bar
1 = Divider bar

XOR bit 5 Controls how highlighting is performed.

0 = Do not use XORto highlightitem
1 = Use XORto highlight item

Reserved bits 4-3 Mustbesetto 0.

underline bit 2 Controls item underlining.

0 = Do not underline item
1 = Underline item

37-16 Apple IIGs Toolbox Reference, Volume3

italic bit 1 Indicates whether item is italicized.

0 = Notitalicized

1 = Italicized

bold bit 0 Indicates whether item is in boldface.
0 = Not bold

1 = Bold

itemTitleRef Referenceto thetitle string of the menu item. The tit leRefType

bits in itemFlag indicate whether itemTitleRef contains a

pointer, a handle,or a resource ID. If itemTitleRefis a pointer,
then thetitle string must be a Pascal string. Otherwise, the Menu
Managercanretrieve the string length from control information in the
handle.

Chapter 37 Menu Manager Update 37-17

Menu template

Figure 37-8 shows the menu template, which defines the characteristics of a menu,

including its menu item references. Use it with new Menu Managercalls that require menu

templates.

es Figure 37-8 MenuTemplatelayout

$00 version Word—Version numberfor template; must be set to 0

$02 [L menuID _| Word—MenuID

S04 [nenuFlag _| Word—Menuflag word

S06 + -
—- menuTitleRef — Long—Reference to menutitle string

SOA : itemRefArray - nlongs—References to menuitems
l J

version Identifies the version of the menu template. The Menu Manageruses

this field to distinguish between different revisions of the template.
Mustbesetto 0.

menuID Unique identifier for the menu. See Chapter 13, “Menu Manager,” in
Volume1 of the Toolbox Reference for information on valid values for
menulD.

menuFlag Bit flags controlling the display and processing attributes of the menu.
Valid values for menuFlag are

titleRefType bits 15-14 Defines the type of reference in menuTitleRef.

00 = Reference is by pointer

01 = Reference is by handle

10 = Reference is by resource ID

11 = Invalid value

itemRefType bits 13-12 Defines the type of reference in each entry of

itemRefArray(all array entries must be of the same

type).

00 = References are pointers
01 = References are handles

10 = References are resource IDs

11 = Invalid value
Reserved bits 11-9 Mustbeset to 0.

37-18 Apple IIGs Toolbox Reference, Volume 3

alwaysCallmChoose

bit 8

disabled bit 7

Reserved bit 6
XOR bit 5

custom bit 4

allowCache bit 3

Reserved bits 2-0

Causes the Menu Managertocall a custom menu
defProc mchooseroutine even whenthe pointeris
not in the menurectangle (supports tear-off menus).
0 = Do not always call mchooseroutine

1 = Alwayscall mchoose routine

Enables or disables the menu.
0 = Menu enabled
1 = Menudisabled
Mustbesetto 0.
Controls how selection highlighting is performed.

0 = Do not use XORto highlight item
1 = Use XORto highlight item

Indicates whether the menu is custom or standard.
0 = Standard menu
1 = Custom menu

Controls menu caching.
0 = Do not cache menu

1 = Menucaching allowed

Must besetto 0.

menuTitleRef Referenceto thetitle string of the menu. The titleRefTypebits in
menuF lagindicate whether menuTit leRef contains a pointer, a

handle, or a resource ID. If menuTit1leRef is a pointer, thenthetitle
string must be a Pascal string. Otherwise, the Menu Manager can
retrieve the string length from control information in the handle.

itemRefArray Array ofreferencesto the items in the menu. The itemRefTypebits

in menuFlag indicate whetherthe entries in the array are pointers,
handles, or resource IDs. Note thatall array entries must contain the

same reference type. Thelast entry in the array must beset to

$00000000.

Chapter 37 Menu Manager Update 37-19

Menu bar template

Figure 37-9 shows the menu bar template, which defines the characteristics of a menubar,

including its menu references. Use it with new Menu Managercalls that require menu bar
templates.

a Figure 37-9 MenuBarTemplatelayout

S00 | version —| Word—Version numberfor template; mustbe set to 0

$02 ba menuBarFlag —_— Word—Menu bar flag word

S04 : menuRe fArray - on longs—References to menus
l j

version

menuBarFlag

menuRefType

Reserved

menuRefArray

Identifies the version of the menu bar template. The Menu Manager

usesthis field to distinguish between different revisions of the

template. Must besetto 0.

Bit flags controlling the display and processing attributes of the menu

bar. Valid values for menuBarFlag are

bits 15-14 Defines the type of reference in each entry of
menuRefArray(all array entries must be of the same

type).

00 = References are pointers

01 = References are handles

10 = References are resource IDs

11 = Invalid value
bits 13-0 Mustbesetto 0.

Array of references to the menusin the menu bar. The menuRefType

bits in menuBarFlag indicate whethertheentries in the array are
pointers, handles, or resource IDs. Note that all array entries must

contain the same reference type. Thelast entry in the array mustbeset
to $00000000.

37-20 Apple IIGs Toolbox Reference, Volume 3

New Menu Managercalls

The following sections discuss the various new Menu Managertoolcalls in alphabetical
orderbycall name.

GetPopUpDefProc $3BO0F

Returns a pointer to the control definition procedure for pop-up menus. Your application

should notissuethis call.

The system issuesthis call during Control Managerstartup processing to obtain the
address of the pop-up menudefinition procedure.

Parameters

Stack before call

Previous contents

- Space -

Stack after call

Previous contents

Long—Spaceforresult

<—SP

- defProcPtr - Long—Pointer to control procedure

<—SP

Errors None

C extern pascal Pointer GetPopUpDefProc();

Chapter 37. Menu Manager Update 37-21

HideMenuBar $450F

Hides the system menu bar by adding the menubarto the desktop region.This call sets
the invisible flag for the menubar, resets scan lines 2 through 9 (which had been changed

to display the colors of the Apple logo), and refreshes the desktop. The system ignoresall
subsequentcalls to DrawMenuBar Of FlashMenuBar,since the menubaris invisible.

Use the ShowMenuBarCall to make the menubarvisible again.

Parameters

Stack before call

| Previous contents |

| | <—SP

Stack after call

| Previous contents |

| | <—SP

Errors None

C extern pascal void HideMenuBar();

37-22 Apple IIGs Toolbox Reference, Volume 3

InsertMItem2 S$3FOF

Inserts an item into a menuafter a specified menu item or at the top of the menu.Thiscall
accepts a menuitem template asits input specification.

Parameters

Stack before call

Previous contents

refDesc Word—Definestype ofreference in menultemTRef

— menultemTRef — Long—Reference to menuitem template

insertAfter Word—IDofitem after which to insert this item

menuNumber Word—ID of menuinto whichto insert this item

<—SP

Stack after call

| Previous contents |

| | <—SP

Errors

refDesc

insertAfter

None

extern pascal void InsertMItem2 (refDesc,

menuItemTRef, insertAfter, menuNumber) ;

Word refDesc, insertAfter, menuNumber;

Long menulItemTRef;

Indicates the type of reference stored in menuTRef. Valid values are

0 Reference is by pointer
1 ‘Reference is by handle

2 Referenceis by resource ID

Specifies ID of item after which the new item is to be inserted. To

insert the new item at the top of the menu,setthis field to 0. To insert
the new item at the end,set this field to $FFFF.

Chapter 37 Menu Manager Update 37-23

NewMenu2 S$3E0F

Allocates space for a menulist andits items. This call accepts a menu template as its input
specification.

Parameters

Stack beforecall

Previous contents

- Space - Long—Spacefor result

refDesc Word—Definestype of reference in menuTRef

- menuTRef - Long—Reference to menu template

<—SP
Stack after call

Previous contents

- menuHandle - Long—Handle for new menu

<—SP

Errors None

C extern pascal Long NewMenu2 (refDesc, menuTRef) ;

Word refDesc;

Long menuTRef;

refDesc Indicates the type of reference stored in menuTRef. Valid values are

0 Reference is by pointer
1 Reference is by handle
2 Referenceis by resource ID

37-24 Apple Ilcs Toolbox Reference, Volume 3

NewMenuBar2 $430F

Creates a menu bar using a menubar template as its input specification.

The upper-left comerof the default menu bar matchesthe port and is as wide as the
screen. Thebaris 13 pixels high.

Note that passing a NIL value for the windowPtr parameter creates a menu barthat is not
inside a window but does not automatically replace the current menubar. To create a new

system menu bar and makeit current, you must issue the following toolcalls:

NewMenuBar2 ()

SetSysBar /* use menuBarHandle from NewMenuBar2 */

SetMenuBar (NIL)

Parameters

Stack before call

Previous contents

- Space - Long—Spaceforresult

refDesc Word—Defines type of reference in menuBarTRef

— menuBarTRef —- Long—Reference to menu bar template

- windowPtr - Long—Pointer to port for window; NIL for system menu bar

<—SP
Stack after call

Previous contents

— menuBarHandle - Long—Handle for new menu bar

<—SP

Errors None

C extern pascal Long NewMenuBar2(refDesc, menuBarTRef,

windowPtr) ;

Word refDesc;

Long menuBarTRef;

Pointer windowPtr;

Chapter 37 Menu Manager Update 37-25

refDesc Indicates the type of reference stored in menuBarTRef. Valid values are

0 Reference is by pointer
1 Reference is by handle

2 Reference is by resource ID

37-26 Apple IIGs Toolbox Reference, Volume 3

PopUpMenuSelect S$3COF

Drawshighlighted titles and handlesuser interaction when the userclicks on a pop-up menu.

You specify the pop-up menu with the handle returned by NewMenu or NewMenu2.

@ Note: The system draws the pop-up menuinto the port that is active at the time you

issue the PopUpMenuSelectcall. The menuis constrained by the intersection of the

port rectangle, the visible region, and theclip region. By altering any of these, you can

change the constraints on the menu.

Parameters

Stack before call

Previous contents

Space

selection

currentLeft

currentTop

flag

menuHandle

Stack after call

Previous contents

itemID

Word—Spacefor result (item ID)

Word—Item ID of current menuselection

Word—Global coordinate value ofleft edge of pop-up menu

Word—Global coordinate value of top of current selection

Word—Flag wordforcall

Long—Menuhandle

<—SP

Word—Item ID of new selection (0 if none)

<—SP

Chapter 37 Menu Manager Update 37-27

Errors

selection

None

extern pascal Word PopUpMenuSelect (selection,

currentLeft, currentTop, flag,

menuHandle);

Word selection, currentLeft, currentTop, flag;

Long menuHandle;

Defines the current selection in the menu.Setto 0 if no item is
currently selected. The initial value is the default value for the menu,
andit is displayed in the pop-up rectangle of unselected menus. You
specify an item byits ID,thatis, its relative position within the array
of items for the menu.If you pass an invalid item ID, then no item is

displayed in the pop-up rectangle.

currentLeft, currentTop

flag

Reserved

type2

Reserved

menuHandle

Define the left edge of the pop-up menu andthetop ofthe current

selection, in global coordinates.

Flag word forthetoolcall. Bits are defined as follows:

bits 15-7 Mustbesetto 0.

bit 6 Indicates whether pop-up menuis type 1 ortype2.

0 = Type 1 menu (no white space added)

1 = Type 2 menu (white space added)
bits 5-0 Mustbesetto 0.

The handle of the pop-up menu. The Menu Managerreturnedthis value
to your application from NewMenu of NewMenu2.

37-28 Apple IIGS Toolbox Reference, Volume 3

SetMenuTitle2 $400F

Specifies the title of a menu. The referenceto thetitle string can be by pointer, handle, or
resource ID.

Parameters

Stack before call

Previous contents

refDesc Word—Defines type of reference in titleRef

~ titleRef - Long—Referenceto title string of menu

menuNum Word—ID of menutoreceivetitle

<—SP
Stack after call

[Previous contents |

| | <—SP

Errors None

C extern pascal void SetMenuTitle2(refDesc, titleRef,

menuNum) ;

Word refDesc, menuNum;

Long menulItemTRef;

refDesc Indicates the type of reference storedin titleRef. Valid values are

0 Reference is by pointer
1 Reference is by handle
2 Referenceis by resource ID

Chapter 37 Menu Manager Update 37-29

SetMItem2 S$410F

Specifies the name of a menuitem. This call accepts a menu item templateasits input

specification.

Parameters

Stack before call

Previous contents

refDesc Word—Defines type of reference in menultemTRef

— menultemTRef — Long—Reference to menu item template

menultemID Word—ID of item to be changed

<—SP
Stack after call

| Previous contents |

—

Errors None

C extern pascal void SetMItem2(refDesc, menuItemTRef,

menuItemID) ;

Word refDesc, menuItemID;

Long menultemtTRef;

refDesc Indicates the type of reference stored in menultemTRef. Valid
values are

0 Reference is by pointer

1 Referenceis by handle

2 Reference is by resource ID

menultemID Specifies the menu item to be changed. Note that you can change the
item ID by specifying a different item number in the menu item

template. The Menu Managerapplies the item ID from the template to
the item to be changed.

37-30 Apple IIGs Toolbox Reference, Volume 3

SetMItemName2 $420F

Specifies the name of a menuitem. The referenceto thetitle string can be bypointer,

handle, or resource ID.

Parameters

Stack before call

Previous contents

refDesc Word—Defines type of reference in titleRef

- titleRef - Long—Reference to menuitem title

menultemID Word—ID ofitem to be changed

<—SP
Stack after call

| Previous contents |

| | <—SP

Errors None

C extern pascal void SetMItemName2 (refDesc, titleRef,

menulItemID);

Word refDesc, menuNum;

Long titleRef;

refDesc Indicates the type of reference stored in titleRef. Valid values are

0 Reference is by pointer

1 Reference is by handle

2 Reference is by resource ID

Chapter 37 Menu Manager Update 37-31

ShowMenuBar $460F

Reveals the system menu barby subtracting the menu bar from the desktop region. This

call also resets the invisible flag for the menubar, resets scan lines 2 through 9 (to

display the colors of the Apple logo), and draws the menu. Use the HideMenuBarcall to

make the menubarinvisible.

Parameters

Stack before call

| Previous contents |

| <—SP

Stack after call

| Previous contents |

| | <—SP

Errors None

C extern pascal void ShowMenuBar() ;

37-32 Apple IIGs Toolbox Reference, Volume 3

Chapter 38 MIDI ToolSet

This chapter documents the MIDI ToolSet. This is a new toolset; it was
not documented in the Apple Ics Toolbox Reference.

38-1

About the MIDI Tool Set

The Apple IIGS MIDI Tool Set provides a software interface between the Apple IIGs and
external synthesizers and other musical equipmentthat accepts the Musical Instrument
Digital Interface (MIDI) protocol. The MIDI Tool Set has the following key attributes:

Hardware independence

The MIDI ToolSet is hardware-independent.It uses a separately loaded device driver
to communicate with the hardware interface that connects the Apple IIGS to an

extemal MIDI device. This driver-based design frees applications from referencing the
specifics of the MIDI hardware interface. Applications that use the MIDI Tool Set can
therefore run on Apple IIGs systems with different MIDI interfaces.

Interrupt-driven operation

The MIDI ToolSetis interrupt-driven and can transfer MIDI data in the background

while othertasks take place in the foreground. For example,it is possible to write an

application that enables a user to edit MIDI data while simultaneously playing a
sequence. MIDI applications that use the tool set need not provide interrupt handlers

since they are provided by the MIDI ToolSet.

Accurate clock

The MIDI Tool Set provides a high-speed, high-resolution clock. If an application
needs precise timing, it can use the MIDI Tool Set clock to provide time-stamps
accurate to within 76 microseconds. The clock uses one of the Digital Oscillator
Chip (DOC) generators andthefirst 256 bytes of DOC RAM. Whentheclockis notin

use, the MIDI ToolSet releases the DOC generator and RAM.See Chapter 47, “Sound

Tool Set Update,” for more information about the Digital Oscillator Chip.

Fast response

The tool set automatically polls for incoming MIDI data and receives the data without

loss at speeds up to one byte per 320 microseconds—aslong asinterrupts are never

disabled for more than 270 microseconds. If your application must disable interrupts
for longerthan this interval, you can use the MidiInputPol1 vectorto retrieve
incoming data explicitly.

Multiple formats

The tool set supports two input and output formats. When the application retrieves

MIDI data in raw mode,it receives the data bytes exactly as they appearin the input

stream, but with length and time-stamp data added. In packet mode, the MIDI Tool

Set expects to receive MIDI data packets but performs some additional cleanup to
make those packets complete.

38-2 Apple IIGs Toolbox Reference, Volume 3

a Error checks

The MIDI Tool Set provides error-checking and reports a variety of error conditions,

including reception of MIDI packets with an incorrect numberof data bytes.

= Real-time and background commands

The MIDI Tool Set can report real-time commands to an application immediately. This

feature enables the application to process real-time commandsas they occur, for
interactive control of musical instruments.

s Intelligent NoteOff commands

Thetool set’s NoteOff commands can turn off all notes that are playing or only those it

has turned on. They can dothis on all channels or only on specified channels.

s Variable clock frequency

You can changethe time base for MIDI time-stamps, thereby varying the tempo of
played data (see the description of the miSet Freq function of the MidiClocktool
call later in this chapter for more information).

» User-definable service routines

You can enhancethe functionality provided by the MIDI ToolSet by providing your
ownservice routines. The MIDI Tool Setcalls these routines undera variety of

circumstances. See “MIDI Tool Set Service Routines” later in this chapter for more

information.

@ Note: The Note Synthesizer, the Note Sequencer, and the MIDI ToolSet refer to the

software tools provided with the Apple IIGS, not to any separate instrument or
device. The MIDItools are software tools for use in controlling external instruments,
which may be connected through a MIDIinterface device.

The followinglist summarizes the capabilities of the MIDI Tool Set. The toolcalls are
grouped according to function. Later sections of this chapter discuss the tool set in
greater detail and define the precise syntax of the MIDItoolcalls.

Routine Description

Housekeeping routines

MidiBootInit Called only by the Too! Locator—mustnotbe called by
an application

MidiStartUp Initializes the MIDI Tool Set for use by an application

MidiShutDown Informs the MIDI Tool Set that an application is
finished usingits tool calls

Midiversion Returns the MIDI Tool Set version number

Chapter 38 MIDI Tool Set 383

MidiReset

MidiStatus

MIDItool calls

MidiClock

MidiControl

MidiDevice

MidilInfo

MidiReadPacket

MidiWritePacket

Called only when the system is reset—must notbecalled

by an application

Returns the operational status of the MIDI ToolSet

Controls operation of the optional time-stamp clock

Performs 18 MIDI control functions

Selects, loads, and unloads MIDI device drivers

Returns current operational information about the MIDI

Tool Set

Reads MIDI data from the tool set's internal buffers

into a specified memory location

Queues MIDI data for output

384 Apple Ics Toolbox Reference, Volume 3

Using the MIDI Tool Set

This section describes the basic steps involved in using the MIDI ToolSet to interact with

external musical instruments. Following the initial overview discussion are several code

examples demonstrating techniques for performing many key MIDI ToolSet functions.

Figure 38-1 illustrates some ofthe relationships between a typical MIDI application, the
MIDI Tool Set, MIDI device drivers, and the Apple MIDI Interface card.

a Figure 38-1 MIDI application environment

Application

!

;

MidiWritePacket MidiReadPacket

Internal I/O buffers !

v

Output Input

buffering routine buffering routine

j

 "pT|

) MIDI character MIDI character |

| output routine input routine |

[| ____opoooogoneZ
Device driver

MIDI “

interface

aD

0 00 0c0000 oooo000 =—=C—

External MIDI device

Chapter 38 MIDI Tool Set 38-5

Before using the MIDI Tool Set, you mustinstall the tool set and its associated drivers
using the Installer utility.

To use the MIDI ToolSet, you mustfirst start it up with the MidiStartUpcall. Then you

must load a MIDI device driver by using the MidiDevicecall. The toolset loads the
driver separately so that its operation is independent of the particular MIDI interface that
connects the Apple IIGSs to the external MIDI instrument.

MIDI device drivers are normally found in the */SYSTEM/DRIVERSdirectory, and their

names end with the suffix MIDI. Apple currently supplies the APPLE.MIDI and

CARD6850.MIDIdrivers; the first driver supports the Apple MIDIInterface, and the
second supports plug-in 6850-based Asynchronous Communications Interface
Adapter (ACIA) cards.

After the application loads the MIDI devicedriver, it must make the MidiControl call

to allocate input and output buffers for MidiReadPacket and MidiWritePacket

calls. Note that if the application never calls MidiReadPacket, it need notallocate an

inputbuffer, andif it never calls MidiWritePacket, it need notallocate an output
buffer.

The MIDI Tool Set is now ready to send or receive MIDI data. However, the application

must explicitly start the MIDI input and output processes, using the appropriate options

of the MidiControltoolcall.

The application can start or stop MIDI data transfer at any time. Once started, the input
and output processes continue without interruption until stopped by the application.
They run in the backgroundso that other processes, such as interaction with the user, can

run unimpededin the foreground.Thetoolset enables the programmerto switch the

processes on oroff at any time because MIDI data transfer incurs considerable processor

overhead, and a programmer might wantto disable it under some circumstances to
improve the application’s performance on othertasks.

The MIDIinput process fills the MIDI ToolSet’s input buffer with data packets as they

arrive. The application must periodically retrieve the data from the buffer by makingcalls

tO MidiReadPacket. Similarly, the MIDI output process transmits the data placed in

the tool set’s output buffer by the application with calls to MidiWritePacket. The
Apple IIcs can simultaneously send and receive MIDI data packets.

When you use the MidiClockcallto start the MIDI Tool Set’s clock, the tool set begins
stamping each data packet with a time valueit retrieves from its clock process. This

clock is actually a DOC generator that the MIDI Tool Setallocates with the Note
Synthesizer AllocGencall. Start the MIDI clock before starting the input process,
because the MidiClock function disables interrupts long enoughtointerfere with
correct reception of MIDI data.

38-6 —Apple IIGs Toolbox Reference, Volume 3

The clock is very fast; a tick occurs every 76 microseconds atthe default settings. The
tool set marks MIDI data packets with a time-stamp consisting of the value of the clock

whentheyare received. MidiWritePacket receives a packet with a time-stamp
attached and writes it to the output buffer, and the MIDI ToolSet transfers the packet
only whenthe currentvalue of the clock is greater than the output data’s time-stamp.

If the clock is stopped, MIDI input data receive time-stamps equalto the value of the
stopped clock, and only MIDI data with time-stampsless than the value of the stopped
clock can be sent.

If you want to read and write MIDI packets in real time, in response to user events, you do

not need the MIDI clock.

You can start or stop the MIDI clock or the input and output processesat anytime, so

you can budget processor resourcesintelligently. The input, output, and clock processes
consumea great deal of processor time andlimit the processing power available to tasks
that execute during their operation.

Tool dependencies

The MIDI Tool Set uses Note Synthesizer calls to allocate a DOC generatorforits clock.If
your application does not use the MIDI ToolSet clock, you need notstart up the Note
Synthesizer to use the MIDI ToolSet. If your application is not using the MIDI ToolSet

clock or MidiInputPol1,then it can start up and shut down the Note Synthesizer as

needed, but the Note Synthesizer must be started up if you use the MIDI clock or the
MidilInputPoll vector.

The Sound Tool Set must be started before your application can use the MIDI Tool Set.

Refer to Chapter 51, “Tool Locator Update,” for information about the specific version
requirements the MIDI Tool Set has for other toolsets.

MIDI packet format

MIDI data sent and received using the MIDI Tool Set must always be formatted into valid

MIDI Tool Set packets. The tool set handles this for incoming data; your application must
format outgoing data according to the packet layout described in this section.

Chapter 38 MIDI Tool Set 38-7

The first 2 bytes of a packet contain a byte count of the MIDI data in the packet, plus the

4-byte time-stamp. The next 4 bytes are the time-stamp, and they are equalto the value of
the MIDI clock at the time the packet was received. The remaining bytes are the actual
MIDI data.

$00 [° length Word—Packetlength (excluding length)

$02 timestamp - 4 Bytes—MIDItime-stamp
_ |

$06 ! I
MIDIData - Array—MIDIdata (variable length)

L

A NoteOn command mightlook like this (in hexadecimal notation):

0700 24630300 90405C

Thefirst 2 bytes are the length in bytes of the MIDI data packet plus the 4-byte

time-stamp.In this case the MIDI packetis 3 bytes, so the length value is 7. The next 4
bytes contain the time-stamp, and the MIDI data follows.

The result of aMidiReadPacketcall on this packet is 9—the 7 bytes counted in the
length word plus the 2 bytes of the length worditself.

If the current input mode is MIDI packet mode,the first byte of the MIDI data is always a
MIDI status byte. If a received MIDI packet does notcontain a valid status byte, the
MIDI ToolSet inserts the currentstatus at the beginning of the packet. The
MidiReadPacketcall neverreturnsreal-time commands in packet mode;they are always
passed to the real-time commandroutine installed by MidiCont rol.See “MIDI ToolSet
Service Routines” Jater in this chapter for more information.

In raw modethe MIDIdatais returnedto the application just as it is received from the
MIDIinterface. The MIDIprotocol allows MIDI devices to omit the status byte unlessit
has changed fromits last value. The status byte may appear anywherein the stream
because it may be received only whenit changes. MIDI devices may also omit the $F7
value at the end of a MIDI system-exclusive command; the $F7 value always appears at the
end ofa system-exclusive command in packet mode, but not necessarily in raw mode.

In raw mode, the maximum numberof MIDI data bytes that MidiReadPacket passes to
the application is 4. Therefore, the longest packetit can pass is 10 bytes in length—2
length bytes, 4 time-stamp bytes, and 4 MIDI data bytes. In packet mode, system-
exclusive packets may be of anylength.

The MidiReadPacketcall also returns real-time commands in raw mode unless a real-
time vectoris installed. See “MidiControl $0920”later in this chapter for more
information.

38-8 Apple IIGs Toolbox Reference, Volume 3

MIDI Tool Set service routines

Your program can contain service routines that the MIDI Tool Set invokes undercertain
circumstances. By providing these service routines, you can tailor the functionality of the
MIDIToolSetto fit your particular needs. The MIDI Tool Setcalls these routines under
the following circumstances:

Real-time command routine Called when the MIDI Tool Set receives a MIDI real-time

command. Use the miSetRTVec function of the

MidiControltool call to set the vector to this

routine.

Real-time error routine Called when the MIDI Tool Set encounters an error

during real-time processing. Use the miSetErrVec

function of the MidiCont rol toolcall to set the
vector to this routine.

Input data routine Called by the MIDI Tool Set to handle MIDI data
received during processing of an miStartInput
function request. You set the vector to this routine

whenyouissue the miStart Inputfunction ofthe

MidiControltoolcall.

Output data routine Called by the MIDI Tool Set to obtain data to send
during processing of an miStartOutput function
request. You set the vectorto this routine when you

issue the miStartOutput function of the
MidiCont rol toolcall.

The following sections discuss each of these service routines in more detail.

Chapter 38 MIDI Tool Set 38-9

Real-time commandroutine

When the MIDI Tool Set receives MIDI real-time commands,it calls this service routine.
The service routine must not enable interrupts, andif it runs longer than 300 microseconds,

it mustcall the MIDI polling vector at least every 270 microseconds. The only MIDIcalls

that the service routine should make are MidiReadPacket and MidiWritePacket.

Real-time MIDI data is passed to the service routine in the low-order byte of a word on

the stack above the RTL address. This word must remain on the stack. When the service

routineis called, the data bankregister is set to the value it had when MidiStartUp was

called, but the direct-page register points to one of the MIDI ToolSet’s direct pages and

must be preserved.

You set the vectorto this routine with the miSetRTVecfunction of the MidiControl

tool call.

Parameters

Stack before call

Previous contents

MIDIData Word—Low-order byte contains MIDI real-time data

— returnAddress - 3 bytes—RTL address

<—S§P
Stack after call

Previous contents

MIDIData Word—Low-order byte contains MIDI real-time data

— returnAddress - 3 bytes—RTL address

<—SP

38-10 Apple IIGs Toolbox Reference, Volume 3

Real-time error routine

The MIDI ToolSetcalls this routine in the event of a MIDI real-time error. This service

routine must not enable interrupts. If it runs longer than 300 microseconds,it mustcall the

MIDI polling vector at least every 270 microseconds. It can call MidiWritePacket and
MidiReadPacket,but no other MIDI toolcalls.

The error is passedto the service routine in a word on the stack above the RTL address.
This word must remain on the stack. When the service routine is called, the data bank

register is set to the value it had when MidiStartUpwascalled, but the direct-page
register points to one of the MIDI ToolSet’s direct pages and must be preserved. When

the MIDI Tool Set invokes this routine, there is very little space left on the stack.

Use the miSetErrvecfunction of the MidiControl toolcall to set the vector to this

routine.

The service routine may receive the following error codes:

$200A miClockErr MIDI clock wrappedto 0.
$2084 miDevNoConnect No connection to MIDI

interface.

Parameters

Stack before call

Previous contents

MIDIError Word—Error code

- returnAddress —- 3 bytes—RTL address

<—SP
Stack after call

Previous contents

MIDIError Word—Error code

— returnAddress - 3 bytes—RTL address

<—SP

Chapter 38 MIDI ToolSet 38-11

Input data routine

The MIDI ToolSetcalls this routine during processing of the miStart Inputfunction of
the MidiControltool call when the first packet is available in a previously empty input

buffer. The service routine must not enable interrupts, and if it runs longer than 300
microseconds, it must call MidiInputPol]at least every 270 microseconds. The only

MIDIcalls that the service routine should make are MidiReadPacket and

MidiWritePacket.

Whentheservice routine is called, the data bankregister is set to the value it had when
MidiStartUp wascalled, but the direct-page register points to one of the MIDI Tool

Set’s direct pages and must be preserved. The system calls the service routine immediately

if a complete MIDI packetis available in the input buffer when the mistart Input
function of the MidiControltoolcall is made.

You set the vector to this routine when you issue the miStart Input function of the

MidiControl toolcall.

Parameters

Stack before call

Previous contents

— returnAddress - 3 bytes—RTL address

 <—SP

Stack after call

Previous contents

— returnAddress - 3 bytes—RTL address

 <—SP

38-12 Apple IIGS Toolbox Reference, Volume 3

Output data routine

The MIDI ToolSetcalls this routine during processing of the miStartOutput function

of the MidiControltool call when the output buffer becomes completely empty. The

service routine must not enable interrupts, andif it runs longer than 300 microseconds,it

mustcall the MIDI polling vector at least every 270 microseconds. The only MIDIcalls that
the service routine should make are MidiReadPacket and MidiWritePacket.

Whentheservice routineis called, the data bank registeris set to the value it had when

MidiStartUp wascalled, but the direct-page register points to one of the MIDI Tool

Set’s direct pages and mustbe preserved.

You set the vector to this routine when you issue the miStartOutputfunction of the
MidiControltool call.

Parameters

Stack before call

Previous contents

— returnAddress - 3 bytes—RTL address

 <—SP

Stack after call

Previous contents

— returnAddress - 3 bytes—RTL address

<—SP

Chapter 38 MIDI ToolSet 38-13

Starting up the MIDI ToolSet

The MidiStartUpcall takes two arguments: a word containing the Memory Manager ID
numberof the application that is starting up the tools and a word containing the address

of a three-page memory block in bank zero. The three-page block is used as the MIDI
Tool Set’s direct-page area, and it must be aligned on a page boundary.

+
+

+
+

+
FF

HF
F

StartupTools ()

Starts up the MIDI Tool Set and all of the tools it

requires. For readability, this subroutine is presented

without the error-checking that would normally be performed

after each tool is started (call?).

/* direct page use */

#define DPForSound 0x0000

#define DPForMidi 0x0100

#define DPForEventMgr 0x0400

#define TotalDP 0x0500

static word AppID;

void

StartupTools ()

{
static struct {

word NumberOfTools;

word Table[5*2]);

} ToolTable = {

Sy
1, 0x0101,

2, 0Ox0101,

8, miSTVer,

25, miNSVer,

miToolNum, 0x0000

he

MiDriverInfo DriverInfo;

MiBufInfo InBufInfo, OutBufInfo;

handle ZeroPageHandle;

ptr ZeroPagePtr;

38-14 Apple IIGs Toolbox Reference, Volume 3

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

needs 1 */

needs 3 */

needs 1 */

total direct page use */

Apps Memory Manager ID */

number of tools in list */

Tool Locator */

Memory Manager */

Sound Tools */

Note Synthesizer */

Midi Tool Set */

device driver info */

I/O buffer information */

TLStartUp(); /* Tool Locator startup */

AppID = MMStartUp(); /* Memory Manager startup */

/* allocate direct pages for tools */

ZeroPageHandle = NewHandle((long) TotalDP,

(word) AppID,

(word) attrBank | attrPage | attrFixed

|} attrLocked,

(long) 0);

ZeroPagePtr = *ZeroPageHandle;

EMStartUp ((word) (ZeroPagePtr + DPForEventMgr), (word) 0,

(word) 0,

(word) 640,

(word) 0,

(word) 200,

(word) AppID);

LoadTools (&ToolTable) ; /* load RAM-based tools */

SoundStartUp((word) (ZeroPagePtr + DPForSound));

NSStartUp(0, OL);

MidiStartUp(AppID, (word) (ZeroPagePtr + DPForMidi));

/* load device driver */

DriverInfo.slot = 2; /* use the modem port */

DriverInfo.external = 0; /* internal slot */

strcpy (DriverInfo.file, "\p*/system/drivers/apple.midi") ;

MidiDevice (miLoadDrvr, &DriverInfo) ;

/* allocate input and output buffers */

InBufInfo.bufSize = 0; /* default size */

InBufInfo.address 0; /* MIDI Tool Set will

allocate the buffer and

set its actual address */

MidiControl (miSetInBuf, &InBufInfo) ;

OutBufInfo.bufSize = 0; /* default size */

OutBufInfo.address = 0; /* MIDI Tool Set will

allocate the buffer and

set its actual address */

MidiControl (miSetOutBuf, &OutBufInfo);

/* end of StartupTools() */

Chapter 38 MIDI Tool Set 38-15

Reading time-stamped MIDI data

This example shows a simple method of recording time-stamped MIDIdata asit is

received. The example records incoming data until any key is pressed or until the MIDI

Tool Set’s internal data buffer is full, whichever comesfirst. The routine’s data buffer

should not be confused with the MIDI Tool Set’s input buffer, which you allocate for MIDI
data by using the MidiControlicall.

RecordMIDI ()

global buffer "AppMIDIBuffer" until the buffer is

*

*

* Record incoming MIDI data with time-stamps into the

*

* full or the user presses the mouse button.

#define BufSize (20 * 1024)

char SeqBuffer [(BufSize]);

int BufIndex = 0;

void

RecordMIDI ()

{

int PacketSize;

MidiControl(miFlushInput, OL);

MidiClock (miSetFreq, OL);

MidiClock (miSetClock, OL);

MidiClock (miStartClock, OL);

MidiControl (miSet InMode,

(long) miPacketMode);

MidiControl (miStartInput, OL);

38-16 Apple Ics Toolbox Reference, Volume3

/*

/*

/*

/*

/*

/*

/*

size of packet read */

discard contents

of input buffer */

set clock to

default frequency */

clear the clock */

Start the clock */

set MIDI input mode */

start MIDI input */

BufIndex = 0;

while (Button(0) == 0) /* until presses mouse */

{

PacketSize = MidiReadPacket (SeqBuffer+BufIndex,

BufSize-BufIndex);

if (_toolErr)

{
if (_toolErr == miArrayErr)

{
break; /* our buffer is full */

printf ("MIDI error $%4.4X\n",_toolErr);

BufIndex += PacketSize;

/* stop recording */

MidiControl(miStopInput, OL); /* stop MIDI input */

MidiClock (miStopClock, OL); /* stop the clock */

/* show user recording statistics */

printf("Bytes recorded: %d\n",BufIndex);

printf ("Maximum bytes buffered: %1ld\n",

MidilInfo (miMaxInChars));

/* end of RecordMIDI() */

Chapter 38 MIDI Tool Set 38-17

This example is a simple subroutine that continuously plays previously recorded time-stamped MIDI

data until the user presses any key:

void

+
+

£+
&£
&

*/

PlayMIDI ()

This routine repeatedly plays the MIDI data that was

previously recorded and stored into the global buffer

"SeqBuffer" until the user presses the mouse button.

PlayMIDI()

{
long FirstTime;

int PlayIndex;

if (BufIndex == 0)

{

printf("You must record or load MIDI data first\n");

return;

/* find the first time-stamp in the sequence and subtract

a little */

FirstTime = *((long *) (SeqBuffert2));

if (FirstTime > 0x200)

FirstTime -= 0x200;

else

FirstTime = 0;

MidiControl (miFlushOutput, (long) (OxFFFF << 16));

/* empty output buffer */

MidiClock (miSetClock,FirstTime); /* set clock before

first time-stamp*/

MidiClock (miStartClock, OL) ; /* start clock */

MidiControl (miSetOutMode, (long)miPacketMode);

/* set output mode */

MidiControl (miStartOutput, OL) ; /* start output */

PlayIndex = 0;

38-18 Apple IiGs Toolbox Reference, Volume 3

/* Repeatedly play song */

while (Button(0) == 0)

{

/* until presses mouse */

PlayIndex += MidiWritePacket (SeqBuffer + PlayIndex);

/* write next packet */

if (PlayIndex == BufIndex) /* time to repeat? */

{

== 0 && MidiInfo(miOutputChars))while (Button (0)

/* wait for the song to end */?

if , (Button (0) || !LoopPlayback)

break;

MidiClock (miSetClock,FirstTime);

/* restart clock */

PlayIndex = 0;

MidiControl (miFlushOutput,0x10L) ;

/* flush output buffer

& turn all notes off */

/* stop the clock */MidiClock (miStopClock, OL);

/* stop output */MidiControl (miStopOutput, OL);

/* end of PlayMIDI() */

Chapter 38 MIDI Tool Set 38-19

Fast access to MIDI Tool Set routines

Becauseof the tight timing requirements of MIDI processing, there are manytime-critical

situations in which the overheadof a tool call can cause problems. When you needto save
as much time as possible, you may want to call MIDI ToolSet routines directly and avoid
the time needed to makea toolcall. The following example demonstrates how to dothis
in 65816 assembly language. This example can save approximately 85 microseconds per

call. This time saving can be very helpful in an application that makes numerouscalls to
MidiReadPacket and MidiWritePacket.

look up the address of MidiWritePacket (as an example)

-
e

™
e

w
e

pushlong #0

pushword #0

pushword #$0E20

_GetFuncPtr

pla

*; space for result

; system tool

; tool and function number

sta MidiwWriteAddr ; save the address

pla

sta MidiWriteAddr+2

do this instead of MidiWritePacket

N
e

™
e

=
e

jsl MidiWriteGlue

38-20 Apple IIGs Toolbox Reference, Volume 3

> IMPORTANT NOTE: The variable "MidiDP2" must contain the

address of the second page of bank zero memory allocated for

the MIDI Tool Set’s direct page. If MidiStartUp is given

> a starting address of X, then MidiDP2 = X + $100.

MidiWriteGlue jsl MidiWriteGluel ; push an extra RTL

; address

rtl

MidiWriteGluel lda MidiWriteAddrtl ; simulate a tool set call

to MidiWritePacket=
epha

phb

lda MidiWriteAddr

sta l1,s

lda MidiDP2 the A register must

contain the address of

the MIDI Tool

Set’s direct page address

~
e

e
a

e
a

°
,

GlueReturn rtl

MidiWriteAddr ds 4

Chapter 38 MIDI Tool Set 38-21

MIDI application considerations

This section contains advice on a numberoftopics andis intended to help you create
more satisfying MIDI applications.

MIDI and AppleTalk

The MIDI Tool Set is not designed to operate with AppleTalk® enabled. The Apple IIGsis
not fast enough to process both AppleTalk interrupts and MIDI interrupts simultaneously.

If an application that uses the MIDI Tool Set runs with AppleTalk enabled, you should
expect occasional MIDI input errors and output delays. For most programs, even one

MIDIerroris difficult to handle, so you should probably recommendthat applications
that use the MIDI Tool Set not be used with AppleTalk enabled.

Disabling interrupts

Several tool calls that disable interrupts can cause loss of MIDI data. These includecalls

that access the disk drives, Event Managercalls, and Dialog Managercalls.

The rate of MIDI data transfer leaveslittle margin for error in the MIDI ToolSet’s
operation. The rate at which the tool set must retrieve MIDI data places great demands on
the system’s computational resources. If possible, an application should avoid disabling
interrupts while reading MIDI data. If a program must disable interrupts while reading

MIDIdata, it should not do so for longer than 270 microseconds.

In cases where compliance with theserestrictions is impossible, you can use the

MidiInputPoll vector. This vector is provided for those applications that must
disable interrupts for dangerously long periods. To call Midi InputPoll, execute a JSL

to $E101B2. If the MIDI Tool Set has not beenstarted up,orif the MIDI input process has

not beenstarted, the vector will return immediately. Any MIDI data that was present on

the call to the vector will appear in the input buffer that you allocated with
MidiControl.

@ Note: If you need the values of the A, X, and Y registers, you must save them yourself

before calling the vector. The direct-page and data bankregisters are preserved.
MidiInputPol1 mustbe called only in full native mode.

A Warning Do not call Midi Input Po1l1 before loading the MIDI Tool Set in a
system with a Sound ToolSet version earlier than 2.3 or system
software earlier than 4.0. Doing so will cause a system failure. a

38-22 Apple IIGs Toolbox Reference, Volume 3

If you use the Midi InputPoll vector, you must ensurethatit is called at least every 270

microseconds, or MIDI data maybelost. A call to the vector when no data is present
returns in from 8 to 30 microseconds, and whendata is present the vector can take up to
450 microseconds, at 150 microseconds per character read.

You can call MidiReadPacket and MidiWritePacketinside interrupt-service

routines, because they perform polling automatically. Other tool sets do not perform

MIDIpolling, so MIDI applications should not makecalls to other tool sets in interrupt-
service routines.

A Warning Do not make MIDI ToolSetcalls other than MidiReadPacket and
MidiWritePacketfrom interrupt-service routines. Doing so can
cause unpredictable system failure. a

Wheneverpossible, you should use MIDI interface cards that support MIDI data
buffering. By storing some received data, these cards relieve the time constraints on your
application.

MIDI and other sound-related tool sets

If you use the recommendedversions of the Note Synthesizer, Note Sequencer, and Sound
Tool Set (see Chapter 51, “Tool Locator Update,” for details), these tool sets are fully

compatible with the MIDI Tool Set and do not cause MIDI data losses. It is possible to write
programsthat use the Note Sequencerto play notes on the internal voices of the Apple IIGs

and on an external MIDI synthesizer while simultaneously accepting MIDI input from an

external keyboard andtranslating it to Note Synthesizer commandsto play the notes.

The MDI clock

This section discusses the technique currently used to generate MIDI time-stamps. Note

that this technique may not be used on future Apple IIGS machines. Any application that
employs a similar technique to implement timing may be incompatible with future
systems.

Properly time-stamping MIDI input data requires a clock with resolution better than one
millisecond. When a long stream of MIDIdata is received in a short time period (such as
when the user plays a complex chord on a MIDI keyboard), each note must be accurately
time-stamped. However, the Apple IIGS cannot process interrupts quickly enough to
satisfy this requirement.

Chapter 38 MIDI Tool Set 38-23

To provide a reasonable clock resolution, the Apple IIGS MIDI time-stampis

implemented using one of the system's DOC generators. The MIDItool set loads the DOC

with a 256-byte waveform consisting of consecutive values from $01 to $FF (followed by

an additional byte of $FF) and sets the DOC to play this waveform at zero volume. When a
MIDIcharacter is received, the time-stamping routine uses the value from this DOC for
the low-order byte of the time-stamp. The system obtains the high-order 3 bytes from a
counterthat is incremented each time-the DOCcycles through its waveform (once every
19.45 milliseconds at the default clock rate). This technique reduces the system interrupt
load to a manageable level while also providing sufficiently fine clock resolution to
process MIDI data correctly.

Because the MIDI clock is actually a DOC generator, you cannotuse that generator while

the clock is running; underthese circumstances, only 13 generators are available for general

use. Theclock also uses thefirst 256 bytes of DOC RAM forits waveform, so running the

clock reduces the memory available for application waveforms. While the clock is running
you mustnot use the Sound ToolSet’s free-form synthesizer (the FFStart Soundcall).

The frequency and duration of Sound Tool Set interrupts also interfere with the MIDI Tool
Set’s ability to perform its services often enough to preventdataloss.

Input and output buffer sizing

You should adjust the MIDI input buffer size for the amountof data you can expect to
receive before the application processes it. Any process that competes with the
application for processor time, such as Note Synthesizer calls to play complex envelopes,
reducesthe frequency at whichthe application can call MidiReadPacket and process

the data in the input buffer. If the input bufferfills before it can be processed, data will
be lost. Complex applications that use time-consumingtoolcalls therefore require large
input buffers.

You can estimate the size of the needed input buffer from the size of the largest MIDI
system-exclusive commandyouintendto receive. The default size of the input and

output buffers is 8 KB. This is the size of two very large system-exclusive packets. You
should choosea size thatis large enough to accommodate two ofthe largest system-

exclusive packets you expect to receive so that the MIDI tools can receive one packet

andstill have room for another. In packet mode, the MIDI Tool Set does not return a

packetuntil it has received all of it, and MIDI data may continueto arrive while the tool
set is returning thefirst packet.

The maximum buffersize is 32 KB, so your application may have to run the MIDI interface
in raw mode(rather than packet mode) to support system-exclusive messages longer than
16 KB.

38-24 Apple IGS Toolbox Reference, Volume 3

You might want to keepstatistics on the maximum numberofdata bytes in the input
buffer so that your application can adjust the input buffer size intelligently. Several MIDI
Tool Set calls return information you can usefor this purpose; see “MIDI Tool Calls” later in

this chapter for more detailed information on data returned by MIDItoolcalls (especially
the miMaxInChars and miMaxOutCharsfunctions of the MidiInfocall).

Loss of MIDI data

The Apple 6850 driver was designed to work with nonbuffered interface cards. When you
use this driver and the desktop interface you may lose MIDI data. To avoidthis data loss,
you can

m use a different, buffered 6850-based MIDI card along with a driver that supports
the card

= preventthe user from moving the cursor or making menuselections when your program
is recording MIDI data

Number of MIDIinterfaces

Note that the Apple IIGs can support only a single MIDI interface at a time.If you try to

support more than one MIDIinterface at the same time, you will lose MIDI data.

Chapter 38 MIDI ToolSet 38-25

MIDI housekeepingcalls

The following MIDI calls perform commontool set functions.

MidiBootInit $0120

Initializes the MIDI ToolSet; called only by the Tool Locator.

A Warning An application must never makethis call. a

Parameters This call has no input or output parameters. The stack is unaffected.

Errors None

C extern pascal void MidiBootInit ();

38-26 Apple IIGs Toolbox Reference, Volume 3

MidiStartUp $0220

Starts up the MIDItools for use by an application. Applications should makethis call

before any othercalls to the MIDI tools. Normally an application must nextcall

MidiDevice to load a MIDI device driver, and then MIDICont rolto allocate any
necessary input or output buffers.

Parameters

Stack before call

Previous contents

userID Word—Application user ID (for the Memory Manager)

dPageAddr Word—Beginning of MIDI direct-page space

<—SP

Stack after call

| Previous contents |

| <—SP

Errors $0812 noSAppInitErr The Sound Tool Set has not been

started up.

C extern pascal void MidiStartUp(userID, dPageAddr);

Word userID, dPageAddr;

dPageAddr Mustspecify three pages of page-aligned direct-page space for the
MIDItools.

Chapter 38 MIDI Tool Set 38-27

MidiShutDown $0320

Shuts down the MIDI Tool Set. An application that uses the MIDI tools should makethis call before

it quits. MidiShutDowndeallocates the input and output buffers, stops the MIDI clock and
deallocatesits generator, and shuts down the hardwareinterface. These actions take place
immediately, so the application should take any necessary steps to see that all MIDI output has

been sentbefore shutting downthetools (see the MidiCont rol call).

Parameters This call has no input or output parameters. The stack is unaffected.

Errors None

C extern pascal void MidiShutDown() ;

38-28 Apple IIGs Toolbox Reference, Volume 3

MidiVersion $0420

Returns the version numberofthe currently loaded MIDItools. For information on the

format of the returned versionNum, see Appendix A, “Writing Your Own ToolSet,” in
Volume2 of the Toolbox Reference.

Parameters

Stack before call

Previous contents

Space Word—Space for result

<—SP

Stack after call

Previous contents

versionNum Word—MIDItools version number

<—SP

Errors None

C extern pascal Word MidiVersion();

Chapter 38 MIDI Tool Set 38-29

MidiReset $0520

Resets the MIDItools; called by system reset.

This tool call causes the MIDI device driver reset routine to be invoked, allowing for

reset-specific processing that may differ from shutdownprocessing.

A Warning An application must never makethis call. a

Parameters This call has no input or output parameters. The stack is unaffected.

Errors None

C extern pascal void MidiReset();

38-30 Apple IIGS Toolbox Reference, Volume 3

MidiStatus $0620

Returns a Boolean value of TRUE if the MIDI tools are active and FALSEif they are not.

@ Note: If your program issues this call in assembly language,initialize the result space on
the stack to NIL. Upon return from MidiStatus, your program need only check the

value of the returnedflag. If the MIDI ToolSet is not active, the returned value will be
FALSE (NIL).

eo

Parameters

Stack before call

Previous contents

Space Word—Spacefor result

<—SP

Stack after call

Previous contents

activeFlag Word—Boolean; TRUEif the tool set is active

<—SP

Errors None

C extern pascal Boolean MidiStatus();

Chapter 38 MIDI Tool Set 38-31

MIDItool calls

All the MIDI ToolSet calls are new calls, added to the Toolbox since publication of the
first two volumesof the Apple IiGsS Toolbox Reference.

The routines used to work with the MIDI Tool Set are MidiClock, MidiControl,

MidiDevice, MidiInfo, MidiReadPacket, and MidiWritePacket. Four of these

calls are multifunction calls, which perform different actions depending on a control

parameterpassed to them. The workhorseof the group is MidiCont rol, which performs

18 different functions, depending on the control function parameter. The other

multipurposecalls are MidiDevice, MidiClock, and MidilInfo.

38-32 Apple IIGS Toolbox Reference, Volume 3

MidiClock $0B20

Controls operation of the optional time-stamp clock. The clock ticks once every 76
microseconds with default settings, allowing MIDI data to be sent and received with
precise timing. The funcNum parameter specifies which clock function to perform, and
the arg parameter provides the argument to the selected function.

Parameters

Stack before call

Previous contents

funcNum Word—Specifies MidiClock function number

- Long—Argumentpassed to MidiClockfunction

Stack after call

Previous contents

 <—SP

Errors

funcNum

|
| <—SP

See the MidiClockfunction descriptions below.

extern pascal void MidiClock(funcNum, arg);

Word funcNum;

Long arg;

Specifies the MidiClock function to be performed. Fourdifferent
functions are provided for clock control.

0 miSetClock

The value of arg becomesthe newvalue of the time-stamp clock. The
mostsignificant bit of the arg parameter must beset to 0. Thereis a limit

to the precision with which the clock can beset. The least significant
byte of the time-stamp clock will always be0 if the clock is stopped. If
the clock is running, the valueof the least significant byte will be
undefined for the purposes ofthis call. The result is that an application
can set the clock only to within 20 milliseconds of a particular value when
the clock frequency is set to its default value.

Errors None

Chapter 38 MIDI Tool Set 38-33

1 miStartClock

Allocates a DOC generator, writes consecutive values from $01 through

$FF into thefirst page of the DOC RAM,andstarts the clock. By default,
the clock starts counting at 0. If the application stops the clock and

restarts it, the clock starts with the same value it had whenit stopped,
unless the value is changed with an miSetClockcall. Note that only the

high-order 3 bytes are preserved; the low-order byte always starts at $01.

You should call mistartClock before miStart Inputif you are using

time-stamps.

Start the MIDI clock before starting to receive or transmit MIDI data.
The process ofstarting the clock is time-consuming and disables

interrupts, and MIDI data could belostif the clock is started while the
application is receiving a MIDI transmission. The Sound Tool Set and the
Note Synthesizer must be loaded andstarted up before this call is issued.

Errors

$0810 noDOCFndErr No DOC or DOC RAM was found.

$1921 nsNotAvail No DOC generator wasavailable.
$1923 nsNotInit The Note Synthesizer was notstarted.

2 miStopClock

Stops the MIDI time-stamp clock and releases the DOC generatorandits
associated RAM for use by the Note Synthesizer. The MIDItools

time-stamp MIDI data received while the clock is stopped with the value
of the stopped clock in the high-order 3 bytes, and the low-order byte

set to $00. The MIDItools will not send any output packets with

time-stamps greater than the value of the stopped clock until the clock is
restarted or reset.

Errors None

38-34 Apple IIGs Toolbox Reference, Volume 3

3 miSetFreq Sets the frequency for the MIDI time-stamp clock. The arg parameter
contains the numberof clock ticks to be processed per second. Valid
values lie in the range from 1 to 65,535; a 0 value specifies the default

setting (13,160 ticks per second).

The clock frequency affects the rate of playback. Unless you intend to
vary the tempo during playback, be carefulto set the clock frequency to

the same value that was used when the sequence was recorded.

See the MidilInfocall for information about how to read the current

clock frequency and value.

Errors

$2009 miBadFreqErr Unableto set MIDI clock to the specified
frequency (use the MidiInfotoolcall to

get the currentvalue).

Chapter 38 MIDI ToolSet 38-35

MidiControl $0920

Performs 18 different control functions required by the MIDI ToolSet.

The funcNum parameter selects which function is to be performed, and the a7g parameter
passes any argument required by that function.

Parameters

Stack before call

Previous contents

funcNum Word—Specifies MidiContro1l function number

- Long—Argumentpassed to MidiControl function

Stack after call

 <—SP

| Previous contents |

Errors

funcNum

QO miSetRTVec

| <—SP

See the MidiCont rol function descriptions.

extern pascal void MidiControl(funcNum, arg);

Word funcNum;

Long arg;

Specifies the MidiContro1lfunction to be performed.

Sets the real-time vector. The arg parameter contains the address of a
service routine in the application. When the MIDI Tool Set receives MIDI

real-time commands,it calls this service routine. A value of 0 in this

parameter disables the service routine. See “MIDI Tool Set Service

Routines” earlier in this chapter for more information on the real-time
commandroutine.

Errors None

38-36 Apple IIGs Toolbox Reference, Volume 3

1 miSetErrvVvec

2 miSetInBuf

$00

$02

Sets the real-time error vector. The avg parametercontains the address of
a service routine in the application. The MIDI ToolSetcalls this routine

in the event of a MIDI real-time error. A value of 0 in the parameter
disables the service routine. See “MIDI Tool Set Service Routines” earlier

in this chapter for more information on the real-time error routine.

Errors None

Sets the MIDI input buffer. The arg parameter contains a pointer to a

6-byte record. The fields of this record are

bufSize — Word—Sizeofinput buffer (in bytes)

bufPtr —| Long—Pointer to buffer

If the bufPtx parameter is set to 0, the MIDI ToolSet will allocate the

input buffer. If the bufSize parameteris set to 0, the MIDItools will
allocate a buffer 8 KB in size. Note that these parameters are
independent; your program mayseteither one of them to 0.If the
application allocates the buffer, it must be nonpurgeable, must exist in a
fixed location, and must not cross bank boundaries. The size must be

greater than or equal to 32 bytes and less than or equal to 32 KB.

Errors

$2002 miArrayErr Array was aninvalid size.

Memory Managererrors Returned unchanged.

Chapter 38 MIDI Tool Set 38-37

3 miSetOutBuf

Sets the MIDI output buffer. The avg parameter contains a pointer to a
6-byte record. The fields of this record are

S00 bufSize l

S02

1
|

bufPtr

 |
i
J

Word—Sizeof output buffer (in bytes)

Long—Pointerto buffer

If the bufPtr parameteris set to 0, the MIDI Tool Set will allocate the
output buffer. If the bufSize parameteris set to 0, the MIDI Tool Set
will allocate a buffer 8 KB in size. Note that these parameters are

independent; your program mayseteither one of them to 0.If the

application allocates the buffer, it must be nonpurgeable, must be in a

fixed location, and must not cross bank boundaries. The size must be

greater than or equalto 32 bytes and less than or equal to 32 KB.

Errors

$2002 miArrayErr Array was an invalid size.

Memory Managererrors Returned unchanged.

4 miStartInput

Starts an interrupt-driven process that reads MIDI data into the MIDI

Tool Set’s input buffer. Data being received whenthis call is madeis
discarded until the first MIDI status byte is received. An application can

retrieve this data with a MidiReadPacketcall. The arg parameter

contains the address of a service routine to be called whenthefirst

packetis available in a previously empty input buffer. The system will call
the service routine immediately if a complete MIDI packetis available in

the input buffer whenthis functionis called. A value of 0 disables this

service routine.

Errors

$2007
$200C

miNoBufErr No buffer allocated.

miNoDevErr Nodevice driver loaded.

38-38 Apple IIGs Toolbox Reference, Volume 3

5 miStartOutput

Starts an interrupt-driven process that writes application MIDI data to

the MIDI Tool Set’s output buffer. Your application uses
MidiWritePacketcalls to queue data to this process. The arg
parameter contains the address of a service routine called when the
output buffer becomes completely empty. A value of0 disables this
service routine.

Errors

$2007 miNoBufErr No buffer allocated.

$200C miNoDevErr No device driver loaded.

6 miStopInput

Causes the MIDI Tool Set to ignore MIDI data until the next
miStartInputcall.

Errors None

7 miStopOutput

Halts MIDI output until the next miStartOutputcall.

Errors None

8 miFlushInput

Discards the contents of the current input buffer.

Errors

$2007 miNoBufErr No buffer allocated.

9 miFlushOutput

Discards the contents of the current output buffer. The arg parameter
selects the method.

arg value Action

$0000 00XX Wait for the current packetto finish transmission, then
turn off all notes that have not been turned off in channel
XX. If XX = $10, turn off notes in all channels.

$0001 00XX Wait for current packetto finish transmission, then turn
off all possible notes (pitch $00 through $7F) in channel XX.

If XX = $10, turn off notes in all channels. Note that this
option may take several seconds to complete.

$FFFF XXXX Discard the contents of the output buffer immediately
without turning off any notes.

Chapter 38 MIDI Tool Set 38-39

Somesynthesizers may require a short delay between the high-speed
NoteOff commands generated by this function. In such cases, use the

miSetDelayfunctionofthis tool call to control that delay. The

NoteOff side effect can be useful for shutting off notes.

Errors

$2005 miOutOffErr MIDI output disabled.
$2007 miNoBufErr No buffer allocated.

10 miFlushPacket

If there is a complete packet in the input buffer, this call discards that

packet. If no complete packet is available, this call does nothing. This

call is especially useful for discarding large system-exclusive packets that

are of no interest to your application.

Errors

$2007 miNoBufErr No buffer allocated.

11 miWaitOutput

Ceases execution until the output buffer becomes empty. This function
may neverreturn if output is disabled.

Errors

$2007 miNoBufErr No bufferallocated.

12 miSetInMode

Set input mode. The arg parameterselects the input mode.

arg value Input mode

0 Raw mode. MIDI data is converted to packets, with
length-of-packet and time-stamp bytes addedto the front

of each packet.
1 Packet mode. Packet mode is the default mode. MIDI

data is converted to packets, with length-of-packet and

time-stamp bytes added to the front of each packet.

Running status bytes, which MIDI may discard to

abbreviate transmitted data, are restored.

The inputbuffer is cleared when this call is made becausethe input buffer
cannot contain data in more than one formatat a time.

Errors None

38-40 Apple IIGs Toolbox Reference, Volume 3

13. miSetOutMode

The arg parameterselects the output mode.

arg value Input mode
0 Raw mode. This modeis very similar to packet mode, but

no attempt is made to keep track of which notesare on.
Running status optimization is still performed unless
explicitly disabled by mioutput Stat. Because no record
is kept of which notesare on,all notes that are turned on

must be explicitly turned off.
1 Packet mode. Packet modeis the default mode. Your

application must format output data into valid MIDI
packets (see “MIDI Packet Format” earlier in this chapter
for details). The MIDI tools track NoteOn and NoteOff
commands.

Your program should wait for a clear output buffer before switching
modes. If the output buffer contains mixed-mode data, the MIDI tools
may not track NoteOn and NoteOff commandscorrectly.

Errors None

14 miClrNotePad

Erases the MIDI Tool Set’s record of which notes are on and which are

off. This call causes the tool set’s record to show thatall notes are off.

Errors None

15 miSetDelay

Sets a delay value for use with MIDI synthesizers that cannot process

MIDIdata at the full MIDI transfer rate. The low word of arg specifies a
minimum delay between packet sendsin units of 76 microseconds. The

delay mechanism is most effective when the MIDI ToolSet clock is

running, becauseit can use the clock to time the delay. If the clock is not

running, the tool set must use code loopsto create the delay. This

process is inherently less accurate and uses more processor time. The
default delay value is 0, or no delay.

Manysynthesizers may need a delay value to process the many
high-speed NoteOff commands generated by the miFlushOutput
function correctly.

Errors None

Chapter 38 MIDI Tool Set 38-41

16 miOutputStat

Enables or disables transmission of standard MIDI running status. When
running status is enabled, MIDIstatus bytes are sent only when they change

or are otherwise absolutely necessary. This optimization speeds

transmission and reduces CPU overhead but can cause malfunctions if the

synthesizer and computer disagree on the current value of the status byte.

The low word of arg contains the enable/disable flag.

$0000 Disable runningstatus
$0001 Enable runningstatus

Whateverthe value of the parameter, the next MIDI packet afterthis call
contains a status byte. For this reason, it can be useful to makethis call
periodically to ensure that the Apple IIGs and the external device agree

about the current value ofthe status byte.

Errors None

17 milIgnoreSysEx

Specifies whether to ignore MIDI system-exclusive data. System-exclusive

packets begin with the value $FO. If the application configures the MIDI
Tool Set to ignore system-exclusive packets, the system will not buffer

them, and the application will not receive them. The arg parameter
contains a flag indicating how to process system-exclusive data.

$0000 Ignore system-exclusive data
$0001 Accept system-exclusive data (default)

Errors None

38-42 Apple IIGs Toolbox Reference, Volume 3

MidiDevice $0A20

Allows an application to select, load, and unload device drivers for use with the tools. The
MidiDevicetoolcall loads and unloads MIDI device drivers, which allow the MIDItools
to drive a particular MIDIinterface. The present version of the MIDI Tool Set supports
the Apple MIDI Interface and ACIA 6850 MIDI Interface cards.

Thecall interprets the driverInfo parameteras the address of the driver to be loaded. The
funcNumparameter specifies whether the driver is to be loaded or unloaded.

Parameters

Stack before call

Previous contents

funcNum Word—Specifies MidiDevicefunction number

- 4@riverInfo - Long—Pointer to device driver information

<—SP

Stack after call

Previous contents |

| | <—SP

Errors See the MidiDevicefunction descriptions.

C extern pascal void MidiDevice(funcNum, driverInfo) ;

Word funcNum;

Pointer driveriInfo;

funcNum Specifies the MidiDevice function to be performed.

0 Not yet implemented

Chapter 38 MIDI Tool Set 38-43

1 miLoadDrvr

Loads the specified device driver into memory,after shutting down and
unloading any previously loaded device drivers. It then initializes the

newly loaded driver. The driverInfo parameter points to a device driver

record, which specifies a device driver to be loaded.

Errors

$2008 miDriverErr Specified device driver invalid.
$2080 miDevNotAvail MIDI interface not available.
$2081 miDevSlotBusy Specified slot not selected in Control

Panel.

$2082 miDevBusy MIDIinterface already in use.
$2084 miDevNoConnect No connection to MIDI interface.

$2086 miDevVersion ROMversion or machine type
incompatible with device driver.

$2087 miDevIntHndlr Conflicting interrupt handler installed.

driverInfo The record pointed to by the driverInfo parameter contains device

driver information.

 $00

— slotNumber Word

$02 slotFlag — Word

S04 driverPath : Pascalstring
l J

slotNumber Specifies the system slot containing the MIDI interface to be
supported by the driver being loaded. Valid values range from

$0000 through $0007.

slotFlag Indicates the type ofslot specified in sLotNumber.

$0000 Internalslot
$0001 Externalslot

driverPath Pascal string containing the GS/OS™pathnametothefile
containing the device driver to be loaded. Pascal strings consist
of data preceded by a length byte. The pathname cannot exceed

64 characters in length.

Errors None

38-44 Apple IIGs Toolbox Reference, Volume 3

2 miUnloadDrvr

Shuts down and unloads the currently loaded device driver. Terminates

MIDI transmission and reception if they are currently active. Releases
memory occupied by the device driver.

Chapter 38 MIDI Tool Set 38-45

MidiInfo $0C20

Returns certain information aboutthe state of the MIDI tools. The funcNum parameter
can specify nine different functions, whoseresults are returned in infoResult.

Parameters

Stack before call

Previous contents

- Space - Long—Spacefor result

funcNum Word—Specifies Midi Info function number

<—SP

Stack after call

Previous contents

- infoResult - Long—Result of MidiInfo function

<—SP

Errors

funcNum

See the MidiInfo function descriptions.

extern pascal Long MidilInfo(funcNum) ;

Word funcNum;

Specifies the MidiInfo function to be performed.

0 miNextPktLen

Retums the numberofbytes in the next MIDI packet. Onreturn,
infoResult contains the length of the next complete MIDI packet in the
input buffer, including the 4-byte time-stamp at the beginning of the
packet. Note that if there is no complete packet in the input buffer, this
function returns a valueof0.

Errors

$2007 miNoBufErr No buffer allocated.

38-46 Apple IIGs Toolbox Reference, Volume 3

1

2

miInputChars

Returns the numberof bytes of MIDI data waiting in the input buffer. On

return, infoResult contains the numberof bytes of MIDI data currently
stored in the input buffer, including any time-stamp and length data (6

bytes per packet), error codes, and up to 12 bytes of extra space at the
end of the buffer due to call latency. It is therefore only a rough estimate

of the numberofbytes in the buffer. Your application can use this call to

monitor whether the input buffer is large enough.

Errors

$2007 miNoBufErr No buffer allocated.

miOutputChars
Returns the numberof bytes of MIDI data waiting in the output buffer.
Onreturn, infoResult contains the numberofbytes waiting to be
transmitted from the MIDI output buffer, including time-stamp and

length data (6 bytes per packet), error codes, and upto 12 bytes of extra
space at the endof the buffer due to call latency.It is therefore only a
rough estimate of the numberof bytes in the buffer. Your application
can use this call to monitor whether the output bufferis large enough.

Errors

$2007 miNoBufErr No buffer allocated.

miMaxInChars

Returns the largest numberof bytes that were stored in the input buffer
since the last miMaxInCharscall or since the buffer was last flushed.
This call is especially useful for deriving statistics on buffer utilization.

Errors None

miMaxOutChars

Returns the largest numberof bytes that were stored in the output buffer
since the last miMaxOutCharscall or since the output buffer waslast

flushed. This call is especially useful for deriving statistics on buffer
utilization.

Errors None

Not yet implemented

Not yet implemented

Chapter 38 MIDI Tool Set 38-47

7 miClockValue

Returns the current value of the MIDI Tool Set time-stamp clock.If the
clock is stopped, the low-order byte of the result is 0.

Errors None

8 miClockFreq

Returns the current MIDI Tool Set clock frequencyin ticks per second.
The default value is 13,160 ticks per second.

Errors None

3848 Apple IIcs Toolbox Reference, Volume 3

MidiReadPacket $0D20

Moves MIDI data from the MIDI Tool Set’s input buffer to a specified location and

returns the length of the packet in bytes. If no packetis available, the call returns a 0. For
more information on MIDI packets, see “MIDI Packet Format” earlier in this chapter.

Parameters

Stack before call

Previous contents

Space Word—Spacefor result

- arrayAddr - Long—Pointer to buffer for received data

arraySize Word—Length, in bytes, of the receive buffer

<—SP

Stack after call

Previous contents

Result Word—Numberofbytes actually returned

<—SP

Errors $2001 miPacketErr Incorrect packet length received.

$2002 miArrayErr Array size invalid.

$2003 miFullBufErr MIDI data discarded because of
buffer overflow.

$2007 miNoBufErr No buffer allocated.
$2083 miDevOverrun MIDIinterface overrun by input

data; interface not serviced

quickly enough.
$2084 miDevNoConnect No connection to MIDI

interface.

$2085 miReadErr Error reading MIDI data.

Chapter 38 MIDI Tool Set 38-49

C extern pascal Word MidiReadPacket (arrayAddr,

arraySize);

Pointer arrayAddr;

Word arraySize;

38-50 Apple IIGs Toolbox Reference, Volume 3

MidiWritePacket $0E20

Queues the specified MIDI packet into the MIDI Tool Set’s output buffer. If the packet
is successfully written to the output buffer, this call returns the numberof bytes written. If
the buffer is too full to accommodate the packet, MidiWritePacketreturns 0. For

more information on MIDI packets, see “MIDI Packet Format” earlier in this chapter.

The MidiwWritePacketcall returns within one-fiftieth of a second, but the output
process waits until the MIDI clock value is equal to or greater than the output packet's
time-stamp before sending it. Your program shouldissuethis call before starting the MIDI
output process (with the miStartOutput function of the MidiControl toolcall).

In packet mode, MidiWritePacket assumesthat only complete MIDI commandsare

passedto it and that thefirst byte of each packet is a MIDI status byte. The MIDI Tool

Set uses these assumptions to track NoteOn and NoteOff commands. In raw modethe
MIDI Tool Set makes no attempt to track NoteOn and NoteOff commands. Forthis

reason,theintelligent NoteOff function provided in Midicontro1lwill not work, and
packets may contain complete, partial, or multiple MIDI commands. In either mode the
MIDI Tool Set omits the MIDI status byte unless its value has changedsince the last one

wastransmitted. You can, however, disable running status transmission entirely by using
the MidiControlcall.

If the MIDI clock is stopped, then all packets with a time-stamp less than or equal to the
value of the clock are immediately transmitted, and all packets with a value greater than

the clock remain in the buffer unless the clock is restarted andits value becomesgreater
than that of the time-stamps.

Two special time-stamp values override normal output buffer processing, irrespective of
MIDIclock state. Any packet with a time-stamp of 0 is written immediately upon

reaching the head of the output buffer. Any packet with a negative time-stampvalueis
considered to be a real-time command,and the packetis inserted at the head ofthe

output queue for immediate transmission. Note that MIDI real-time messages may be
transmitted in the middle of non-real-time MIDI messages.

The MIDI Tool Set routines do not sort the packets in the output buffer, therefore, a
packetat the head of the output queue can delay transmission of any packets behindit

that have earlier time-stamp values.

Chapter 38 MIDI Tool Set 38-51

Parameters

Stack before call

Previous contents

Space Word—Spacefor result

- arrayAddr - Long—Pointer to buffer containing output data

<—SP

Stack after call

Previous contents

bytesWritten Word—Numberofbytes actually written

<—SP

Errors None

extern pascal Word MidiWritePacket (arrayAddr) ;

Pointer arrayAddr;

38-52 Apple IIGs Toolbox Reference, Volume 3

MIDI Tool Set error codes

Table 38-1 lists the error codes that may be returned by MIDI Tool Setcalls.

a Table 38-1 MIDI ToolSet error codes

Value Name Definition

$2000 miStartUpErr MIDI Tool Set notstarted up.
$2001 miPacketErr Incorrect packet length received.
$2002 miArrayErr Array was an invalid size.
$2003 miFullBufErr MIDI data discarded because of buffer overflow.
$2004 miToolsErr Required tools inactive or incorrect version.

$2005 miOutOffErr MIDI output disabled.
$2007 miNoBufErr No buffer allocated.
$2008 miDriverErr Specified device driver invalid.
$2009 miBadFregErr Unable to set MIDI clock to the specified

frequency (use the MidiInfotoolcall to getthe
current value).

$200A miClockErr MIDI clock wrappedto 0.
$200B miConflictErr Two processes competing for MIDI input.

$200C miNoDevErr No device driver loaded.
$2080 miDevNotAvail MIDIinterface not available.
$2081 miDevSlotBusy Specified slot not selected in Control Panel.
$2082 miDevBusy MIDIinterface already in use.

$2083 miDevOverrun MIDIinterface overrun by input data; interface
not serviced quickly enough.

$2084 miDevNoConnect No connection to MIDI interface.

$2085 miDevReadErr Error reading MIDIdata.
$2086 miDevVersion ROMversion or machine type incompatible with

device driver.

$2087 miDeviIntHndlr Conflicting interrupt handlerinstalled.

Chapter 38 MIDI Tool Set 38-53

Chapter 39 Miscellaneous Tool Set Update

This chapter documents new features of the Miscellaneous Tool Set. The
complete reference to the Miscellaneous Tool Set is in Volume 1, Chapter
14 of the Apple llcs Toolbox Reference.

39-1

Error corrections

This section documents errors in Chapter 14, “Miscellaneous Tool Set,” in Volume 1 of the

Toolbox Reference.

On page 14-58 of Volume1 of the Toolbox Reference, Figure 14-3 shows the low-order

bit of the user ID as reserved. This is not correct. The figure should show that the
mainIDfield comprises bits 0-7 and that the mainID valueof $00is reserved.

The sample code on page 14-28 contains twoerrors.In the codeto clear the 1-second
IRQ source, the secondinstruction reads

TSB $C032

This instruction should read

TRB $C032

In addition, preceding this instruction the following code should be inserted

PEA $0000

PLB

PLB

These three instructions allow the code to reliably access the appropriate location in

bank zero memory. These samethreeinstructions should also be inserted in the code

shown on page 14-29, immediately preceding the STA instruction.

The descriptions of the PackBytes and UnPackBytes toolcalls are unclear with

respect to the startHandle parameterto each call. The stack diagrams correctly

describe the parameter as a pointer to a pointer. However, the C sample code for each
call defines startHandle as a handle. In both cases, startHandle is not a Memory
Manager handle buta pointer to a pointer. Creating startHandle as a handle will cause
unpredictable system behavior.

Throughout Chapter 14 of the Toolbox Reference the value of the signature word for

Miscellaneous ToolSet data structuresis given as $5AA5 and $A55A. Signature words

are always $A55A, never $5AA5.

Clarification

Note that the clrHeartBeattoolcall removes all tasks from the HeartbeatInterrupt
Task queue,including thoseinstalled by system software. Consequently, only system

software should issue the clrHeartBeattoolcall.

39-2 Apple IIGS Toolbox Reference, Volume 3

New features of the Miscellaneous Tool Set

The Miscellaneous Tool Set now supports a numberof new features. This section discusses

these new featuresin detail.

a The ClearHeartBeat and DeleteHeartBeatcalls turn off the interrupts that

occur every one-sixtieth of a secondif the following conditions aresatisfied:

o There are no remaining heartbeattasks.

o Theinterrupt handlerinstalled in IRQ.VBL is the standard system interrupt handler;

that is, no other interrupt handlers have beeninstalled.

o The standard mouseis not running in VBL interrupt mode.

a The SetVector and GetVectorcalls support several new vectors. The new vectors are

$80 Vector to memory mover
$81 Vector to set system speed
$82 Vector to slot arbiter
$86 Hardware-independentinterrupt vector
$87 MIDI interrupt vector (IRQ-MIDD

@ Note: The Setvectorcall no longer validates the input vector number. Therefore,

you must be extremely careful whenusing this call to avoid corrupting memory.

Queue handling

The Miscellaneous Tool Set now provides a generalized queue handler that can be used by

othertools and applications. A queue is defined here as an ordered collection ofvariable-
length data elements. Each data element must be preceded by a standard queue header.

Your application must format the queue elements and format the correct header. The
queue handler provides calls to add elements to or remove elements from a queue
(AddToQueue and DeleteFromQueue).

A queueis identified by its header pointer, a pointer to the first element in the queue.
Yourapplication establishes and maintains the header pointer. Do not use AddToQueue
to addthis first element to the queue.

Figure 39-1 shows the format of the queue header.

Chapter 39 Miscellaneous Tool Set Update 39.3

a Figure 39-1 Queue headerlayout

$00
— Reserved Long—Link to next item in queue—set by queue handler

$04 L Reserved —| Word—Reserved for system use

$06 signature + Word—vValidates header—mustbe set to SA55A

Application data immediately follows the header.

See “New Miscellaneous ToolSet Calls” later in this chapter for details on AddTOQueue

and DeleteFromQueue.

Interrupt state information

The Miscellaneous Tool Set now providesa setof calls (Get InterruptState and
SetInterruptState)that allow you to obtain interrupt-time system state

information. Thesecalls should be particularly useful to developers of debuggers or
interrupt handlers. With these new calls, your program can get or set system interruptstate
information.

All these new calls use a standard interruptstate record. Note that the tool calls have been

designed to support an extensible state record. In the future, the record may grow in size,

but existing program code shouldstill work.

Figure 39-2 showsthe format of the interrupt state record. For more information about

any of these registers, see the Apple Ilcs Firmware Reference.

394 Apple IIGs Toolbox Reference, Volume 3

= Figure 39-2 Interrupt state record layout

500 irqA Word—Aregister contents

S02 irqX Word—xXindex register contents

$04 irq¥ Word—Yindex register contents

$06 irqS Word—S (stack) register contents

$08 irqD Word—D(direct) register contents

SOA irq P Byte—P (program status) register contents
SOB irq DB Byte—DB(data bank) register contents
SOC irq e Byte—Bit 0 is the emulation modebit
SOD K Byte—K (program bank)register contents
SOE irqPC Word—PC (program counter) register contents

$10 irq state Byte—STATEREGbytevalue
$11 irqshadow Word—SHADOWbyte (low byte) and CYAREG(high byte)values

$13 irg_mslot Byte—SLTROMSELbyte

Chapter 39 Miscellaneous Tool Set Update 39.5

New Miscellaneous Tool Set calls

The following sections introduce several new Miscellaneous ToolSetcalls.

AddToQueue $2E03

Adds the specified entry to a queue.

Parameters

Stack before call

Previous contents

— newEntryPtr - Long—Pointer to element to add to queue

- headerPtr - Long—Pointer to first queue element

<—SP
Stack after call

| Previous contents |

| <—SP

Errors $0381 invalidTag Signature value invalid in element
header.

$0382 alreadyInQueue Specified elementalready in

queue.

C extern pascal void AddToQueue (newEntryPtr,

headerPtr);

Pointer newEntryPtr, headerPtr;

39-6 Apple IIGs Toolbox Reference, Volume 3

DeleteFromQueue $2F03

Deletes a specified element from a queue.

Parameters

Stack before call

Previous contents

- entryPitr - Long—Pointer to element to delete from queue

—- headerPtr - Long—Pointerto first queue element

<—SP

Stack after call

| Previous contents |

| cs

Errors $0380 notInList Specified element not found in

queue.

$0381 invalidTag Signature value invalid in element
header.

C extern pascal void DeleteFromQueue (entryPtr,

headerPtr);

Pointer entryPtr, headerPtr;

Chapter 39 Miscellaneous Tool Set Update 39.7

GetCodeResConverter $3403

Retumsthe address ofa routine that loads code resources. This is a Miscellaneous ToolSet

call because the loaderis not in directly accessible memory (it is in the bank 1 language

card, which may or may not be addressable at any given time).

Your program would usethis call in conjunction with the ResourceConverter toolcall
(see Chapter 45, “Resource Manager,” in this book). For example, the Control Manager

issues the following call during its startup processing:

ResourceConverter (GetCodeResConverter(),

rCtlDefProc,

LogConverterIn+SysConverterList) ;

After this call is issued, all future calls to the Resource Managerto load resources of type

rCt1DefProc use GetCodeResConverterto bring the resource into memory. Note

that this routine does not preserve the memory attributes of the converted resource (for

more information on resource converters, see Chapter 45, “Resource Manager,”in this

book).

Parameters

Stack before call

Previous contents

~ Space - Long—Space for result

<—SP

Stack after call

Previous contents

- pointer - Long—Pointer to code resource converter routine

<—SP

Errors None

C extern pascal Pointer GetCodeResConverter ();

39-8 Apple IIGs Toolbox Reference, Volume 3

 GetInterruptState $3103

Copies the specified number of bytes into a specified input interrupt state record from

the system interrupt variables. For information about record layouts, see “Interrupt State
Information’ earlier in this chapter. The copy always starts from the beginning of the
interrupt state record. Use the Set InterruptStatecall to set the contents ofthe
system interrupt state record.

Parameters

Stack before call

Previous contents

— intStateRcdPtr - Long—Pointer to interrupt state record

bytesDesired Word—Numberof bytes to copy from system to record

<—SP
Stack after call

| Previous contents |

| | <—SP

Errors None

C extern pascal void GetInterruptState(intStateRcdPtr,

bytesDesired) ;

Pointer intStateRcdPtr;

Word bytesDesired;

Chapter 39 Miscellaneous Tool Set Update 39-9

GetIntStateRecSize $3203

Returns thesize (in bytes) of the interrupt state record. This call allows applications to

work with extended interrupt state records.

Parameters

Stack before call

Previous contents

Space Word—Spacefor result

<—SP

Stack after call

Previous contents

sizeOfRecord Word—Length of interrupt state record, in bytes

<—SP

Errors None

C extern pascal Word GetIntStateRecSize();

GetROMResource $3503

This call is for use only by system firmware.

39-10 Apple IIGs Toolbox Reference, Volume 3

ReadMouse2 $3303

Returns the mouseposition, status, and mode.This call does not support journaling. Refer

to Chapter 14, “Miscellaneous ToolSet,” in Volume 1 of the Toolbox Reference for
information about the ReadMousetoolcall.

A Warning Applications should never makethis call. a

Parameters

Stack before call

Previous contents

Space Word—Spacefor result

Space Word—Spacefor result

Space Word—Space for result

<—SP
Stack after call

Previous contents

xPosition Word—x position of mouse

yPosition Word—Y position of mouse

statusMode Word—Status and mode bytes

<—SP

Errors $0309 unCnctdDevErr Pointing device is not
connected.

C extern pascal MouseRec ReadMouse2 () ;

Chapter 39 Miscellaneous Tool Set Update 39-11

ReleaseROMResource $3603

This call is for use only by system firmware.

SetInterruptState $3003

Copies the specified number of bytes from the inputinterrupt state record into the
system interrupt variables. The copy always starts from the beginning of the interrupt
state record. Use the Get InterruptState call to read the system interruptstate

record.

Parameters

Stack before call

Previous contents

— intStateRcdPtr - Long—Pointerto interrupt state record

bytesDesired Word—Numberof bytes to copy from record to system

<—SP
Stack after call

| Previous contents

| <—SP

Errors None

C extern pascal void SetInterruptState(intStateRcdPtr,

bytesDesired) ;

Pointer intStateRcdPtr;

Word bytesDesired; —

39-12. Apple IIGS Toolbox Reference, Volume 3

Chapter 40 Note Sequencer

This chapter documents the Note Sequencer. This is new documentation
not previously presented in the Apple IIlcs Toolbox Reference.

40-1

About the Note Sequencer

The Note Sequenceris a collection of routines that implement a sequencerin the

Apple IIGs. The sequenceris an interpreter for a simple music programming language

designed to play music in the background.It can be used to play music from static file

as long as any otheractive system tasks do not disable interrupts.

This sequencer plays melodies by using data stored in a specific format. It does not

provide the meansto create these data structures, and so an application must provide its

owntools for building new sequences.

The Note Sequencer works with the Note Synthesizer, and it can work with the MIDI Tool

Set if you choose.

@ Note: The Note Synthesizer, the Note Sequencer, and the MIDI ToolSet refer to the

software tools provided with the Apple IIGs, not to any separate instrument or

device. The MIDI tools are software tools for use in controlling external instruments,
which may be connected through a MIDIinterface device.

The following list summarizes the capabilities of the Note Sequencer. The toolcalls are

grouped according to function. Later sections of this chapter discuss the tool set in

greater detail and define the precise syntax of the Note Sequencertool calls.

Routine Description

Housekeeping routines

SeqBoot Init Called only by the Tool Locator—must not be called by
an application

SeqStartUp Initializes the Note Sequencer for use by an application

and establishes the values of many important

operational parameters

SeqShutDown Informs the Note Sequencerthat an application is
finished using its tool calls

Seqversion Returns the Note Sequencer version number

SeqReset Called only when the system is reset—mustnotbe called
by an application

SeqStatus Returns the operational status of the Note Sequencer

40-2. Apple IIGs Toolbox Reference, Volume 3

Note Sequencer tool calls

ClearIncr

GetLoc

GetTimer

SeqAllNotesOff

SetIncr

SetInstTable

SetTrkIinfo

StartInts

StartSeq

StartSeqRel

StepSeq

Stopints

StopSeq

Sets the incrementvalue to 0, halting the current

sequence

Returns operational information about the current
sequence

Returns the value of the Note Sequencertick counter

Switches off all notes currently playing, but does not

halt the sequence
Sets the increment value

Sets the current instrument table

Assigns instruments to tracks

Enables Note Synthesizer and Note Sequencer
interrupts

Instructs the Note Sequencerto start playing a

sequence that contains absolute addresses

Instructs the Note Sequencerto start playing a

sequencethat contains relative addresses

Increments the Note Sequencer tick counter

Disables Note Synthesizer and Note Sequencer
interrupts

Stops the current sequence

Chapter 40 Note Sequencer 40-3

Using the Note Sequencer

To use the Note Sequencer, you must have loadedthe followingtoolsets:

a Tool Locator

m Memory Manager

= Sound Tool Set

s Note Synthesizer

a MIDI ToolSet (if MIDI is to be used)

All the required tool sets must be started up except the Sound ToolSet and the Note

Synthesizer. The Note Sequencer makes the appropriatecalls to start up these twotool

sets. Refer to Chapter 51, “Tool Locator Update,” for information on the specific version
requirements of the Note Sequencer.

The Note Sequenceris interrupt-driven and can munin the background while other

application tasks take place in the foreground. Therefore, interrupts must not be disabled
while a sequenceis being played. Any activity that disables interrupts interferes with
execution of a sequence. Disk access, for example, disables interrupts, so an application
cannot simultaneously access a disk and play a sequence with the Note Sequencer. Note

as well that any custom error and completion routines your application provides to the

Note Sequencer (see “Error Handlers and Completion Routines”later in this chapter) also
run with interrupts disabled and with a very low stack.

An application can normally rely on the Note Sequencer’s built-in functions to synchronize

a sequencecorrectly. For those applications that must directly control the timing of

sequence execution, the St epSeqcall has been provided. This call enables an application
to control the execution of a sequence explicitly one step at a time.

Sequence timing

Normally you might think of a musical sequenceas several independenttracksplaying at

the sametime. For example, a musical passage might consist of a melody played by a
violin accompaniedby a viola and flute. The three instruments often play at once,
sounding different notes. The Note Sequencer, however, always plays notes in sequence,
oneafter another, no matter how manyinstruments are usedto play the notes.

404 Apple IIGs Toolbox Reference, Volume 3

A chord, which is a groupofdifferent notes played at the same time,is executed by the

Note Sequenceras a series of discrete notes started very quickly one after the other. For

example, the Note Sequencer would play a chord consisting of F above middle C, A above

middle C, and C one octave above middle C as a series of note commands:

Note Duration

F4 4 counts

A4 4 counts

C5 4 counts

If the Note Sequencer were to wait for each noteto finish before beginning the next one,
the resulting passage would bethree distinct notes of equal length—notthe intended

result. The Note Sequencer, therefore, provides a wayto play the three notes with very

little delay between them;solittle, in fact, that they sound as though they were being
playedall at once.

Setting the chordbit to 1 in a note commandindicates that the next note should sound a
chord with the currentone.If, by contrast, the delay bit is set to 1, the currentnoteis

completed before the nextone is played.

Using MIDI with the Note Sequencer

The appropriate calls must be made to the MIDI Tool Set to use MIDI with the Note
Sequencer. Specifically, the MIDI tools mustbe started up, a device driver must be
selected, and a MIDI output buffer must be allocated (see Chapter 38, “MIDI ToolSet,”
earlier in this book for details). In addition, you must start the MIDI output process by
issuing the miStartOutputfunction of the MidiCcont rol toolcall.

You must specify whether MIDI is to be used when youstart up the Note Sequencer.If the

high bit of the mode parameteris set to 1 when the SeqStartUpcall is made, then MIDI
is enabled. If a particular track is to use MIDI, you must use the Set TrkInfocall to

enableit for that track. Finally, the Note Sequencer checkstoolcall-specific and

seqltem-specific flags for MIDI information, so that individual tool calls or commands
can enable or disable MIDI.

If all the appropriate flags—the modeflag of seqst art Up,the trackNameflag of
SetTrkInfo,and the commandortoolcall flag—are enabled, then MIDI commands are

sent to external MIDI devices. This arrangementis designed to provide flexibility in

execution. You could, for example, play only the drum parts of a sequence on external
MIDI instruments by enabling MIDI output only on the appropriate tracks, or you could

play all parts on external MIDI instruments. Switching between the two modesofplay

would not require any modification of the sequenceitself.

Chapter 40 Note Sequencer 405

The Note Sequencer as a command interpreter

The Note Sequenceris actually a commandinterpreter. The commandsit interprets are

32-bit data structures called sequence items, or seqitems. These 32-bit items contain

information that the Note Sequencer needs to classify commands as note commands,
control commands, MIDI commands,or register commands and to execute them

properly.

The format of a seqItem is detailed in Figure 40-1.

= Figure 40-1 Format of a seqltem

Bits

31 16 15 14 8 7 6 0

tail n vall chord cmd

cmd For all commands except note commands, this is the command

identifier, a 7-bit number that uniquely identifies the command. For

example, the setVibratoDepth command has a cmd valueof4.

chord The chordbit is a Booleanvalue.If set, it specifies that the Note

Sequencer should immediately execute the next seqltem with no
delay.

vall The meaning of the vali field depends on the commandbeing

issued.

n The bit identifies note commands. If bit n is set to 1, the seqltem is
a note command.

tail The format of the tail field depends on the commandtype.It

_ contains two or more subfields with command-specific information in
them.

There are four types of seqItems: note commands, control commands, MIDI commands,
and register commands. Each type is organized in the same way,but the values in each

part of the data structure have different meanings in the different commands.

40 Apple IIGs Toolbox Reference, Volume 3

Error handlers and completion routines

The Note Sequencer provides facilities allowing applications to gain control at the end of

a sequence and whenevererrors are encountered during sequence processing. The Note

Sequencer invokes completion routines whenit has finished a sequence. The completion

routine can then perform any necessary application-specific processing. Similarly, when an

error occurs during sequence processing, the Note Sequencercalls a specified error
handler, which can process the error in a manner appropriate to the current application.

When youstart a sequence with the StartSeq toolcall, you may specify a completion

routine, an error handler, or both for the sequence. The compRoutine parameter points to
the completion routine; the errHndlrRoutine parameter specifies the error handler. Zero
values for either’parameter indicate to the Note Sequencer that no custom routine of the
appropriate type is available.

On entry to either type of routine, the Note Sequencersets upthe following conditions:

a Interrupts disabled

= Direct page set for Note Sequencer data area

= Data banksetto its value at the time ofthe initial seqStart Up toolcall for the

application; Note Sequencerrestores this value when the routines return

a All registers saved

a Very little stack available

When a sequence started by start Seqreachesits end, control passes to the routine
specified by compRoutine.

Wheneverit encounters an error during sequence processing, the Note Sequencertries to

call the error handler for the sequence. A useful function for an error handler mightbe to
place an errorflag for the completion routine and make a Get Loccall to determine the
location of the error.

The Note Sequencerpasseserror codesto the error handlerin the A register. In step mode,
the Note Sequencer both reports the error condition to the error handler and posts it in
the A register at the completion ofthe call to st epsSeq.In interrupt mode, the Note

Sequenceronly reports the error to the application error handler.

@ Note: The Note Synthesizer’s timer oscillator is not forced on whenanerror occursin

the Start Seqcall; neither the Note Synthesizer nor the Sound ToolSet will have been

started.

Chapter 40 Note Sequencer 40-7

Note commands

Note commands switch notes on and off. These commandsare not the same as the Note
Synthesizer NoteOn and NoteOfftool calls. You can use note commands in two ways.
Youcanissue a pair of noteOn and noteOff commands,tuminga specified note onat a
certain point and then explicitly turningit off, or you can issue a noteOn commandwith a

duration specified. In this case the Note Sequencerplays the note for a numberofticks

equal to the value of the duration parameter and then turns the note off, without the need
for an explicit noteof£ command.Eachtick occurs at an interval set by the Note

Synthesizer’s update rate (see Chapter 41, “Note Synthesizer,” in this book for details).
The format of note commands is shownin Figure 40-2.

= Figure 40-2 Note command format

Bits

31 30 27 26 16 15 14 8 7 6 0
| d | trk | duration | n | pitch chord volume |

volume Specifies note volume. Corresponds to MIDI velocity. A value of 0

indicates a noteOff command.

chord Indicates that the seqItem is to be played simultaneously with the

next seqitem. Do not set both the chordbit andthe a bit in the same
item.

pitch Selects the pitch to be played. Values may rangefrom 0 to 127. A value
of 60 selects middle C (261.6 Hz). Adjacent values are one semitone
apart. A value of 0 specifies a filler note (see “Filler Notes”later in this
chapter for details).

n Alwaysset to 1 for note commands.If this bit is not set to 1 in a

seqltem, then the seqltem is not a note command.

duration Specifies the duration of the note to be played by the Note

Sequencer. Values may range from 0 to 2047 andindicate the duration
of the note in numberofticks.

A duration of 0 identifies the seqltem as a noteOn command. A
noteOnseqltem is played continuously until the Note Sequencer
finds a matching noteOFf.

40-8 Apple IIGs Toolbox Reference, Volume 3

trk Track number. Assigns notes to synthesizer voices and MIDI channels

by specifying their track numbers. Values from $0 to $F are legal. Refer
to the description of the Set Trk Infocall for more information.

If the a (delay) bit is set to 1, the Note Sequencer mustfinish playing
this seqItem before beginning to play the next one. The Note

Sequencer cannot advanceto the next seqItem until the durationis
past. Do notsetthis bit to 1 if the chordbitis setto 1.

noteOff command

Stops a note that was previously started with a noteOn command.

volume

chord

pitch

n

duration

trk

d

Note volume = 0
Set if the note is part of a chord
127-0; must be the same as matching noteOn
1

0
15-0; must be the same as matching noteOn
0

noteOn command

Starts a note playing.

volume

chord

pitch

n

duration

trk

d

Note volume; varies from 1 to 127
Set if the note is part of a chord
Pitch value; varies from 0 to 127

1

0

15-0
0

Chapter 40 Note Sequencer 40-9

Filler notes

Filler notes are used to create silences in musical sequences.Intuitively, you might
supposethat an application should use delaysto create rests, but during a delay the Note
Sequencerdelaysall its operations. It not only fails to play any notes until the delay period

has elapsed butalso fails to perform other services, such as turning notes off. Using delays
to create rests could thus lead to unpredictable behavior in the creation of sequences.

An alternative approachisto usefiller notes. A filler note is simply a note command with a

pitch value of 0. The Note Sequencerplays such a note as though it were an ordinary note

but does not produce a tone. You can therefore usefiller notesto fill out rests at points
where you might have supposed a delay would be needed. For example, a passage may

contain a chord consisting of notes of different duration, followed by a run of other

notes. In this case, you needto place filler note at the end of the chord so that you can

easily vary the delay betweenthestart of the chord and thestart of the run.

fillerNote command

Creates silences in musical sequences.

volume 0

chord 1

pitch Pitch value = 0
n 1

duration Desired delay time

txrk 0

d Set to 1 if a delay is desired

40-10 Apple IIGs Toolbox Reference, Volume 3

Control commands

Control commandsare usedto specify the characteristics of the Note Sequencerasit is
playing the notes. They can control pitch bend, tempo, vibrato, and other note
characteristics. The format of control commandsis shownin Figure 40-3.

= Figure 40-3 Control command format

Bits

3130 2726 2423 16 15 14 8 7 6 0

d trk res val2 n vall chord cmd

cmd Command number.

chord Should be set to 1 in a control command.Setting the chordbit to 0

can sometimes cause unwanted delays in the playing of a sequence.

vall Contains data specific to each command.

n Alwayssetthis bit to 0 for control commands.Setting the n bit to 1
causes the seqItem to be processed as a note commandinstead ofa

control command.

val2 Contains data specific to each command.

res Reserved for control. These bits should always be set to 0 unless

otherwise specified.

trk Notes are assigned to synthesizer voices and to handlers by specifying
their tk numbers. Legal values are $0 to $F.

d Should always beset to 0 in control commands, since they have no
duration.

Chapter 40 Note Sequencer 40-11

callRoutine command

Allows you to invoke program code from within a sequence being played by the Note

Sequencer. This program codeis then free to perform custom processing. The command

specifies the low-order word of the routine address; the bank portion of the address
matches the value of the data bankregister at the time the Note Sequencer wasstarted by
your application.

cmd 30

chord 1

vall 0
n 0

bits 16-23 Low-order byte of routine address

bits 24-31 High-order byte of routine address

Onentry, interrupts are disabled, and very little stack space remains. The Note Sequencer

saves its registers before issuing the call. However, because the direct-page and data bank

registers are set for the Note Sequencer, your routine code must change these to access
application data. The routine should return with an RTL instruction.

If your application uses MIDI, this routine must be careful to poll MIDI every 270
microseconds to avoid losing MIDI data. See Chapter 38, “MIDI ToolSet,” in this book

for more information.

40-12 Apple IIGs Toolbox Reference, Volume 3

jump command

The Note Sequencer’s equivalent of a jump or goto commandin a conventional

programming language. Execution of seqitems continues with the item specified by val1
and val2. The numbergivenis a simple index into the series of seqItems(it is not a byte
index into the seqItem array). The jump command does not check the boundsofthe
sequence, andit is therefore possible to jump to an arbitrary area in memory that does

not contain valid seqItems. Such a jump will produce unpredictable results.

cmd 3

chord 1

vall vall is the high 7 bits of the destination
n 0

val2 valz2 is the low 8 bits of the destination

res 0

trk not used

d 0

Note that this command causes a jumpin the sequence being processed. To jump to
executable code from a sequence, use the callRout ine command.

Chapter 40 Note Sequencer 40-13

pitchBend command

Creates a bend effect in a played note. A control commandexpresses pitch bend as a
value from 0 to 127. A value of 64 indicates no pitch bend, and the note is played at the

pitch specified in its note command. The note is played at a pitch determined byits
nominal pitch plus the pitch bend sharporflat. The pitch changes immediately to the new

value. As a result, the sequence mustuse a series of pit chBend commandsto achieve the

smooth portamento usually associated with a pitch bend.

cmd 0
chord 1

vall Pitch wheel position. Values greater than 64 specify sharp pitch bend;

values less than 64 specify flat; intervals are expressed in fractions of the
current pitch bend range

n 0

val2 No significance in the pit chBend command; the va12 field should
always be set to 0 for pitchBend

res Selects pitch bend assignment

0 selects both internal and MIDI pitch bend
1 selects internal pitch bend
2 selects MIDI pitch bend

trk Track number

d 0

The res field indicates whether the pitch bendis to affect the system’s internal voices,

external MIDI devices, or both. Note that your application must have specified MIDI
support at SeqStartUptime in order for MIDI commandsto beissued.

40-14 Apple Ics Toolbox Reference, Volume 3

programChange command

Allows a sequenceto changethe instrumentassignedto a track during play. The new

instrument mustbe in the current instrumenttable for the new assignmentto be possible.

cmd 5

chord 1

vall Instrument index from instrumenttable
n 0

val2 New MIDI program number,if the sequenceis using MIDI

res Specifies MIDI usage; legal values are

0 The Apple IIcsinternal synthesizer and an external MIDI device
1 The Apple IIcs internal synthesizer only
2 External MIDI device only

trk Track number; specifies which instrument program to change by

specifying the track to which that instrumentis assigned
d 0

If MIDI is enabled and the res field specifies that a MIDI commandis to be issued, the

Note Sequencer generates a MIDI Program Change commandusing val2 for the program
number.

tempo command

Sets the Note Sequencer’s increment value. The increment value determines the numberof
ticks between updates in the execution cycle, so larger increments translate to slower

tempos. The incrementvalueis setto its initial value by the SeqSt art Uptoolcall.

cmd 1

chord 1

vall New increment; the value may vary from 0 to 127
n 0

val2 0

res 0

trk 0

d 0

Chapter 40 Note Sequencer 40-15

turnNotesOff command

Turnsoff all notes currently being played, overriding any previous note commands.If

MIDI support has been enabled, the system also turns off any active MIDI notes.

cmd

chord

vall

n

val2

res

trk

d o
o
o
o
0
O
K

b
Y

setVibratoDepth command

Assigns a depth value to the vibrato effect used with the specified track. The vibrato
effect is a modulation in the pitch of the voice assigned to the specified track. The val1

value can range from 0 to 127, with larger values resulting in greater vibrato depth. A value

of 0 disables vibrato, which conserves CPU cycles.

cmd 4

chord 1

vali The new value for vibrato depth; the value may vary from 0 to 127
n 0
val2 Control numberif a MIDI commandis generated
res Specifies MIDI usage; legal values are

0 Internal and MIDI vibrato

1 Internal only

trk Track number

d 0

If MIDI support has been enabled and the res field indicates that a MIDI commandis to
be issued as well, va12 specifies the MIDI control number, and vali specifies the new
vibrato value for the MIDI Control Change command.

40-16 Apple IIGs Toolbox Reference, Volume 3

Register commands

Register commands provide the Note Sequencer with program control capabilities. The

Note Sequencer maintains eight 8-bit registers that can be used to implement looping and
conditional branching structures. With register commands, an application can achieve the

effect of control structures such as “if...then,” “do...while,” or “repeat...until” in

sequences.

Each register occupies 8 bits of memory, but notall the commands usethefull register.
The ifGo and setRegister commands treat eachregisterasif it were only 4 bits in
size, using only the least significant 4 bits of the byte.

Bytes 2 through 9 of the Note Sequencer’s direct page contain theregisters; these registers

are numbered 0 through 7. Note that Note Sequencer direct-page space starts $100 bytes

beyondthe location specified at seqSt art Up time. The intervening space is used by the
Note Synthesizer and the Sound ToolSet. Figure 40-4 showsthe formatof register
commands.

= Figure 40-4 Register command format

Bits

31 30 2726 2423 16 15 14 8 7 6 0
d trk res val2 n vall chord cmd

cmd Command number.

chord Should be set to 1 in a register command.Setting the chordbit to 0
can sometimes cause unwanted delays in the playing of a sequence.

vall Contains data specific to each command. Generally specifies the
register number for the command.

n Always set this bit to 0 for register commands.Setting the bit to 1

causes the seqltem to be processed as a note commandinstead of a
register command.

val2 Contains data specific to each command.

res Reserved for control. These bits should always be set to 0 unless
otherwise specified.

trk Always setto 0 for register commands.

d Should alwaysbeset to 0 in register commands, since they have no
duration.

Chapter 40 Note Sequencer 40-17

decRegister command

Decrements the value ofthe specified register. If the value is 0 when the commandis

executed, the register’s value will wrap to $FF.

chord 1

vall Low bits contain the register number

n

val2

res

trk

d o
o
o

o
O
©

ifGo command

Tests the specified register for the specified value. If the register contains the supplied

value, then execution continues with the seqlItem at the offset specified in va12,
calculated from the current seqlItem. If the values do not match, execution continues with
the next seqItem in the sequence. The ifGo command doesnot check the bounds ofthe

offset provided. For this reason, the value mustbevalid, or the effects will be
unpredictable.

cmd 7

chord 1

vall Low 3 bits contain the register number
High 4 bits contain the value

n 0

val2 Offset: -128 to +127 seqltems
res 0

trk 0

d 0

40-18 Apple IIs Toolbox Reference, Volume3

incRegister command

Increments the value of the specified register.

cmd 8

chord 1

vall Low 3 bits contain the register number
n 0

val2 0

res 0

trk 0

d 0

setRegister command

Sets the specified register to the specified value.

cmd 6

chord 1

vall Low 3 bits contain the register number

High 4 bits contain the value
n 0

val2 0

res 0

trk 0

d 0

Chapter 40 Note Sequencer 40-19

MIDI commands

MIDI commands enable an executing sequence to send data directly to MIDI devices that

are connected to the AppleIIcs. All the standard MIDI commandsare provided.

For MIDI commands to be enabled,the high bit of the mode parameter mustbesetto 1
when the SeqStart Upcall is made. To produce MIDI output, your application mustalso
have loaded andstarted up the MIDI Tool Set. For further information on the MIDI Tool

Set, see Chapter 38, “MIDI ToolSet,” in this book.

These commands are based on version 1.0 of the MIDI specification, which is not
described in this documentation. See Figure 40-5 for the format of MIDI commands.

= Figure 40-5 MIDI command format

Bits

31 24 23 16 15 14 8 7 6 0
high low n vall chord cmd

cmd Command number.

chord The chordbit should be set to 1 in a MIDI command.Setting the

chordbit to 0 can sometimes cause unwanted delays in playing a
sequence.

vall Contains data specific to each command.

n Alwaysset this bit to 0 for MIDI commands.Setting the n bit to 1
causes the seqltem to be processed as a note commandinstead of a
MIDI command.

low Contains data specific to each command.

high Contains data specific to each command.

40-20 Apple IIGs Toolbox Reference, Volume 3

midiChnlPress command

Sends a MIDI Channel Pressure commandto the channelspecified in va11. The new

pressure valueis specified by the 1ow byte.

cmd 15

chord 1

vall Bits 8 through 11 specify the MIDI channel number ($0-$0F)
n 0

low Channel pressure
high 0

midiCtlChange command

Sends a MIDI Control Change commandto the channelspecified in va11. The control
numberis specified in the Low byte, and the new value ofthe control in the high byte.

chord 1

vall Bits 8 through 11 specify the MIDI channel number ($0-$0F)
n 0

low Control number
high Control value

midiNoteOff command

Sends a MIDI NoteOff command onthe channel numberspecified in va11. The note

turned off is specified in two parts—a note numberin the low byte and velocity in the
high byte.

cmd 10

chord 1

vall Bits 8 through 11 specify the MIDI channel number ($0-$0F)
n 0

low Note number

high Velocity

Chapter 40 Note Sequencer 40-21

midiNoteOn command

Sends a MIDI NoteOn commandonthe channel numberspecified in vai1. The note
tumed onis specified in two parts—a note numberin the Low byte and a velocity in the

highbyte.

cmd 11

chord 1

vall Bits 8 through 11 specify the MIDI channel number ($0-$0F)
n 0

low Note number

high Velocity

midiPitchBend command

Sends a MIDI Pitch Bend commandto the channelspecified by va11. The new pitch

bend value is specified by the high word of the command,with theleast significant byte
of the value in the Low byte and the mostsignificant byte in the high byte.

cmd 16

chord 1

vall Bits 8 through 11 specify the MIDI channel number ($0-$0F)
n 0

low Pitch bend least significant byte
high Pitch bend mostsignificant byte

midiPolyKey command

Sends a MIDI Polyphonic Key Pressure command onthe channel numberspecified in
val1. The noteaffected is specified as a note numberin the low byte of the high word.
Its new keypressure is in the high byte.

cmd 12

chord 1

vall Bits 8 through 11 specify the MIDI channel number ($0-$0F)
n 0

low Note number

high Key pressure

40-22 Apple Ics Toolbox Reference, Volume 3

midiProgChange command

Sends a MIDI Program Change commandto the channelspecified in va11. The program

numberis specified in the low byte.

cmd 14

chord 1

vall Bits 8 through 11 specify the MIDI channel number($0-$0F)
n 0
low Program number

high 0

midiSelChnilMode command

Sends a MIDI Select Channel mode commandto the channel specified in val 1. The new
MIDI channel mode is specified by two data bytes, the first of which is passed in the Low
byte and the secondin the highbyte.

cmd 17

chord 1
vall Bits 8 through 11 specify the MIDI channel number($0-$0F)
n 0
low First data byte

high Second data byte

midiSetSysExl command

The MIDI System-exclusive commandpasses a two-word addressto its target. That

address is a pointer to a MIDI packet. The high word of the address is specified by this
command, whereas the low wordis specified by the midiSysExclusive command. The
midiSetSysEx1 command must precede the midiSysExclusive command.See the
following discussion of that command for more information about the format and
content of the MIDI packet.

cmd 21

chord 1

vall 0

n 0
low Low byte of high word

high High byte of high word

Chapter 40 Note Sequencer 40-23

midiSysExclusive command

Passes a two-word addressto its target. That address is a pointer to a MIDI packet. The
low word ofthe addressis specified by this command, whereas the high word is specified
by the midiSet SysEx1 command. The midiSetSysEx1 command must precede the

midiSysExclusive command.

cmd

chord

vall

n

low

high

18
1
0
0
Least significant byte of low word of MIDI packet address

Mostsignificant byte of low word of MIDI packet address

Here is an example of a 3-byte system-exclusive command:

$00 length — Word—Length ofdata to follow; must beset to 8 for this example

S02 : timeStamp : 4 bytes—Time-stamp for send time; 0 for immediate send

$06 lusive Byte—System-exclusiveflag byte; must be set to SFO
$07 datal Byte—First MIDI data byte
$08 data2 Byte—Second MIDIdata byte

$09 data3 Byte—Third MIDI data byte

midiSysCommon command

Sends one or two bytes of MIDI data. Thefirst data byte is passed in the low byte, and
the second data byte, if there is one, is passed in the high byte.

cmd

chord

vall

low

high

19
1

Bits 10 through 8—low nibble ofstatus byte
value varies from 1 through 7

Bits 12 and 11—numberofdata bytes:
00 = 0 data bytes
01 = 1 data byte

10 = 2 data bytes

11 = Invalid value

0
First data byte

Second data byte (if appropriate)

40-24 Apple IIcs Toolbox Reference, Volume 3

midiSysRealTime command

Sends a MIDI System Real-Time command.Thereal-time numberis specified in the low 3

bits of the low byte.

cmd 20

chord 1

vall 0

n 0

low Real-time number ($01-$07)
high 0

Chapter 40 Note Sequencer 40-25

Patterns and phrases

A pattern is any series of seqItems. The Note Sequencer plays melodies by carrying out the
seqitem commands in specified patterns. A phrase is an ordered set of pointers to
patterns or to other phrases. Because a phrase can contain pointers to other phrases, it is

possible to nest phrases. The Note Sequencer supports up to 12 levels of phrase nesting.

Phrases and patterns have a similar layout. Both phrases and patterns are preceded by a

long word header. For phrases, this headeris set to 1; for patterns, the headeris setto 0.
The Note Sequencercan distinguish between phrases and patterns by examiningthis

headervalue. The last long word in both phrases and patterns mustbe set to $FFFFFFFF

andis called the phrase doneflag.

When a program calls the Note Sequencerto play a sequence, the program passes a
parameter containing a handleto thefirst byte of the top-level phrase. This phrase
consists of an ordered series of pointers to the patterns or phrases to be played, followed

by a phrase doneflag marking the end of the phrase.

Each pattern consists of an ordered series of seqitems. The seqltems describe the

characteristics of each note to be played in the sequence. Control and register commands

allow the characteristics of the notes to be modified and also allow the programmerto
build complex sequences by using conditional looping and branching.

The following paragraphs introduce a sample phrase and a samplepattern, so that you can

see the similarities in their structure.

A phraseis identified by a header value of1.

topPhrase dc i12'0001' ; low word

dc i2'0000' ; high word

The phrase bodyconsists of a series of pointers. Each pointer can point either to other
phrasesor to patterns, which are sequences of executable seqItems. Here is an example:

dc i4'phrasel'

dc i4'patterni'

dc 14'phrase2'

A phrase always ends with a phrase doneflag.

de i4'SFFFFFFFF'!

A pattern is identified by a header value of0.

patternl dc i12'0000' ; low word

dc i2'0000' ; high word

40-26 Apple IIGs Toolbox Reference, Volume 3

The body of a pattern consists of seqltems, such as

duration=10, volume=115dc i4'$880ABC74' ; play C4,

dc i14'S880ABE74' ; play D4, duration=10, volume=115

de 14'$880AB074' ; play E4, duration=10, volume=115

Again, the pattern must end with a phrase doneflag.

de i4'SFFFFFFFF'

Chapter 40 Note Sequencer 40-27

A sample Note Sequencer program

The following example contains 65816 assembly-language source code for a simple Note
Sequencer program.

mcopy S.m

DPPointer gequ $10

DPHandle gequ $14

HelpingHand gequ $18 ; for dereferencing handles

KRKKKEKKEKEKKEKKKKEKKKAKEKEKEKEKKKKKEKKKKEKEKKEKKKEKKKKK KKK KKK KK KKK KK KK

Main Start

Using Common

clc ;set native mode

xce

long

phk ;set the data bank to the

same

plb ;as the program bank

jsl StartTools

jsl MakeWaves

jsl SetInstruments

jsl PlaySequence

jmp CleanUp

StartTools _TLStartUp ; Tool Locator

pha ;

_MMStartUp

pla

sta MyID

space for ID returned

40-28 Apple IIGs Toolbox Reference, Volume3

MakeWaves

Trianglel

PushLong #0

PushWord #0

PushWord #$600

PushWord MyID

PushWord #$C005

PushLong #0

_NewHandle

pla

sta HelpingHand

pla

sta HelpingHand+t+2

lda (HelpingHand]

sta DPPointer

pha

PushWord #0

PushWord #0

PushWord MyID

_QDStartup

PushLong #ToolTable

_LoadTools

lda DPPointer

clc

adc #$300

pha

Pushword #0

Pushword #$200

Pushword #$10

_SeqStartup

rtl

ldx #0

lda #1

sta SoundBuffer

inx

sta SoundBuffer,x

inc A

cmp #Sff

bne Trianglel

; get direct page for tools

; direct page

; either 320 or 640 mode

7 max size of scan line

; QuickDraw used $300 bytes

; starts Synthé&Sound Tools

; index thru SoundBuffer

; base of triangle

; step thru buffer

+; slope up in triangle

; byte limit for sound data

Chapter 40 Note Sequencer 40-29

Triangle2 inx start down slopeeo

dec A

sta SoundBuffer,x

cmp #S01 ; don’t want zeros

bne Triangle2

inx ; pad 3 bytes with 1

sta SoundBuffer, x

inx

Sta SoundBuffer, x

inx

sta SoundBuffer,x

ldy #2 ; make 2 teeth

MakeTooth lda #Sff ; Start high

Sawtooth1l1 inx

sta SoundBuf fer, x

dec A 7 Yamp down

bne Sawtoothl

dey ; do 2nd tooth

bne MakeTooth

lda #1 ; pad last 2 bytes

inx

sta SoundBuffer, x

inx

sta SoundBuffer,x

ldy #255 ; Make a square wave

lda #1

Squarel inx

sta SoundBuffer,x

dey

bne Squarel

ldy #255

lda #255

Square2 inx

sta SoundBuf fer, x

dey

bne Square2

40-30 Apple IIGs Toolbox Reference, Volume 3

ldy #256 7; noise wave

inx

Noisel phy

phx

pha * space for random result

_Random

pla

bne Not Zero

inc A

NotZero plx

ply
sta SoundBuffer,x

inx

inx

dey

bne Noisel

PushLong #SoundBuffer

PushWord #$100 ;DOC start address

PushWord #$800 byte count

_WriteRamBlock

rtl

SetInstruments Pushlong #InstTableHandle

_SetInstTable

ldx #3 ; do 4 tracks

TrackLoop phx

Pushword #64 ; push the priority

phx

phx

_SetTrkInfo

plx

dex

bpl TrackLoop

rtl

Chapter 40 Note Sequencer 40-31

PlaySequence PushLong #0 ; no error handler routine

PushLong #0 ; no completion routine

PushLong #Sequence

_StartSeq

PushWord #0

PushWord #0

_ReadChar

pla

Pushword #0 7; no next phrase

_StopSeq

rtl

CleanUp _SeqShutdown

_EMShutdown

_QDShutdown

PushWord MyID

_DisposeAll

_Quit QuitParams

End

KKK KKHKKKKKKKKKEKKKEKHKKEKKKKKEKKKEKKKEKKKKKKKKKKEKKKKKKKRKKKKKKKRKKRKRKK

Common Data

QuitParams dc i4'0,0,0' z quit back to calling program

MyID ds 2

tooltable dc i'2,26,0,25,0' ; two tools, numbers 26 & 25

SoundBuffer ds 2048 z 4 waves, 512 bytes each

InstTableHandle dc i4'InstTable'

InstTable dc i2'4'

dc 14'Sawtooth'

dc 14'Square'

dc 14'Triangle'

dc i4'Noise'

40-32 Apple IIGs Toolbox Reference, Volume 3

Sawtooth

segment

Square

segment

dc

dc

dc

dc

dc

dc

dc

dc

dc

dc

dc

dc

dc

dc

dc

dc

dc

dc

dc

dc

dc

dc

dc

dc

dc

dc

dc

dc

dc

dc

dc

dc

dc

i1'127'

11'0,127'

i1'120'

i1‘'20,1'

11'120'

i1'0,0'

i1'0O'

i11'60,12'

i1'0,0,0'

i1'0,0,0'

i1'0,0,0'

i1'0,0,0'

i1'3'

i1'32'

i1'2,80,90,0,1,1'

11'127,1,2,6,0,12'

i1'127,1,2,1,0,12'

11'127'

i1'0,127'

11'120'

i11'20,1'

41'120'

i1'0,0'

i1'0'

i1'60,12'

i1'0,0,0'

i1'0,0,0'

i1'0,0,0'

i1'0,0,0'

i1'3'

i11'32'

i1'2,80,90,0,1,1'

11'127,3,2,6,0,12'

i11'127,3,2,1,0,12'

‘
w
e

m
e

™
e

=
e

™
e

e
e

m
e

=
e

w
e

=
e

=
e

e
e

w
e

m
e

m
e

m
e

~
e

w
e

™
e

envelope breakpoint 1

increment value 1

breakpoint 2

increment 2

sustain at 120

zero increment is sustain

release to 0 volume

slowly

pad with extra breakpoint

increment pairs till the

total is 8

release segment is 3rd segment

priority increment

pbrange, vibdep, vibf, spare,A,B

topkey, addr, size,ctrl,pitch

halt b, to be swapped in by a

envelope breakpoint 1

increment value 1

breakpoint 2

increment 2

sustain at 120

zero increment is sustain

release to O volume

Slowly

pad with extra breakpoint

increment pairs till the

total is 8

release segment is 3rd segment

priority increment

pbrange, vibdep, vibf, spare,A,B

topkey, addr, size,ctrl,pitch

halt b,to be swapped in by a

Chapter 40 Note Sequencer 40-33

Triangle dc

segment

Noise dc

dc

dc

dc

dc

dc
segment

dc

dc

dc

dc

dc

dc

dc

dc

dc

dc

dc

11'127'

11'0,127'

11'120'

i1'20,1'

11'120'

11'0,0'

11'O'

11'60,12'

i1'0,0,0'

i11'0,0,0'

i1'0,0,0'

i1'0,0,0'

11'3'

11'32'

i11'2,80,90,0,1,1'

411'127,5,2,6,0,12'

11'127,5,2,1,0,12'

11'127'

11'0,127'

11'120'

i11'20,1'

11'120'

i1'0,0'

i1'0O'!

i1'60,12'

i11'0,0,0'

i1'0,0,0'

i11'0,0,0'

i1'0,0,0'

i1'3'

11'32'

i11'2,80,90,0,1,1'

11'127,7,2,6,0,12'

11'127,7,2,1,0,12'

40-34 Apple IIcs Toolbox Reference, Volume3

w
e

m
e

w
e

w
e

™
e

~
e

w
e

=
e

™
e

™
e

envelope breakpoint 1

increment value 1

breakpoint 2

increment 2

Sustain at 120

zero increment is sustain

release to 0 volume

Slowly

pad with extra breakpoint

increment pairs till the

total is 8

release segment is 3rd segment

priority increment

pbrange, vibdep, vibf, spare,A,B

topkey, addr, size,ctrl, pitch

halt b,to be swapped in by a

envelope breakpoint 1

increment value 1

breakpoint 2

increment 2

sustain at 120

zero increment is sustain

release to 0 volume

Slowly

pad with extra breakpoint

increment pairs till the

total is 8

release segment is 3rd segment

priority increment

pbrange, vibdep, vibf, spare,A,B

topkey, addr, size, ctrl, pitch

halt b, to be swapped in by a

Delay

T1

T2

T3

TO

Qtr

Half

Note

C4

D4

E4

F4

G4

Chord

Sequence

Phrasel

Phrase2

Patternl

equ

equ

equ

equ

equ

equ

equ

equ

equ

equ

equ

equ

equ

equ

dc

dc

dc

dc

dc

dc

dc

dc

dc

dc

dc

dc

dc

dc

dc

dc

$80000000

$08000000

$10000000

$18000000

$0

$40000

$80000

$8000

$3C00

$3E00

$4100

$4200

$4300

$80

i4'Phrasel'

i4'1'

i4'Phrase2'

14'Patternl'

i4'Phrase2'

i4'Patternl'

i4'Pattern2'

i4'SFFFFFFFF'

i4'1'

i4'Pattern2'

i4'Patternl'

L4'SFFFFFFFF'

i14'0'

i4'Delay+T0+Qtrt+NotetC4+127' ;

i14'T1+Qtr+Note+C4+Chordt+127'

i4'Delay+T1+Qtr+Note+G4+127'
i4'Delay+TO+Half+NotetF4+127'

14'SFFFFFFFF'

phrase header

terminator

phrase header

terminator

pattern header

full volume

terminator

Chapter 40 Note Sequencer 40-35

Pattern2 dc i14'0O'

dc 14'T2+Note+G4+Chord+127'

dc i4'Note+Half'

dc 14'Delay+T2+Qtr+Note+F4+127'

dc 14'Delay+T3+Qtr+Note+D4+127'

dc 14'T3+Note+G4+Chord+127'

dc i4'2'

dc i4'SFFFFFFFF'

End

40-36 Apple IIcs Toolbox Reference, Volume 3

™
e

w
e

~
e

~
.
e

pattern header

note on

filler note

note off

all notes off

terminator

Note Sequencer housekeeping calls

The following sections discuss Note Sequencercalls that perform commontool set
functions.

SeqBootInit S011A

Initializes the Note Sequencer.

A Warning This call must not be made by an application. a

Parameters This call has no input or output parameters. Thestack is unaffected.

C extern pascal void SeqBootInit();

Chapter 40 Note Sequencer 40-37

SeqStartUp $021A

Starts up the Note Sequencer and performsall the necessary initializations for the toolset.

This call also makes startup calls to the Sound Tool Set and the Note Synthesizer, so an
application should notstart up those tool sets before making this call.

Your application must makesure that the MIDI Tool Set has been started before issuing

this call.

Parameters

Stack before call

Previous contents

dPageAddr Word—Beginning of Note Sequencer direct page

mode Word—MIDIflag

updateRate Word—Rate of interrupt generation

increment Word—Numberofinterrupts per system tick

<—SP
Stack after call

| Previous contents |

| <—SP

Errors $1A03 startedErr The Note Sequenceris already
started.

$1A07 nsWrongVer The version of the Note
Synthesizer is incompatible with

the Note Sequencer.
Sound Tool Set errors Returned unchanged.

Note Synthesizer errors Returned unchanged.

C extern pascal void SeqStartUp (dPageAddr, mode,

updateRate, increment) ;

Word dPageAddr, mode, updateRate, increment;

40-38 Apple IIGs Toolbox Reference, Volume 3

dPageAddr

mode

updateRate

increment

Specifies the location for the Note Sequencer’s direct page. This
direct page mustactually be three pages of bank zero memory,

starting at the specified address. The first page is used by the Note
Synthesizer and Sound ToolSet, and the other two by the Note
Sequencer.All three pages must be locked and page-aligned.

Determines whether the Note Sequencer will operate in interrupt
mode, in which updates are performed automatically as interrupts
occur, or in step mode, in which updates occur only when explicit step
commandsare issued. If the low bit of modeis set to 0, then

interrupts are used;if it is set to 1, then step modeis used.

The high bit of the mode parameter determines whether MIDI
processing is enabled. If an application uses MIDI commands or wants
to support automatic generation of appropriate MIDI commands,
then the high bit must besetto 1.

Specifies how often the Note Sequencerwill updateits actions, using
interrupts. For example, an updateRate value of 500 specifies that the
Note Sequencerwill receive interrupts at 200 Hz, or every 5

milliseconds. A value of 250 meansthat interrupts will run at 100 Hz, or

every 10 milliseconds (500 is the default value). The samerate is used
by the Note Synthesizer to update its instruments’ envelopes.

Specifies how manyinterrupts constitute one tick of the Note

Sequencercounter. If updateRate is 500 and incrementis 20, then one
tick will take 100 milliseconds. The Note Sequencergets interrupts
every 5 milliseconds, and the counteris incremented every 20

interrupts. If a quarter note equals 5 ticks, thenit lasts half a second,
which corresponds to a tempo of 120 beats per minute. In general, you
can compute the numberof beats per minute by using the following
formula:

B = (24 * updateRate) / (increment * T)

where B is beats per minute and T is the numberofticks in a beat.

Typical updateRate values might be

60 Hz 60/0.4 = 150; updateRate = 150
100 Hz 100/0.4 = 250; updateRate = 250
200 Hz 200/0.4 = 500; updateRate = 500

Larger values for updateRateresult in greater control of the tempoofa

sequence and smoother envelopes. However, a higher updateRate also
requires more processortime.

Chapter 40 Note Sequencer 40-39

One general method for choosing appropriate updateRate and
incrementvaluesis to decide on the shortest note you will want to

play. Suppose the shortest note that you wantto play is a sixteenth
note. Assign sixteenth notes a value of 1. Eighth notes are twice as
long, so assign them a value of 2. Quarter notes then receive a value of
4, half notes 8, and whole notes 16. Now decide how long you want a

whole note to be and compute the updateRate and incrementto arrive

at the duration you want.

Once you haveset the updateRate value,it remains in effect; you can

changeit only by making the Note Synthesizer NsSet UpdateRate

call or by shutting down andrestarting the Note Sequencer. You can
change the incrementvalue, and the Note Sequencer provides tempo
calls that vary the tempo for you.

40-40 Apple IIGs Toolbox Reference, Volume 3

 SeqShutDown $031A

Shuts down the Note Sequencertoolset. It frees any buffers that the tools may have
allocated. An application that uses the Note Sequencer should call seqShut Downbefore

terminating.

This call has no input or output parameters. The stack is unaffected.Parameters

Errors $1923 nsNot Init The Note Synthesizer was not
started.

$1A05 noStartErr The Note Sequencer was not
started.

$0812 noSAppInitErr The Sound Tool Set was not

started.

C extern pascal void SeqShutDown () ;

Chapter 40 Note Sequencer 40-41

SeqVersion $041A

Returns the version numberof the Note Sequencerthatis currently in use. Refer to
Appendix A, “Writing Your OwnToolSet,” in Volume 2 of the Toolbox Reference for
information on the format and contentof the returned versionNum value.

Parameters

Stack before call

Previous contents

Space Word—Space for result

<—SP

Stack after call

Previous contents

versionNum Word—Note Sequencer version number

<—SP

Errors None

C extern pascal Word SeqVersion();

40-42 Apple Ics Toolbox Reference, Volume 3

SeqReset $051A

Resets the Note Sequencer. SeqResetis called when the Apple IIGS system is reset. All

internal notes presently being played are turnedoff.

A Warning This call must not be made by an application. a

Parameters This call has no input or output parameters. The stack is unaffected.

C extern pascal void SeqReset();

Chapter 40 Note Sequencer 40-43

SeqStatus $061A

Returns a Boolean flag indicating whether or not the Note Sequenceris active. If the tool

set is active, the flag is TRUE (nonzero); otherwise, it is FALSE (zero).

@ Note: If your program issuesthis call in assembly language,initialize the result space on

the stack to NIL. Upon return from SeqSt atus, your program need only check the
value of the returned flag. If the Note Sequenceris not active, the returned value will

be FALSE (NIL).

Parameters

Stack before call

Previous contents

Space Word—Spacefor result

<—SP

Stack after call

Previous contents

activeFlag Word—Boolean; TRUE if Note Sequenceris active

<—SP

Errors None

C extern pascal Boolean SeqStatus();

4044 Apple IIGs Toolbox Reference, Volume 3

Note Sequencercalls

The following sections discuss the Note Sequencertoolcalls.

ClearIncr SQAI1A

Sets the Note Sequencer’s incrementvalueto 0, halting the current sequence, and returns
the previous incrementvalue. Setting the increment to 0 does not disable the Note
Sequencer’s interrupts, so envelopesarestill updated. This meansthat, although the

sequencewill not progress, notes being played whenthe incrementwassetto 0 may hang.
This call is valid only while a sequenceis playing.

You mighttry using SeqAl1NotesOff and ClearIncr when you wantto stop a
sequence and beabletostart it again easily. A sequence stopped in this way can easily be

restarted with a call to SetIncr.

Parameters

Stack before call

Previous contents

Space Word—Spacefor result

<—SP

Stack after call

Previous contents

Result Word—Previous increment value

<—SP

Errors None

C extern pascal Word ClearIncr();

Chapter 40 Note Sequencer 40-45

GetLoc SOCIA

Retumscertain information about the sequence that is playing. This call provides an index
to the seqItem that is executing, the current pattern, and the nesting level. The nesting
level indicates how deeply control has passedinto a structure with phrases nested within
phrases. A nesting level value of 0 indicates that the Note Sequencer is playing the

top-level phrase.

For example,if the Note Sequenceris playing the third seqltem in pattern 1, which occurs

in phrase 1, then Get Locreturnsthis information:

curPattItem = 3

curPhraseltem = 1

curLevel =1

Parameters

Stack before call

Previous contents

Space Word—Spacefor result

Space Word—Spacefor result

Space Word—Spacefor result

<—SP

Stack after call

Previous contents

curPhraseltem Word—Currentpattern in phrase specified by curLevel

curPattltem Word—Current seqltem in pattern specified by curPhraseltem

curLevel Word—Nesting level for current phrase

<—SP

Errors None

C extern LocRec GetLoc();

40-46 Apple IIGs Toolbox Reference, Volume 3

GetTimer SOBIA

Returns the value of the Note Sequencer’s tick counter. While the counter is advancing,
the value returned is necessarily somewhat inexact, since the value changesas thecallis

executed. Thecall is valid only while a sequenceis playing.

Parameters

Stack before call

Previous contents

Space

Stack after call

Previous contents

Word—Spacefor result

<—SP

Result Word—Current timer value

<—SP

Errors None

C extern pascal Word GetTimer();

Chapter 40 Note Sequencer 40-47

SeqAllNotesOff SODIA

Switches off all notes that are playing but does not stop the sequence. Thus, any notes
that are held are turned off, but the sequence continues. Usethis call to silenceall

instrument voices temporarily while a sequenceis active. If the high bit of the mode
parameter to the SeqStartUpcall wasset to 1, then the Note Sequenceralso turnsoffall
external MIDI notes of whichit is aware.

Parameters This call has no input or output parameters. The stack is unaffected.

Errors None

C extern pascal void SegAllNotesOff () ;

40-48 Apple IIGs Toolbox Reference, Volume 3

SetIncr $091A

Sets the Note Sequencer's increment value. An application can usethis facility to control

the tempoof a sequence.If the increment parameteris set to 0, the sequencewill halt.

Parameters

Stack before call

Previous contents

increment Word—Desired increment value

<—SP

Stack after call

| Previous contents |

| | <—SP

Errors None

C extern pascal SetIncr (increment) ;

Word increment;

Chapter 40 Note Sequencer 40-49

SetInstTable $121A

Sets the current instrumenttable to the one specified in instTable.

Parameters

Stack before call

Previous contents

- instTable - Long—Handle to instrumenttable

 <—SP

Stack after call

| Previous contents |

—

Errors None

C extern pascal void SetInstTable(instTable) ;

Handle instTable;

instTable The instTable parameter is a handle to an instrument table. The

instrumenttable is a data structure in Apple IIGS memory that

contains pointers to one or more instruments. The format of an
instrument table is as follows:

$00 instNumber — Word—Numberofinstruments in table

$02 ! , . .
; instArray : Array of longs—instNumberpointers to instruments
L j

Note that the first pointer in the array corresponds to instrument0.

See Chapter 41, “Note Synthesizer,” in this book for more information
about instruments.

40-50 Apple IIs Toolbox Reference, Volume 3

SetTrkInfo SQE1A

Assigns instruments in the current instrumenttable to logical tracks and determines the
priorities of the instruments so that the Note Sequencer can correctly allocate generators
to them. Before starting to play a sequence, an application should call setTrk Infofor
each track it uses.

If MIDI was enabled when the Note Sequencerwas started up (see “SeqStartUp $021A”

earlier in this chapter), then SetTrk Info can be used to enable MIDI output on
particular tracks. If the most significant bit of the trackNum parameteris set to 1, then
everything played on the specified track will produce MIDI output on the channel number
specified by the second-mostsignificant byte of trackNum. For example, a trackNum
value of $8201 specifies that everything played on track 1 produces MIDI output on MIDI
channel2.

The application may disable the internal voices of the Apple IIGs for a specified track by
issuing this call with the highest bit of the instIndex parameterset to 1.

You must make a Set InstTablecall beforeissuing this call.

Parameters

Stack before call

Previous contents

priority Word—Priority value

instIndex Word—Index numberfor instrument (first instrument is number 0)

trackNum Word—Track numberfor instrument

<—SP

Stack after call

| Previous contents |

| | <—SP

Errors $1A06. =instBndsErr The specified intrument number
is out of the bounds of the

instrumenttable.

C extern pascal void SetTrkInfo(priority, instIndex,

trackNum);

Word priority, instIndex, trackNum;

Chapter 40 Note Sequencer 40-51

StartInts $131A

Enables interrupts. Use this call to restore normal functioningafter a call to StopInts.

Parameters This call has no input or output parameters. The stack is unaffected.

Errors None

C extern pascal StartInts();

40-52 Apple IIGs Toolbox Reference, Volume 3

StartSeq SOFIA

Starts interpretation of a series of seqItems stored at the address specified by the
sequence parameter.

Parameters

Stack before call

Previous contents

— errHndlrRoutine -

- compkRoutine -

- Sequence -

Stack after call

| Previous contents |

Errors $1921

$1A00

$1A01

$1A02

$1A04

$1A05

$2004

$2007

Long—Pointerto error handler

Long—Pointer to completion routine

Long—Handle to sequence

<—SP

<—SP

nsNoneAvail Note Synthesizer error: no
generatoris available.

noRoomMidiErr The Note Sequenceris tracking
32 notes that are currently

playing; there is no room for a
MIDI NoteOn.

noCommandErr The current seqItem is not valid

in its context.

noRoomErr The sequenceis nested more than

twelve levels deep.
noNoteErr Can’t find the note for a

noteOff command.
noStartErr The Note Sequencer was not

started.

miToolsErr Required tools not active or

wrong version.

miNoBufErr No MIDI output bufferis
allocated.

Chapter 40 Note Sequencer 40-53

errHndlrRoutine

compRoutine

sequence

extern pascal void StartSeq(errHndlrRoutine,

compRoutine, sequence);

Pointer errHndlerRoutine, compRoutine;

Handle sequence;

The errHndlrRoutine parameter is a pointer to an error-handling

routine supplied by the application programmer. If errHndlrRoutineis

set to NIL, then the Note Sequencerwill not invoke a routine. For

information about error-handling routines for the Note Sequencer, see
“Error Handlers and Completion Routines” earlier in this chapter.

The compRoutine parameterpoints to a routine to be called when

StartSeq reaches the end of a sequence.If compRoutineis set to

NIL, then the Note Sequencerwill not invoke a routine. For

information about completion routines for the Note Sequencer, see
“Error Handlers and Completion Routines” earlier in this chapter.

The sequence parameteris a handle to the phrase to be executed by
the Note Sequencer. The handle passed in sequence should be locked.

If the Note Sequenceris running in interrupt mode, as specified by the
mode parameter of the SeqStartUpcall, then the Note Sequencer

simply starts interpreting seqltems. If, however, the mode parameter

specified that the Note Sequencer start up in step mode, then the

StartSeqcall must be followed by a series of calls to stepSeq to

play the seqlItems individually.

40-54 Apple IIGs Toolbox Reference, Volume 3

StartSeqRel $151A

Starts interpretation of a series of seqItems stored at the address specified by sequence.
This call differs from Start Seqin thatit uses relative addressing from the beginning of
the sequence. Thatis, all phrase and pattern pointers are interpreted as offsets from the
start of the sequence, rather than as absolute addresses. As a result, coding phrases and
patternsis easier. Following the call description you will find a code sample showing how
to specify these relative offsets.

The Note Sequenceruses the dereferenced value of sequence as the base address forall
phrases and patterns. It does not check for overflow and does not support negative
offsets from the specified base address.

Parameters

Stack before call

Previous contents

- errHndlerPtr - Long—Pointer to error handler

— compRoutine - Long—Pointer to completion routine

- sequence - Long—Handle to sequence

<—SP
Stack after call

| Previous contents |

<—SP

Chapter 40 Note Sequencer 40-55

Errors

errHndlrPtr

compKoutine

$1921 nsNoneAvail Note Synthesizer error: no

generator is available.
$1A00 =noRoomMidiErr The Note Sequenceris tracking

32 notes that are currently

playing; there is no room for a

MIDI NoteOn.
$1A01 noCommandErr The current seqltem is not valid

in its context.
$1A02 noRoomErr The sequenceis nested more than

twelve levels deep.

$1A04 noNoteErr Can't find the note for a
noteOff command.

$1A05 noStartErr The Note Sequencer was not
started.

$2004 miToolsErr Required tools not active or
wrong version.

$2007 miNoBufErr No MIDI output buffer is

allocated.

extern pascal void StartSeqRel(errHndlrPtr,

compRoutine, sequence);

Pointer errHndlerPtr, compRoutine;

Handle sequence;

The errHndlrPtr parameteris a pointer to an error-handling routine

supplied by the application programmer.If errHndlrPtris set to NIL,

then the Note Sequencerwill not invoke a routine. For information

about error-handling routines for the Note Sequencer, see “Error

Handlers and Completion Routines’ earlier in this chapter.

The compRoutine parameterpoints to a routine to be called when
Start Seq reaches the end of a sequence.If compRoutineis set to
NIL, then the Note Sequencerwill not invoke a routine. For
information about completion routines for the Note Sequencer, see

“Error Handlers and Completion Routines” earlier in this chapter.

40-56 Apple IIGs Toolbox Reference, Volume 3

sequence The sequence parameteris a handleto the phrase to be executed by

the Note Sequencer. The handle passed in sequence should be locked.

If the Note Sequenceris running in interrupt mode,as specified by the

mode parameter of the SeqStart Upcall, then the Note Sequencer
will simply start interpreting seqltems. If, however, the mode
parameter specified that the Note Sequencerstart up in step mode,
then the StartSeq call must be followed bya series of calls to
StepSeqto play the seqltemsindividually.

Chapter 40 Note Sequencer 40-57

Sample sequence with relative addressing

Thefollowing example, a sequencepresented in 65816 assembly language, shows how to
set up relative addressing for startSeqRel.

Delay

Tl

T2

qtr

hlf

Note

C4

D4

F4

G4

Chord

phrhndl

phrl

phr2

patl

equ

equ

equ

equ

equ

equ

equ

equ

equ

equ

equ

dc

dc

dc

dc

dc

dc

dc

dc

dc

dc

dc

dc

dc

dc

dc

dc

dc

dc

$80000000

$08000000

518000000

540000

$80000

$8000

$3C00

$3E00

$4100

$4300

$80

i4'phri-phrhndl'

i4'01'

14'phr2-phrhndl'

14'pati-phrhndl'

14'phr2-phrhndl1'!

14'patl-phrhndl'

i4'pat2-phrhndl'

1i4'SFFFFFFFF'!

i4'0O1'

i4'pat2-phrhnd1'

i4'patl-phrhndl'

14'SFFFPFFFF'!

14'00'

it's a phrase

end of phrase 1

it's a phrase

end of phrase 2

it's a pattern

14'Delay+Tl+qtr+Note+C4+115'

14'T1l+qtr+Note+C4+Chord+115'!
14'Delay+T2+qtr+Note+G44+115'!
14'Delay+T1+hlf£+Note+F4+115'!

14'SFFFFFFFF'

40-58 Apple IIGS Toolbox Reference, Volume 3

end of patl

pat2 dc

dc

dc

dc

dc

dc

dc

i4'00' 7; it's a pattern

14'T1+Note+G4+Chord+115' , NoteOn

14'Notethlf' ; filler note

14'Delay+T2+qtr+Note+F4+115'

14'Delay+T2+qtr+Note+D4+115'

14'T1l+Note+G4+Chord+0' ; NoteOff

14'$00000002' ; AllNotesoOff

L4'SFFFFFFFF' 7 end of pat2

Chapter 40 Note Sequencer 40-59

StepSeq S101A

Increments the Note Sequencer counter, causing the appropriate seqltems in the current
sequence to be processed. A StepSeqcall is the equivalent of one tick of the Note

Sequencer counter, which consists of a numberof interrupts equal to the value of the
increment parameter of the SeqStartUpcall.

Parameters This call has no input or output parameters. The stack is unaffected.

Errors $1921 nsNoneAvail Note Synthesizer error: no
generatoris available.

$1A01 noCommandErr The current seqltem is not valid

in its context.

$1A02. noRoomErr The sequenceis nested more than
twelve levels deep.

$1A04 noNoteErr Can't find the note for a
noteOff command.

C extern pascal void StepSeq();

4060 Apple IIGs Toolbox Reference, Volume 3

StopInts $141A

Disables Note Synthesizer and Note Sequencerinterrupts.

If the Note Sequenceris started up, andinterrupts are enabled, the Note Synthesizercalls
the Note Sequencerinterrupt handler wheneveran interrupt occurs. When no notes are
being played, the overhead involvedin this processing is unnecessary, so StopInts

provides a way to cause the Note Synthesizer not to service the interrupts. To restart
interrupt processing, use the Start Ints call.

The startSeqcall starts interrupt processing automatically, and the seqshutDown
automatically halts it. No other Note Sequencercalls affect interrupt processing except
StopInts, StartInts, and SeqShutDown.

Parameters This call has no input or output parameters. The stack is unaffected.

Errors None

C extern pascal void StopInts();

Chapter 40 Note Sequencer 40-61

StopSeq $111A

Halts interpretation of a phrase. The next parameter specifies whether execution should
continue if there are more phrases to be executed in the current sequence.If so, the next
phrase begins. Otherwise, the sequencer simply stops andcalls the application's

completion routine. See “Error Handlers and Completion Routines” earlier in this chapter

for more information on completion routines. If next is not equalto 0, then the current

phrase terminates, and execution continues with the next phrase.

If any notes are tumed on with noteOn commands anda call to StopSeqhalts the phrase

in which they occur, they could continue to play forever, waiting for noteoff commands

that will never occur. You should thus take care to turn off any such notes before making a
call to StopSeq.

Parameters

Stack before call

Previous contents

next Word—Boolean; TRUE to process remaining phrases

<—SP

Stack after call

| Previous contents |

| | <—SP

Errors None

C extern pascal StopSeq (next) ;

Boolean next;

40-62 Apple IIGs Toolbox Reference, Volume 3

Note Sequencer error codes

Table 40-1 lists the error codes that may be returned by Note Sequencercalls.

u Table 40-1 Note Sequencer error codes

Value Name Definition

$1A00 noRoomMidiErr The Note Sequenceris tracking 32 notes that are
currently playing; there is no room for a MIDI

NoteOn.

$1A01 noCommandErr The currentseqltem is not valid in its context.
$1A02 noRoomErr The sequenceis nested more than twelvelevels

deep.

$1A03 startedErr The Note Sequenceris already started.

$1A04 noNoteErr Can’t find the note fora noteOff command.

$1A05 noStartErr The Note Sequencer was notstarted.

$1A06 instBndsErr The specified instrument numberis out of the
bounds of the instrumenttable.

$1A07 nsWrongvVer The version of the Note Synthesizeris

incompatible with the Note Sequencer.

Chapter 40 Note Sequencer 40-63

Chapter 41 Note Synthesizer

This chapter documents the Note Synthesizer. This is new

documentation not previously presented in the
Apple IIGS Toolbox Reference.

41-1

About the Note Synthesizer

The Note Synthesizeris a tool set that controls operation of the Apple IIcs Digital
Oscillator Chip (DOC). With it, an application can turn the Apple IIGsinto a digital

synthesizer for playing music and generating soundeffects. The Note Synthesizer
provides far more control over a sound than the Sound Tool Set does, and it supports
looping within a sound sequence and enveloping a sound.

@ Note: The Note Synthesizer, the Note Sequencer, and the MIDI ToolSet refer to the
software tools provided with the Apple IIGS, not to any separate instrument or
device. The MIDI tools are software tools for use in controlling external instruments,
which may be connected through a MIDIinterface device.

The following list summarizes the capabilities of the Note Synthesizer. The toolcalls are
grouped according to function. Later sections of this chapter discuss the tool set in
greater detail and define the precise syntax of the Note Synthesizertoolcalls.

Routine Description

Housekeeping routines

NSBoot Init Called only by the Tool Locator—mustnot be called by

an application

NSStartUp Initializes the Note Synthesizer for use by an

application and establishes values for many important
operational parameters

NSShutDown Informs the Note Synthesizer that an application is
finished using its tool calls

NSVersion Returns the Note Synthesizer version number

NSReset Called only when the system is reset-—mustnotbe called
by an application

NSStatus Returns the operational status of the Note Synthesizer

41-2 Apple IIGs Toolbox Reference, Volume 3

Note Synthesizer tool calls

AllNotesOff Turnsoff all Note Synthesizer generators

AllocGen Requests a sound generator

DeallocGen Frees a sound generator

NoteOff Lets a note die out

NoteOn Starts a note

NSSetUpdateRate Sets the update rate for the Note Synthesizer

NSSetUserUpdateRtn Sets the user update routine

Using the Note Synthesizer

An application that uses the Note Synthesizer mustfirst start it up and write the wave
information to the DOC RAM byusing the Sound ToolSet’s writeRAMBlockcall, then

allocate DOC generatorsfor its use with AllocGen.It can play musical notes by making

individual calls to NoteOn and Not eOfffor each note thatit plays. The Not eOncall
Starts a generator and a process.that automatically updates envelopesas it playsits

assigned instrument. Whenthe application calls Noteof f, the Note Synthesizer enters the

release phase of the envelope for that generator, and the note begins to die away.

The Note Synthesizer requires that the Sound Tool Set be loaded and started up. One
page of bank zero memory mustbeallocated to the Sound ToolSet for use as a direct
page. The Note Synthesizer shares this direct-page space with the Sound ToolSet.

The sound envelope

The envelope describes the graph of a sound’s loudness over time. The terms loudness,
amplitude, and volume all refer to the same characteristic of a sound. In addition, the

MIDI quantity velocity is normally mappedto a note’s loudness,so that, for instance, the
faster a key on a keyboard is struck, the louderits corresponding note will be. A note’s

envelope givesit its dynamic quality. A short, sharp sound hasa steep, short envelope,

and a long, smooth sound hasa flatter, longer envelope.

A synthesizer’s envelopeis traditionally described in terms of attack, decay, sustain, and

release, or ADSR. Figure 41-1 shows an example of a simple envelope described in terms
of ADSR.

Chapter 41 Note Synthesizer 41-3

= Figure 41-1 Sound envelope, showing attack, decay, sustain, and release

yn D
l N

yo“
Avs \
/ \
/ . S§

‘.

/ ~.R
/ “A
4 “.
4 “A.
/ sy

“Aw

The attack portion of an envelopeis the period during which the soundincreases from

silence to its peak loudness. This part of the envelope determines the suddennessof a

sound. A drumbeator a pluckedstring has an extremely steep attack, whereas a bowed

string or a softly blown wind instrument has a muchflatter attack.

The decay part of the envelopeis the period during which the soundfalls off from its peak
loudnessto the level at whichit stays, that is, its sustain portion. Attack and decay
together can be used to control a sound’s percussiveness. Sounds with a steep attack and

decay tend to soundplucked orpercussive. A steep attack followed by a flat decay, or by
little or no decay, creates a blare like that of a loud trumpet. A very flat attack and decay

produce a sound with a soft, smooth quality.

Sustain determines the note’s overall perceived loudness and duration. A drumbeat has

virtually no sustain or release; it consists almost entirely of attack and decay. A long, slow

note on a violin, by contrast, might have a very flat attack and decay, and a long, high
sustain.

Therelease is the portion of a note as it dies away. A long release can produce a nice
ringing quality but can also be a problemif the noteis still sounding when another and
dissonant note begins to sound.

41-4 Apple IIGS Toolbox Reference, Volume 3

Note Synthesizer envelopes

The envelope definition in the Note Synthesizer’s instrument record is somewhat more
complex than this simple four-part scheme. The instrument's envelopefield can specify up
to eight segments instead ofjust four, so more complex sequencesofattack, decay,
sustain, and release are possible. For example, the physical properties of pianos cause

them to have a complex envelope with two attack segments. A simple ADSRis therefore
limited in its ability to simulate a piano’s envelope. The Note Synthesizer can do better,

becauseits eight envelope segments allow a closer approximation of the piano’s actual
envelope.

Figure 41-2 shows an envelopecreated with eight envelope segments.

= Figure 41-2 Typical Note Synthesizer envelope

A

A 47 \5
Piz f ‘om... 6 7
SewWy _— ~

2's t “\
/ 7 ‘
/ \y “
/ v ‘s
I ‘J

An instrument's envelope definition is composed ofupto eight linear segments. The
segments are defined as a series of breakpoints and increments. During each segment, the
note’s loudnessslopes from its starting value toward its defined breakpoint value. The
shape of the envelope is arbitrary; it can be any shape that can be specified in eight

segments, so complex envelopes are possible. The last breakpoint, though, should always

be 0, so that the note dies away atthe end. If the volume of any individual segment goes

to 0 before the end of the segment, the Note Synthesizer considers the note done.

The breakpointrepresents the loudness of the sound as a byte value between 0 and 127 on
a logarithmic loudness scale. A value difference of 16 represents a change of 6 decibels in
loudness.

Chapter 41 Note Synthesizer 41-5

The increment determines the amountof time to be spent reaching the breakpoint

volume. The value is a 2-byte fixed-point numberindicating the amount by which the
current volumeis to be adjusted at each update (the default rate is 100 updates per
second; you can use the NSStartUp and NSSetUpdateRatetoolcalls to set other

values). The low-order byte contains the numeratorfor a fractional increment. For
example, an incrementvalue of 1 translates to a fractional increment of 4s. In this case,
the volumeis incremented once every 256 interrupts. The Note Synthesizer processes the

segment until its volume reaches the specified breakpoint value. At that time, the Note

Synthesizer moves to the next segment.

The length of time that an envelope segmentlasts is given by the following formula:

_ IG-N)ls 256

(0.4)*(+R)

where

T = segment’s duration
[= last breakpoint
N = next breakpoint
I = increment value
R = updaterate

As an example, for a segmentthat changes from 30 to 40 with an incrementvalue of 25 and
an update rate of 100 cycles per second, the formula becomes

_ 1G0-40)1+256 2560
T=)4)*(25*100) (0.42500 72° Seconds

Thus, with the given parameters, the specified segmentwill last 2.56 seconds.

The incrementvalue of a sustain segmentis 0, so the previous formula cannot be used to
calculate the duration of the sustain portion of an envelope.Instead, the sustain portion
simply continues until a release is signaled.If the release portion of the note is sustained,
then the note continuesto play until no available generators are left, and the generator
producing the noteis reallocated to another note.

414 Apple IIGs Toolbox Reference, Volume 3

Instruments

The Note Synthesizer's basic functional unit is an instrument. This is a data structure
stored somewhere in the memory of the Apple IIcs that defines the sound characteristics
of a played note. When a program makes the NoteOncall, it passes a pointer to an
instrument, andthat instrument is used while the soundis generated. Figure 41-3 showsthe

format of the instrument data structure.

a Figure 41-3 Instrument data structure

: 24 bytes

Byte
Byte
Byte
Byte
Byte
Byte
Byte
Byte

aWaveCount Wave entries

bWaveCount Waveentries

Specifies the envelope for the soundasa series of eight segments,
each a breakpoint and incrementvalue pair (see “Note Synthesizer

Envelopes”earlier in this chapter for detailed information on these
concepts). Each breakpointis a 1-byte value specifying a target
volumelevel in the range from 0 through 127. Each incrementis a
2-byte value that determines the amountof time the Note Synthesizer
will spend reaching the breakpoint volume(and,therefore, the slope
of the segment).

The envelopearray has the following format:

$00 !
: envelope

$18 rel

$19 riorityIncrement

$1A it

$1B vibra

$1C vibra

$1D

SIE aWaveCount

$1F bWaveCount

$20 !
: aWaveList :

a _J

$xx ! !
. bWaveList :

l J

envelope

$00 breakpoint0O

$01 _ increment0O —

$03 breakpointl

$04 _— incrementl _

$15 breakpoint?

$16 — increment?

Byte—Breakpointvalue for segment 0
Word—Incrementvalue for segment 0

Byte—Breakpoint value for segment1
Word—Incrementvalue for segment1

Byte—Breakpointvalue for segment7
Word—Incrementvalue for segment 7

Chapter 41 Note Synthesizer 41-7

releaseSegment

Defines the segmentat which release begins when a Not eOf£ callis
made. Its value can be any numberfrom 0 to 7 and identifies which
segment in the sequenceis the beginning of the release phase of the
envelope. The release portion may thus occupy several segments, but

the last breakpoint should always be 0. For example,if

releaseSegmentis set to 5 and breakpoint7 has valueof 0, the

Note Synthesizer progresses through segments 5, 6, and 7 before
ending the note.

priorityIncrement

Subtracted from the generator’s priority value when the envelope

reaches its sustain phase. The Note Synthesizer uses the changing

priority values to reallocate generators, giving higherpriority to notes
that are just starting. When an envelopereachesthe release portion,

the priority value assigned to its generator is again reduced, this time

to half its current value. Thus, the higherpriorities go to notes that are

just starting; notes being sustained are accorded lowerpriority, and
notes in their release phase receive lowestpriority. This is just a rule of
thumb; the actualpriority values depend onthe priority that was

specified when the generator wasallocated. For more information on

generatorpriorities, see “Generators” later in this chapter.

pitchBendRange

Specifies the maximum pitch bendthatis possible for the note. The

maximum possible value for a pitch bend is 127; pitchBendRange

specifies how many semitonesthe pitch is raised whenthe pitch bend
value is 127. The legal values are 1, 2, and 4 semitones. Note that the
only way to changethepitch bendvalue of a notethat is playing is to
change the pitchBendRangefield of the appropriate Generator

Control Block (GCB) (see “Generators” later in this chapter for
information on the format and content of the GCB).

The pit chBendRangefield is used mainly by the Note Sequencer.It

is possibleto setits value directly, but it is normally used by the Note

Sequencer to pass information to the Note Synthesizer about how to
play notes in a sequence.

41-8 Apple IIGs Toolbox Reference, Volume 3

vibratoDepth Any numberfrom 0 to 127. A depth of 0 specifies that there is no

vibratoSpeed

inSpare

vibrato effect on the note. Vibrato is produced by modulating the
pitch of the twooscillators that make up a generator, using a triangle
wave produced by a low-frequency oscillator (LFO). When the
vibratoDepth parameter specifies that there is to be no vibrato
effect, the vibrato software is switched off to save processing time,
because the processing required to create the triangle wave can
consumea large amountof processortime.

Controls the rate of vibrato. Higher values produce faster vibrato. The

actual speed of vibrato effect depends on the update rate, which
defaults to 100 updates per second. You can use the NSStartUp and
NSSetUpdateRatetoolcalls to set otherrates.

Mustbeset to zero.

aWaveCount, bWaveCount

Specify the numberof wavelist entries (up to 255) that follow the
wavecounts.

aWaveList, bWaveList

$00
$01
$02
$03
$04

A wavelist is an array of variable length. The elements of the array are
6-byte structures. The corresponding wavecountfield indicates the
numberofentries in each wavelist.

An entry in a wavelist data structure specifies wave data thatis

intelligible to the DOC. The Note Synthesizer places the data into the
DOCregisters.

wfTopKey Byte

wfWaveAddress Byte

wfWaveSize Byte

w£DOCMode Byte

— wfRelPitch Word

wfTopKey Whenthe Note Synthesizer plays a note, it examines the
wfTopKeyfield of each waveform in the wavelists until it finds
a value that is greater than or equalto the value ofthe noteit is
attempting to play. The first waveform it finds with an
acceptable wfTopKey Valueis the oneit plays. For this reason,
waveforms should bestored in increasing order of wfETopKey

value. The last waveform in a wavelist should have a value of127,
the maximum valid pitch value.

Chapter 41 Note Synthesizer 41-9

wfWaveAddress Thehigh byte of the waveform’s address in sound RAM.Its value

is copied into the Address Painter register of the DOC.

wfWaveSize Sets the size of the DOC’s wavetable and the frequency
resolution of the DOC. This data is copied directly to the DOC’s
Bank-Select/TableSize/Resolution register. The resolution and

table size should normally be equal.

wfDocMode Sets the mode of the DOC.This field corresponds to the control
register of the DOC and supplies the stereo position of the

oscillator. Bit 3 of this register (the interrupt enable bit for the
DOC) should alwaysbeset to 0.

wfRelPitch A word value used to tune the waveform. The high-byte valueis
the semitone, and the low-byte valueis fractions of semitones. A

value of 1 in the low byte corresponds to %s of a semitone. A

wavelist can specify a full range of notes for an instrument with

entries for each note that differ only in the wfRe1Pitchfield.
Such a wavelist specifies an instrument whosetimbre is the same

for every note; only thepitch is different.

For more information on DOCregisters and waveforms, see Chapter 47, “Sound ToolSet
Update,” and the Apple Ilcs Hardware Reference.

DOC memory

An application that uses the Note Synthesizer must use the Sound ToolSetcall
WriteRAMB1lockto load into DOC memory any waveformsthatit can use. You must not
place a 0 in thefirst 256 bytes of DOC memory because doingso halts the timer oscillator
and causes a system failure. If the application uses the clock function of the MIDI Tool
Set, then it must not write to the first 256 bytes of DOC memory.

 Generators

Each generator is a pair of DOCoscillators. There are 32 such oscillators; two of them are
reserved for the use of Apple Computer, Inc. The remaining 30 are paired into 15
generators for the Note Synthesizer. The Note Synthesizer uses one of these generators as

a timer, leaving 14 generators for generaluse.If the MIDI ToolSet is started up andis
using the MIDI clock function, another generatoris allocated to serve as the MIDIclock,
leaving 13 general-purpose generators for application use.

41-10 Apple IIGs Toolbox Reference, Volume 3

The Note Synthesizer allocates generators to all the different sound tools that may need
them. It therefore requires a priority schemefor allocating generators in the eventthat a
generator is requested whenall generators are in use. When a generatoris allocated,it
receives a priority. A generator’s priority may range from 0 through 128. A priority of 0

means the generator is not being used and will be allocated to any soundtoolthat requests
it. A priority of 128 indicates that the generator is locked and cannotbereallocated. The
Note Synthesizer uses remaining values in a generator’s range to controlallocation of

generators.

The Note Synthesizer automatically lowers the priority of a generator that has reached the

sustain portion ofits envelope and lowers it again when it reaches the release portion.
Whenthe note stops, the generator’s priority becomes 0. Your application specifies a

priority when requesting a generator. The Note Synthesizer then allocates a generator to

your applicationif it finds one with a lower priority value (see the description of the
AllocGentoolcall later in this chapter for more information).

The Note Synthesizer divides its direct-page area into 15 blocks of 16 bytes, called

Generator Control Blocks (GCB). The GCB contains the values of any “knobs” or “dials”

affecting the parameters ofthe notethatit is currently playing. A programmer normally
should not access the GCB.

Figure 41-4 shows the format and content of the GCB.

Chapter 41 Note Synthesizer 41-11

a Figure 41-4 Generator control block layout (GCBRecord)

$00 synthID Byte—Identifies user of generator

$01 genNum Byte—Identifies the generatoritself
$02 semitone Byte—Note currently being played by the generator
$03 volume Byte—Output volumefor currentnote
$04 pitchbend Byte—Pitch bend value for current note
$05 vibratoDepth Byte—Vibratofor current note

$06: Reserved : 10 bytes—Reserved for Note Synthesizer and Sound ToolSet
L _j

synthID Identifies who is currently using the generator. Valid values are

genNum

semitone

volume

pitchbend

vibratoDepth

Reserved

0 Not used

1 Sound ToolSet free-form synthesizer

2 Note Synthesizer
3 Reserved for use by Apple Computer, Inc.
4 MIDI Tool Set
5-7 Reserved for use by Apple Computer, Inc.
8-15 User defined

Uniquely identifies the generator. Valid values lie in the range from 0

through 13 ($00 through $0D). Your application uses this value to
identify a specific generator to the Note Synthesizer. The tool set

returnsthe identifier on the ALlocGencall.

Identifies the note currently being played. Contains a standard MIDI
value in the range from 0 to 127, where middle C has a value of60.

Identifies the output volume for the current note specified by
semitone.Valid values lie in the range from 0 through 127 and
correspond to MIDIvelocity. A 16-step change in volume
corresponds to a 6-decibel change in amplitude.

Identifies pitch bend to be applied to the note specified by
semitone.Valid values lie in the range from 0 through 127; a value of
64 specifies no pitch bend. The pit chbendRangefield of the
instrumentrecord specifies the maximum allowable pitch bend in
semitones (see “Instruments” earlier in this chapter).

Specifies the depth of vibrato for the note. Valid valueslie in the
range from 0 through 127. A value of 0 indicates no vibrato (this is the

recommendedvalue). A value of 127 yields maximum vibrato depth.

Area reserved for internal use by the Note Synthesizer and the Sound

Tool Set.

41-12 Apple IIGs Toolbox Reference, Volume 3

Note Synthesizer housekeeping calls

All the call descriptions for the Note Synthesizer are new. Thetool calls were not previously
documented in the Apple Ics Toolbox Reference.

NSBootInit $0119

Initializes the Note Synthesizer.

A Warning An application must not makethis call. a

Parameters This call has no input or output parameters. The stack is unaffected.

Errors None

C extern pascal void NSBootInit ();

Chapter 41 Note Synthesizer 41-13

NSStartUp $0219

Starts up the Note Synthesizer for use by an application. An application must make this

call before it makes any other Note Synthesizercalls except NSStatus Of NSVersion.

The updateRate parameter specifies the rate at which interrupts are generated to update

envelopes and low-frequency oscillations. The value is in units of 0.4 Hz. Reasonable
values for this parameter include 150, 250, and 500. The default value is 500. Low rates
require less overhead, but higher rates generate smoother-sounding envelopes.

The userUpdateRtnPtr parameteris a pointer to a routine that is called during every timer
interrupt. Sequencer programs are an example of software that might use routines that run

during Note Synthesizer interrupts,and, in fact, this is how the Note Sequencer works. A

value of 0 indicates that there is no user update routine.

Parameters

Stack before call

Previous contents

updateRate Word—Rate of envelope generation

— userUpdateRtnPtr- Long—Pointer to custom interrupt routine

<—SP
Stack after call

| Previous contents |

| | <—SP

Errors $1901 nsAlreadyInit Note Synthesizer already started

up.

$1902 nsSndNot Init Sound ToolSet not started up.
$1925 soundWrongVer Incompatible version of Sound

Tool Set.

C extern pascal void NSStartUp(updateRate,

userUpdateRtnPtr);

Word updateRate;

Pointer userUpdateRtnPtr;

41-14 Apple IIcs Toolbox Reference, Volume 3

NSShutDown $0319

Shuts down the Note Synthesizer and turnsoff all generators. An application should make
this call before quitting.

Parameters This call has no input or output parameters. The stack is unaffected.

Errors $1923 nsNot Init Note Synthesizer not started up.

C extern pascal void NSShutDown ();

Chapter 41 Note Synthesizer 41-15

NSVersion $0419

Retums the version numberof the Note Synthesizer. Refer to Appendix A, “Writing Your

Own ToolSet,” in Volume 2 of the Toolbox Reference for information about the format and

contentof the versionNumreturn value.

Parameters

Stack before call

Previous contents

Space Word—Space for result

<—SP

Stack after call

Previous contents

versionNum Word—Note Synthesizer version number

<—SP

Errors None

C extern pascal Word NSVersion();

41-16 Apple IIGs Toolbox Reference, Volume 3

NSReset $0519

Resets the Note Synthesizer.

A Warning An application must not makethis call. a

Parameters This call has no input or output parameters. The stack is unaffected.

Errors None

C extern pascal void NSReset ();

Chapter 41 Note Synthesizer 41-17

NSStatus $0619

Retums a Boolean value indicating whether the Note Synthesizer is active. If the Note
Synthesizer is active, NSStatus retums TRUE. Otherwise,the call returns FALSE.

@ Note: If your program issues this call in assembly language,initialize the result space on
the stack to NIL. Upon return from NSStatus,your program need only check the

value of the returnedflag. If the Note Synthesizeris not active, the returned value will
be FALSE (NIL).

Parameters

Stack before call

Previous contents

Space Word—Spacefor result

<—SP

Stack after call

Previous contents

startStatus Word—Boolean; TRUEif the Note Synthesizeris started

<—SP

Errors None

Cc extern pascal Boolean NSStatus();

41-18 Apple [Ics Toolbox Reference, Volume 3

Note Synthesizer calls

The following sections discuss the Note Synthesizer toolcalls.

AllNotesoOff S0D19

Turns off all Note Synthesizer generators andsets their priorities to 0. It does not affect
generators not used by the Note Synthesizer, such as those allocated to the Sound Tool

Set free-form synthesizer.

Parameters This call has no input or output parameters. The stack is unaffected.

Errors None

C extern pascal void AllNotesOff ();

Chapter 41 Note Synthesizer 41-19

AllocGen $0919

Requests a sound generator. Returns a generator numberfrom to 13. Thecall reallocates a

generatorif all generators are allocated and the specified requestPriority exceeds that of
one of the previously allocated generators.

Parameters

Stack before call

Previous contents

Space Word—Space for result

requestPriority Word—Desired generator priority

<—SP

Stack after call

Previous contents

genNum Word—Numberofallocated generator

<—SP

Errors $1921 nsNotAvail No generators available to

allocate.
$1923 nsNot Init Note Synthesizer not started up.

C extern pascal Word AllocGen(requestPriority);

Word requestPriority;

41-20 Apple IIcs Toolbox Reference, Volume 3

DeallocGen S$0A19

Sets the named generator’s allocation priority to 0 and halts its oscillators. Any subsequent
allocation request with a valid requestPriority will then succeed.

Parameters

Stack before call

Previous contents

genNumber Word—Numberof generator to deallocate

<—SP

Stack after call

| Previous contents |

| | <—SP

Errors $1922 nsBadGenNum Invalid generator number.

C extern pascal void DeallocGen (genNumber);

Word genNumber;

Chapter 41 Note Synthesizer 41-21

NoteOff S$0C19

Switches the specified generator to release mode, causing the note being generated to die
out. Whenthe note’s volumeis 0, the generator’s priority is set to 0, andit is considered to

be off. The genNumber and semitone parameters should beset to the same values
specified in the corresponding NoteoOncall.

Parameters

Stack before call

Previous contents

genNumber Word—Generator number

semitone Word—Note being played

<—SP

Stack after call

| Previous contents |

| | <—SP

Errors None

C extern pascal void NoteOff(genNumber, semitone);

Word genNumber, semitone;

41-22 Apple Ics Toolbox Reference, Volume3

NoteOn $0B19

Initiates the generation of a note on a specified generator. The genNumber parameter
should be a value returned by the AllocGencall. The semitone parameteris a standard
MIDI value from 0 to 127, where middle C is designated by the value 60. The volume

parameteris a value from 0 to 127 that can be treated as synonymouswith MIDIvelocity.
The value is copied into the generator control block andis used to scale the note’s
amplitude. A change of 16 steps in this parameter specifies a change of6 decibels in
amplitude. The instrumentPtr parameteris a pointer to an instrument. See “Instruments”

earlier in this chapter for more information on the instrumentdata structure.

@ Note: Experiment with the volume parameter and envelope amplitudes;if the sum of
these twovalues is too small, the note being played is inaudible even if everythingelse
is working correctly. The dynamic range of the DOCis 48 decibels.

Parameters

Stack before call

Previous contents

genNumber Word—Generator number

semitone Word—Desired pitch for note

volume Word—Desired volume for note

— instrumentPtr — Long—Pointer to instrumentto play note

<—SP
Stack after call

Previous contents

 <—SP

Errors $1924 nsGenAlreadyOn The specified note is already
being played.

Chapter 41 Note Synthesizer 41-23

C extern pascal void NoteOn(genNumber, semitone,

volume, instrumentPtr);

Word genNumber, semitone, volume;

Pointer instrumentPtr;

Example

The following example shows assembly-language codethatallocates a generator, passes

the correct parameters to Not eOn,plays a note, and tumsoff the note.

pushword #0 space for GenNum

pushword #64 ;priority of this note

_AllocGen ;retrieve an allocated generator

pla sget the generator number

sta GenNum ;store it

pushword GenNum s;push parameters:generator

pushword Semitone z;note

pushword #127 smaximum volume

pushlong #Instrument ;LONG pointer to instrument

definition

_NoteOn

e

e

e

pushword GenNum ;push parameters: generator

pushword Semitone ;note

_NoteOff sturn off the note

41-24 AppleIIGs Toolbox Reference, Volume 3

NSSetUpdateRate S$0E19

Sets the Note Synthesizer’s updateRate parameter, as described under NSStartUpin
“Note Synthesizer Housekeeping Calls” earlier in this chapter. The specified updateRate

value becomes the new updateRate, and the old value is retumed.

Parameters

Stack before call

Previous contents

Space Word—Space for result

updateRate Word—New update rate

<—SP

Stack after call

Previous contents

oldRate Word—Update rate before call

<—SP

Errors $1923 nsNotInit Note Synthesizer not started up.

C extern pascal Word NSSetUpdateRate (updateRate);

Word updateRate;

Chapter 41 Note Synthesizer 41-25

NSSetUserUpdateRtn SOF19

Sets the user update routine described under NSStart Up in “Note Synthesizer

Housekeeping Calls” earlier in this chapter. The update routine pointer is set to the value
passed in the updateRtn parameter, and the address of the old update routine is returned.
If there is no user update routine whenthis call is made, it returns a NIL pointer. A NIL
updateRtn value disables the current update routine.

Parameters

Stack before call

Previous contents

- Space - Long—Spaceforresult

— updateRtn - Long—Pointer to new update routine

<—SP
Stack after call

Previous contents

- oldRtn - Long—Pointer to old update routine

<—SP

Errors $1923 nsNotInit Note Synthesizer not started up.

C extern pascal VoidProcPtr

NSSetUserUpdateRtn (updateRtn);

Pointer updateRtn;

41-26 Apple IIGs Toolbox Reference, Volume 3

Note Synthesizer error codes

Table 41-1 lists the error codes that may be returned by Note Synthesizercalls.

ws Table 41-1 Note Synthesizer error codes

Value Name Definition

$1901 nsAlreadyInit Note Synthesizer already started up.
$1902 nsSndNotInit Sound ToolSet not started up.
$1921 nsNotAvail No generators available to allocate.
$1922 nsBadGenNum Invalid generator number.
$1923 nsNotInit Note Synthesizer not started up.
$1924 nsGenAlreadyOn The specified note is already being played.

$1925 soundWrongVer Incompatible version of Sound ToolSet.

Chapter 41 Note Synthesizer 41-27

Chapter 42 Print Manager Update

This chapter documents newfeatures of the Print Manager. The complete
reference to the Print Manageris in Volume 1, Chapter 15 of the
Apple IIcs Toolbox Reference.

42-1

Error corrections

This section documents errors in Volume 1 of the Toolbox Reference.

The diagram for the job subrecord, Figure 15-10 on page 15-14 of Volume 1 ofthe
Toolbox Reference, shows that the fF romUsr field is a word.This is incorrect. The

fFromUsr field is actually a byte. Note that as a result the offsets forall fields

following this one are incorrect. This erroris also reflected in the tool set summary at

the end of the chapter.

The description of the PrJobDialogtoolcall includes this incorrect statement: “The
initial settings displayed in the dialog box are taken from the printer driver.” The

sentence should begin “Theinitial settings displayed in the dialog box are taken from

the print record.”

Clarifications

The following items provide additional information about features previously described in Volume 1

of the Toolbox Reference.

The existing Toolbox Reference documentation for the PrP icFiletoolcall does not
mention that your program maypass a NIL value for statusRecPtr. Passing a NIL pointer
causes the system to allocate and managethestatus record internally.

The PrPixelMapcall (documented in Volume 1 of the Toolbox Reference) provides an
easy way to print a bitmap. It does muchofthe required processing, and an

application need not make thecalls normally required to start and endthe print loop.

The srcLocPtr parameter must be a pointer to a LocInforecord (see Figure 16-3 in

Chapter 16, “QuickDrawII,” in Volume 2 of the Toolbox Referencefor the layoutof the

locInforecord).

The port driver auxiliary file type of an AppleTalk driver is $0003.Its file type remains $BB.

42-2 Apple IIGs Toolbox Reference, Volume 3

New features of the Print Manager

The following functions have been addedto the Print Manager:

The PRINTER.SETUPfile now saves separate settings for direct and network
connections to printers. Old versions of the PRINTER.SETUPfile are incompatible

with these changes, so the Print Managerdeletes suchfiles and creates new onesin the
correct format. Old settings are discarded, and the default settings are used to create

the new setupfile.

If the Print Manager attempts to load a driver andfinds that it is missing, it passes
control to a routine that (1) determines whatcall was being made tothe driver, (2)

pops the parameters off the stack, and (3) returns a missingDrivererror ($1301).
The Print Manageralso displays an alert asking the user to makesure a printer and port

driver are selected, if your application calls PreJobDialog and PrSt1Dialog.

The PMStartup Call doesnot load any drivers into memory. Drivers are loaded only
when they are needed. The Print Manager does not require that the DRIVERSfolder be
present, andifit is present, does not require that there be any drivers in it.

The PrChoosePrintercall is no longer supported. Users should now use the Control

Panel desk accessory to choose newprinters. When an application issues the

PrChoosePrintercall, the Print Manager displays an alert directing the user to use

the Control Panel. New applications should neverissue this call and should not include

the Choose Printer commandin the file menu. Note that PMStart upstill loads the List

Managerifit has not already been loaded.

The Print Manager nowallows youto assign a name to a document. This feature is
primarily applicable to documents destined for AppleTalk printers and is used by
AppleShare® print servers for the print log.

If a user wants to print multiple copies of a documentin draft mode to an
ImageWriter®, ImageWriter LQ, or Epson printer, your application must run through

its print loop once for each copy. The draft mode flag (bjDocLoop) and copy count
field (copies) are located in the job subrecord ofthe print record.

The LaserWriter® driver will now use some PostScript® fonts that have been
downloadedinto the printer by another computer (such as a Macintosh computer).

Chapter 42 Print Manager Update 42-3

New Print Managercalls

The following sections discuss new Print Managertoolcalls.

PMLoadDriver $3513

Loads the current printer driver, port driver, or both, depending on the input parameter.

The current driver is determined bythe settings saved in the PRINTER.SETUP file.

Parameters

Stack before call

Previous contents

whichDriver Word—Printer driver to load

<—SP

Stack after call

| Previous contents |

—

Errors $1309 badLoadParam The specified parameteris
invalid.

Loadererrors Returned unchanged

C extern pascal void PMLoadDriver(whichDriver) ;

Word whichDriver;

whichDriver Specifies which printer driver to load. Legal values for the driver
parameter include

0 Load both drivers.
1 Load printer driver.

2 Load port driver.

42-4 Apple IIGS Toolbox Reference, Volume 3

PMUnloadDriver $3413

Unloads the current port driver, printer driver, or both, depending on the input parameter.

Parameters

Stack before call

Previous contents

whichDriver Word—Printer driver to unload

Stack after call

 <—SP

| Previous contents |

Errors

whichDriver

| <—SP

$1309 badLoadParam The specified parameteris
invalid.

Loadererrors Returned unchanged

extern pascal void PMUnloadDriver (whichDriver);

Word whichDriver;

Specifies which printer driver to unload. Legal values for the driver
parameter include

Q Unload both drivers.
1 Unloadprinter driver.
2 Unload port driver.

Chapter 42 Print Manager Update 425

PrGetDocName $3613

Returnsa pointer to the current documentnamestring for your document. Use the

PrSetDocNametoolcall to set or change the documentname.

Note that there is only one active document namefor the system at any given time. Your
application must correctly manage this name in the context of the documentbeing
printed.

Parameters

Stack before call

Previous contents

- Space - Long—Spacefor result

<—SP

Stack after call

Previous contents

~ docNamePtr - Long—Pointer to document namestring (Pascal string)

<—SP

Errors None

C extern pascal Pointer PrGetDocName();

42-4 Apple IIGs Toolbox Reference, Volume 3

PrGetPgOrientation $3813

Returns a value indicating the current page orientation for the specified document.

Parameters

Stack before call

Previous contents

Space

— prRecordHandle -

Stack after call

Previous contents

Word—Spaceforresult

Long—Handle to print record for document

<—SP

orientation Word—Pageorientation: 0 = portrait, 1 = landscape

<—SP

Errors None

C extern pascal Word

PrGetPgOrientation (prRecordHandle);

Handle prRecordHandle;

Chapter 42 Print Manager Update 42-7

PrGetPrinterSpecs $1813

Retumsinformation about the currently selected printer.

Parameters

Stack before call

Previous contents

Space Word—Spacefor result

Space Word—Spacefor result

<—SP
Stack after call

Previous contents

characteristics Word—Word defining printer characteristics

printerType Word—Word indicating the type of printer connected

<—SP

Errors None

C extern pascal PrinterSpecs PrGetPrinterSpecs();

characteristics Defines the features of the particular printer.

Reserved bits 15-2 Must be setto 0.

color bits 1-0 Indicates color capability.
00 = Can't determine

01 = Black and white only
10 = Color capable

11 = Reserved

printerType Indicates the type of printer selected.

0 Undefined
1 ImageWriter I or II

2 ImageWriter LQ

3. __LaserWriter family printer that supports PostScript (LaserWriter,
LaserWriter Plus, and LaserWriter IINT and JINTX)

4 Epson

428 Apple IIcs Toolbox Reference, Volume 3

PrSetDocName $3713

Sets the document namefor use with AppleTalk printers. The Print Managerpasses this
name whenconnecting to printers and spoolers, allowing the destination printer to report

the name properly.

Note that there is only one active document namefor the system at any given time. Your

application must correctly manage this name in the context of the document being

printed.

In some status windows, the document name maybetruncated. To avoid name

truncation, you should use namescontaining fewer than 32 characters.

Parameters

Stack before call

Previous contents

- docNamePtr - Long—Pointer to document namestring (Pascal string)

<—SP
Stack after call

| Previous contents |

|

Errors None

C extern pascal void PrSetDocName (docNamePtr);

Pointer docNamePtr;

Chapter 42 Print Manager Update 42.9

Previously undocumented Print Managercalls

The following calls, not previously documented, may be useful to application programmers.

PrGetNetworkName $2B13

Retums the AppleTalk network namefor the currently selected printer. If the user has

selected a nonnetworkedprinter, the call returns a NIL pointer.

Parameters

Stack before call

Previous contents

- Space -

Stack after call

Long—Space for result

<—SP

Previous contents

- netNamePtr - Long—Pointerto printer network namestring (Pascal string)

<—SP

Errors None

C extern pascal Pointer PrGetNetworkName () ;

42-10 Apple IIcs Toolbox Reference, Volume 3

PrGetPortDvrName $2913

Returns the namestring for the currently selected port driver.

Parameters

Stack before call

Previous contents

- Space -

Stack after call

Previous contents

Long—Spaceforresult

<—SP

— prtDurNamePtr- Long—Pointer to port driver namestring (Pascal string)

<—SP

Errors None

C extern pascal Pointer PrGetPortDvrName () ;

Chapter 42 Print Manager Update 42-11

PrGetPrinterDvrName $2813

Returns the namestring for the currently selected printer driver.

Parameters

Stack before call

Previous contents

- Space -

Stack after call

Long—Spaceforresult

<—SP

Previous contents

— prtDurNamePtr - Long—Pointerto printer driver namestring (Pascal string)

<—SP

Errors None

C extern pascal Pointer PrGetPrinterDvrName() ;

42-12 Apple IIcs Toolbox Reference, Volume 3

PrGetUserName §$§2A13

Returns the user name as enteredin the Control Panel.

Parameters

Stack before call

Previous contents

- Space - Long—Space for result

<—SP

Stack after call

Previous contents

- userNamePtr - Long—Pointer to user namestring (Pascal string)

<—SP

Errors None

C extern pascal Pointer PrGetUserName() ;

Chapter 42 Print Manager Update 42-13

PrGetZoneName $2513

Returns the namestring for the currently selected AppleTalk print zone.If the user has
selected a nonnetworkedprinter, the call returns a NIL pointer.

Parameters

Stack beforecall

Previous contents

- Space - Long—Spacefor result

<—SP

Stack after call

Previous contents

-— zoneNamePtr - Long—Pointer to zone namestring (Pascalstring)

<—SP

Errors None

C extern pascal Pointer PrGetZoneName () ;

42-14 Apple IIGs Toolbox Reference, Volume 3

Print Manager error codes

Table 42-1 lists all valid Print Manager error codes.

ws Table 42-1 Print Managererror codes

Value Name Definition

$1301 missingDriver Specified driver not in the DRIVERS

subdirectory of the SYSTEM subdirectory.

$1302 portNotOn Specified port not selected in the Control
Panel.

$1303 noPrintRecord No print record specified.

$1306 papConnNotOpen Connection with the LaserWriter cannot be
established.

$1307 papReadWriteErr Read-write error on the LaserWriter.

$1308 pt rConnFailed Connection with the ImageWriter cannot be
established.

$1309 badLoadParam The specified parameteris invalid.

$130A callNotSupported Toolcall is not supported by current version

of the driver.

$1321 startUpAlreadyMade LLDStartuUpcall already made.

Chapter 42 Print Manager Update 42-15

Chapter 43 QuickDraw II Update

This chapter documents new features of QuickDraw II. The complete
reference to QuickDraw II is in Volume 2, Chapter 16 of the

Apple IIcs Toolbox Reference.

43-1

Error corrections

The following items provide corrections to the documentation for QuickDrawII in

Volume 2 of the Toolbox Reference:

$00

$04

$08

soa!

sza

The documentation in the Toolbox Reference that explains pen modes is somewhat
misleading. There are, in fact, 8 drawing modes, and you maysetthe pen to draw lines
and other elements of graphics in any of these modes. There are also 16 modesused for
drawing text, and they are completely independentof the graphic pen modes. The 8
drawing modes listed in Table 16-9 on page 16-235 are valid modesforeither the text

pen orthe graphics pen. You canset either pen to any of these modes by using the
appropriate calls. You can also set the text pen to 8 other modes. These modes are

listed in the table on page 16-260 of the Toolbox Reference. The SetPenModecall sets
the mode used by the graphics pen; the SetTextModecall sets the mode used by the

text pen. Setting either one does not affect the other.

There are two versions of the Apple IIGS standard 640-modecolor tables, one on page
16-36 and one on page 16-159. The two tables are different; Table 16-7 on page 16-159
is correct.

Chapter 16 states that the coordinates passed to the LineTo and MoveTocalls should
be expressed as global coordinates. In fact, the coordinates must be local and must
refer to the GrafPort in which the drawing or moving takes place.

The pen state record shownin Figure 16-38 on page 16-238 of Volume2 of the Toolbox
Reference is incorrect. The correct record layout is shown in Figure 43-1.

Figure 43-1 Pen state record

I
T Long—Pointspecifying pen location

|
j
t

psPenLoc

| |
1
4

psPenSize Long—Pointspecifying pen size

— psPenMode Word—Pen mode
psPenPat : 32 bytes—Pen pattern

psPenMask . 8 bytes—Pen mask

43-2 Apple Ics Toolbox Reference, Volume3

Clarification

QuickDraw pictures are described by a series of QuickDraw operation codes that record

the commands by which the picture was created. When these pictures are stored as data
structures, the actual picture data (the operation codes) is preceded by control

information, some of which maybeofinterest to Apple IIGS developers. Figure 43-2
shows someofthis control information. Note that the layout of this control information
is subject to change.

= Figure 43-2 QuickDraw picture header

$00 picSCB — Word—Picture’s scanline control byte (high byteis 0)

$02 : picFrame : Rectangle—Picture's boundary rectangle

SOA |_ picVersion — Word—Version numberforpicture

Chapter 43 QuickDraw II Update 433

New features of QuickDraw II

The following information describes new features in this version of QuickDraw II.

= QuickDraw II now supports 16-by-8 pixel patterns in 640 mode.To usetheselarger
patterns, set the high-orderbit (bit 15) of the arcRot word in the GrafPort record to
1. QuickDrawII will then use all 32 bytes of the passed pattern. Because the

OpenPort and InitPorttool calls clear this bit, existing applications will work fine.

=» The PointInRectcall now works as previously documented.

= Inthe FONT folder on your system disk you will find a file named FASTFONT.Thisfile

contains a special version of the Shaston 8 font that will provide markedly improved
performancefor text drawing under many circumstances. Specifically, this font can be
used whenever you are drawing plain, black text on a white backgroundinto a
rectangularly clipped region. Although this may sound overlyrestrictive, most
applications draw text in precisely this way. This font reduces text drawing time by

more than half.

To use this font, QuickDraw II mustfind it in your FONT folder whenthetoolis
started. If your application draws text to an off-screen bitmap, use OpenPort and
InitPortto set up the off-screen buffers. This ensures that FASTFONT is properly
installed.

QuickDraw II speed enhancement

In addition to FASTFONT,several other changes that improve drawing performance have
been made to QuickDrawII. First, pattern filling in modeCopy and modeXOR now
operates between two and four times faster. The remaining changes require that you

modify your application to take advantage of the performance improvements theyoffer.

QuickDraw II now supports hardware shadowingof screen images. This feature uses 32 KB
of bank 1 memory to store the screen image. By storing the image in memory,
QuickDrawII can offer an 8 to 20 percent speed improvementin all operations. You

control whether QuickDrawII uses the shadow memory bysetting a flag in the masterSCB
parameter passed to the QDSt art Uptoolcall. If QuickDraw II cannotallocate the
needed memory,it will reset the flag and operate without shadowingin effect. Use the
GetMasterSCBtoolcall to read back the masterSCB parameter and check shadowing
status.

43-4 Apple IIGS Toolbox Reference, Volume 3

In addition, your application can further improve QuickDrawII performance byfollowing

somesimple rules. First, your application must change GrafPort fields only via
QuickDrawII tool calls, not by directly accessing the record fields. Next, for best results
perform similar operations in groups. For example, if your application needs to erase and

redraw four rectangles, it should doall the erasing at the same time, thenall the redrawing.
In this manner, QuickDrawII has to changeits drawing pattern only twice, rather than

eight times. Your application tells QuickDraw II thatit will follow these fast port rules by
setting a bit in the masterSCB passed to QDStartUp.

The masterSCB now hasthe following format:

fUseShadowing bit 15 Controls use of hardware shadowing by
QuickDraw II.

0 = No shadowing
1 = Shadowing

fFastPortAware bit 14 Indicates whether application follows fast port rules.
0 = Does notusefast port rules

1 = Doesusefast port rules
Reserved bits 13-8 Must besetto 0.

SCB bits 7-0 Use standard SCB values.

New font header layout

The font header has been expandedto include a newfield containing additional
addressing information. Figure 43-3 shows the new layoutfor the font header. For
information aboutthe old fields, see Chapter 16, “QuickDraw II,” in Volume 2 of the

Toolbox Reference.

= Figure 43-3 New font header layout

$00 — offsetToMF 7

$02 E family =

$04 — style =

$06 — size _~

S08 - version 7

SOA fbrExtent =

SOC L highowTLoc _

SOE !

iL i

Word—Offset in words to Macintoshfontpart

Word—Fontfamily number

Word—Style for font

Word—Pointsize

Word—Version numberof the fontdefinition

Word—Font boundary rectangle extent

Word—High-order word of address to offset/width table

: Bytes—Additionalfields,if any

Chapter 43 QuickDraw II Update 43-5

highowTLoc Defines the high-order word of the address of the offset/width table

for the font. The owTLocfield defined in the old font header contains
the low-order word of the address. Together, these twofields form a
full 32-bit address.

43-6 AppleIIGs Toolbox Reference, Volume 3

Chapter 44 QuickDraw II Auxiliary Update

This chapter documents new features in QuickDraw II Auxiliary. The
complete reference to QuickDrawII Auxiliary is in Volume 2, Chapter 17

of the Apple lics Toolbox Reference.

44-1

New feature of QuickDraw II Auxiliary

QuickDraw II now supports text justification within pictures. Note that QuickDrawII
justifies the text only in the drawn picture, not in the stored picture image. You control

text justification in pictures by setting a bit flag in the font Flags word of the GrafPort

record. Use the SetFontFlagstoolcall to change thestate ofthis bit.

The fontFlags wordis defined as follows:

Reserved bits 15-4 Mustbesetto 0.
fTextJust bit 3 Controls text justification in pictures.

0 = Don’t justify text
1 = Justify text

bits 2-0 Use standard fontFlagsvalues (see

page 16-56 in Volume2 ofthe Toolbox Reference
for a description of these bits).

44-2 AppleIcs Toolbox Reference, Volume 3

New QuickDraw II Auxiliary calls

Two new QuickDrawII tool calls, calcMask and SeedFill, provide enhanced

functionality to the application programmer who wants to create graphics-entry or

editing software. A third new call, specialRect, provides a high-performance rectangle
frame andfill operation.

CalcMask S0QE12

Generates a mask from a specified source image and patter,byfilling inward from the

boundary rectangle. The shape ofthe resulting mask consists ofall areas in the source
image where leaking does not occur(all enclosed areas within the rectangle). Figure 44-1
shows an example of mask generation.

= Figure 44-1 Mask generation with calcMask

 Source rect

¥
Source image

y

Computed
CalcMask shape

This call differs from SeedFil11 only in thatit works from the “outside in”; SeedFill

goes “inside out,”filling all enclosed areas starting from a specified interior point (see the
description of the SeedFill toolcall later in this chapter for details).

Chapter 44 QuickDrawII Auxiliary Update 44-3

CalcMaskis most commonly used to implementa lasso tool. CalcMask determines the

selected shape byfilling inward from the lasso rectangle. Figure 44-2 shows an example.

= Figure 44-2 Implementing a lasso tool with CalcMask

Source image Computed Write pattern Destination image Destinationis

CalcMask shape was -1;this containing anything now a 1’s active mask
indicates all 1’s (it will be preinitialized)

For this use, set the call parameters as follows:

destModeportion of resMode 0010 (clear destination to 0’s before drawing)
patternPir $FFFFFFFF (useall 1’s pattern when drawing to

destination)

This call does not perform automatic scaling; therefore, the source and destination
rectangles must be of equal size. In addition, note that the fill is not clipped to the current
port and that the resulting image cannot be stored into a QuickDrawII picture.

“A, Important Yourapplication must word-align both the source and destination

rectangles to ensure an accuratefill. a

444 AppleIIGs Toolbox Reference, Volume 3

Parameters

Stack before call

Previous contents

- srcLocInfoPtr - Long—Pointer to source locInfo data record

- srcRect - Long—Pointer to source rectangle data record

— destLocInfoPtr - Long—Pointer to destination LocInfo data record

- destRectt - Long—Pointer to destination rectangle data record

resMode Word—Resolution mode

- patternPtr - Long—Pointerto fill pattern

- leakTblPtr - Long—Pointer to leak-through colortable

<—SP

Stack after call

Previous contents

<—SP

Errors $0201 memErr NewHand1eerror occurred.
$1211 badRectSize Height or width is negative,

destRectis not the samesize as

srcRect, or the source or

destination rectangle is not

within its boundary rectangle.

$1212 destModeError destModeportion of resModeis
invalid.

C extern pascal void CalcMask(srcLocIinfoPtr, srcRect,

destLocInfoPtr, destRect, resMode,

patternPtr, leakTblPtr);

Pointer srcLocInfoPtr, srcRect, destLocInfoPtr,

destRect, patternPtr, leakTblPtr;

Word resMode;

Chapter 44 QuickDraw II Auxiliary Update 44-5

srcLocInfoPtr

srcRect

Points to a locInfo data record containing the definition of the
source rectangle for thefill operation.

Points to a rectangle, in local coordinates, that contains the source

pixel image.

destLocInfoPtr, destRect
Refer to output LocInfo record and rectangle, respectively. These

fields allow you to copy the outputto a different location in a

different rectangle. If you want the output of the operation to overlay

the input image, set the source and destination pointers to the same

resMode

destMode

Reserved

res

patternPtr

NIL

$FFFFFFFF

Other

values.

Indicates the resolution modeforthefill as well as initialization and

drawing options.

bits 15-12 Indicates initialization and drawing options.

bits 11-2

bits 1-0

0000 = Copy source to destination (obliterating

destination)
0001 = Leave destination alone (overlay source onto
destination)
0010 = Initialize destination to 0’s before drawing
0011 = Initialize destination to 1’s before drawing

Othervaluesare invalid.

Must besetto 0.

Indicates the resolution for the operation.

00 = 640 pure
01 = 640 dithered

10 = 320 mode
11 = Invalid

Pointer to the fill pattern for the operation, or flag specifying special
fill pattern.

Use an all 0’s pattern when writing to destination

Useanall 1’s pattern when writing to destination

Assumedto be valid pointerto fill pattern

44-6 Apple Ics Toolbox Reference, Volume 3

leakTolPtr Pointer to a structure that defines the colors to be covered. The
structure contains a count word, indicating the numberof color
entries in the table, and a color entry for each color to be leaked. Each

color entry contains the offset into the color table for that color. Valid
values in 640 pure moderangefrom 0 through3,inclusive; for 320
mode and 640 dithered modevalid values range from 0 through 15,
inclusive.

S00 | count Word—Countofcolor entries to follow

$02 : colorEntries : count words—Offsetinto colortable for each color
t j

Chapter 44 QuickDraw II Auxiliary Update 44-7

SeedFill $0D12

Generates a mask from a specified source image and pattem,byfilling outward from a
starting point within the source image. The shape ofthe resulting mask consists of the
enclosed area in the source image surroundingthestarting (or seed) point. Figure 44-3
shows an example.

= Figure 44-3 Mask generation with SeedFill

Source rectangle—

vy
 Seed point

Source image Computed

SeedFill shape

This call differs from CalcMaskonly in that it works from the “inside out"; calcMask
goes “outside in” (see the description of the calcMasktoolcall earlier in this chapter for
details).

448 AppleIcs Toolbox Reference, Volume 3

SeedFill is a versatile tool. Most simply, you can useit to implement a paint bucket

tool, as in Figure 44-4.

= Figure 44-4 Implementing a paint bucket tool with SseedFill

we

 _f
ey

Source image Computed Write pattem Original source Source image

SeedFill shape image (passed with pattern added
again as destination)

For this operation, use the following call parameter values:

destMode portion of resMode %0001 (do not change destination image before
drawing)

patternPtr Pointerto fill color or pattern

Chapter 44 QuickDraw II Auxiliary Update 44-9

To add an undo capability to the paint bucket, specify a different destination, as in

Figure 44-5.

= Figure 44-5 Paint bucket tool with undo

v

N
e nasil

wax

Source image Computed Write pattern Destination image Destination now

SeedFill shape containing anything containsfilled
(it will be completely copy of source
overwritten)

For this operation, use the following call parameter values:

destModeportion of resMode %0000 (copy source to destination)

patternPtr Pointerto fill color or pattern

44-10 Apple lcs Toolbox Reference, Volume 3

Figure 44-6 shows a more complex example,illustrating the “from-the-inside” lasso tool.

a Figure 44-6 Implementing a “from-the-inside” lasso tool with SeedFill

SPR SELO
Source image Computed Write pattern Destination image Destination is now

SeedFill shape was-l; this containing anything a 1’s active mask
indicates all 1’s_ it will be preinitialized)

For this operation, use the following call parameter values:

destModeportion of resMode %0010 (clear destination to 0’s before drawing)
patternPtr $FFFFFFFF(useall 1’s pattern when drawing to

destination)

This call does not perform automatic scaling; therefore, the source and destination
rectangles must be of equal size. In addition, note thatthefill is not clipped to the current

port and that the resulting image cannot be stored into a QuickDrawII picture.

ZA Important Your application must word-align both the source and destination
rectangles to ensure an accuratefill. a

Chapter 44 QuickDraw II Auxiliary Update 44.11

Parameters

Stack before call

Previous contents

~ srclocInfoPtr - Long—Pointer to source locInfo data record

_ srcRect - Long—Pointer to source rectangle data record

— destlocInfoPtr - Long—Pointer to destination LocInfo data record

- destRect - Long—Pointer to destination rectangle data record

seedH Word—Horizontal offset (pixel) to starting fill point

seedV Word—Vertical offset (pixel) to starting fill point

resMode Word—Resolution mode

— patternPtr - Long—Pointerto fill pattern

- leakTblPtr - Long—Pointer to leak-through color table

<—SP

Stack aftercall

| Previous contents |

| | <—SP

Errors $0201 memErr NewHand1eerror occurred.
$1211 badRectSize Height or width is negative,

destRectis not the samesize as
srcRect, or the source or

destination rectangle is not

within its boundary rectangle.
$1212 destModeError destModeportion of resModeis

invalid.

4412 AppleIIGs Toolbox Reference, Volume 3

C extern pascal void SeedFill(srcLocInfoPtr, srcRect,

destLocInfoPtr, destRect, seedH, seedV,

resMode, patternPtr, leakTblPtr);

Pointer srcLocInfoPtr, srcRect, destLocInfoPtr,

destRect, patternPtr, leakTblPtr;

Word seedH, seedV, resMode;

srcLocInfoPtr Points to a LocInfodata record containing the definition of the

source rectangle forthe fill operation.

srcRect Points to a rectangle, in local coordinates, that contains the source

pixel image.

destLocInfoPtr, destRect
Refer to output locInfo record and rectangle, respectively. These

fields allow you to copy the outputto a different location in a

different rectangle. If you want the output of the operation to overlay

the input image, set the source and destination pointers to the same
values.

seedH, seedV Specify the horizontal and vertical offsets into the source pixel image
of the point at which tostart thefill operation.

resMode Indicates the resolution modeforthefill as well as initialization and

drawing options.

destMode bits 15-12 Indicates initialization and drawing options.

0000 = Copy source to destination (obliterating
destination)
0001 = Leave destination alone (overlay source onto

destination)
0010 = Initialize destination to 0’s before drawing
0011 = Initialize destination to 1’s before drawing
Othervalues are invalid.

Reserved bits 11-2 Must besetto 0.

res bits 1-0 Indicates the resolution for the operation.

00 = 640 pure
01 = 640 dithered
10 = 320 mode
11 = Invalid

Chapter 44 QuickDrawII Auxiliary Update 44-13

patternPtr Pointer to thefill pattern for the operation, or flag specifying special

fill pattern.

NIL Use an all 0’s pattern when writing to destination

$FFFFFFFF Use an all 1’s pattern when writing to destination

Other Assumedto be valid pointertofill pattern

leakTbIPtr Pointer to a structure that defines the colors to be covered. The
structure contains a count word, indicating the numberof color
entries in the table, and a color entry for each color to be leaked. Each
color entry contains the offset into the color table for that color.

S00 count Word—Countof colorentries to follow

$02 ° .
: colorEntries - count words—Offset into colortable for each color

J

44-14 Apple IIcs Toolbox Reference, Volume 3

SpecialRect $0C12

Framesandfills a rectangle in a single call, making separate calls to FrameRect and
FillRect unnecessary.

The pen used to drawthe rectangle frame in 640 modeis 2 pixels wide and1 pixel high;in
320 mode, the penis 1 pixel wide and 1 pixel high.

Parameters

Stack before call

Previous contents

- rectPtr - Long—Pointer to rectangle to draw

frameColor Word—Color of rectangle frame

fillColor Word—Colorof rectangle interior

<—SP
Stack after call

| Previous contents |

| | <—SP

Errors None

C extern pascal void SpecialRect (rectPtr, frameColor,

fillColor);

Pointer rectPtr;

Word frameColor, £111Color;

frameColor, fillColor
The low-order 4 bits of each of these parameters specify the color.

Chapter 44 QuickDrawII Auxiliary Update 44-15

Chapter 45 Resource Manager

This chapter documents the features of the Resource Manager.

This is a new tool set not previously documentedin the

Apple IIGs Toolbox Reference.

45-1

About the Resource Manager

The Resource Managerprovides applications access to resources, which can contain such

items as menus, fonts, and icons. Mostbasically, a resource is a formatted collection of
data. The Resource Manager does not know the format or content of any given resource.

Your application can define the content ofits resources or may use standard resources

defined by the system. Resource Managerfacilities allow applications to create, use, and

manipulate these resources.

Generally, your program will access the Resource Managerindirectly, as a result of using
othertool sets, such as the Window Manageror Control Manager, that use resources.
However, if your program manages its own resources, it will have to issue some Resource
Managercalls directly. Further, you may want to write a program that creates and edits

resources. Such a program would make thorough use of Resource Managertoolcalls.

The following list summarizes the capabilities of the Resource Manager. Thetoolcalls are

grouped according to function. Later sections of this chapter discuss resources in greater

detail and define the precise syntax of the Resource Managertoolcalls.

Routine Description

Housekeeping routines

ResourceBoot Init Called only by the Tool Locator—mustnot be called by

an application

ResourceStartUp Informs the Resource Managerthat an application

wants to useits facilities

ResourceShutDown Informs the Resource Managerthat an application is
finished using resource toolcalls

ResourceVersion Retums the Resource Managerversion number

ResourceReset Called only when the system is reset—must notbecalled

by an application

ResourceStatus Returns the operational status of the Resource Manager

45-2 Apple Ics Toolbox Reference, Volume 3

Resource access routines

AddResource

RemoveResource

LoadResource

LoadAbsResource

Get IndResource

ReleaseResource

DetachResource

WriteResource

Resource maintenance routines

GetResourceAttr

SetResourceAttr

GetResourceSize

MarkResourceChange

SetResourceID

UniqueResourceID

CountTypes

Get IndType

CountResources

MatchResourceHandle

ResourceConverter

SetResourceLoad

Creates a new resource and adds it to a specified
resource file

Deletes a resource from a resourcefile

Loads a resource into memory

Loads a resource into a specified memory location

Loads a resource given an indexinto a specified
resource type

Removes a loaded resource from memory

Removesa loaded resource from the controlof the
Resource Managerbutleaves the resource in memory

Writes a changed resourceto its resourcefile

Returns the attributes of a resource

Sets the attributes of a resource

Returns the size in bytes of a resource

Sets the value of the changedattribute of a resource

Changesthe ID of a resource

Obtains a unique resource ID for a resource of a
specified type

Returns the numberofdifferent resource typesin all
open resourcefiles for an application

Retums a resource type value associated with an index

into the array of all active resource types

Returns the numberof resources of a specified type

Finds the ID andtypeof a resource, given its handle

Installs resource converter routines

Controls whether the Resource Managerloads resources

from disk

Chapter 45 Resource Manager 453

Resourcefile routines

CreateResourceFile

OpenResourceFile

CloseResourceFile

' UpdateResourceFile

GetCurResourceFile

SetCurResourceFile

SetResourceFileDepth

GetOpenFileRefNum

HomeResourceFile

GetMapHandle

Application-switching routines

GetCurResourceApp

SetCurResourceApp

Creates andinitializes a resourcefile

Opensa resourcefile for access by the Resource

Manager

Closes an openresourcefile

Writes all in-memory resource changesto the

appropriate resource file, making those changes

permanent

Retumsthe file ID of the current resource file

Sets the current resourcefile

Sets the numberof resourcefiles that the Resource

Managerwill search whenlocating a specific resource

Returns the GS/OSfile reference numberfor an open
resourcefile

Returns the file ID of the resourcefile that contains a

specified resource

Returnsthe handle of a resource map for an open
resourcefile

Returnsthe user ID of the application currently using the
Resource Manager

Sets the user ID of the application now using the
Resource Manager

454 Apple Ics Toolbox Reference, Volume 3

About resources

A resourceis a formatted collection of data, such as a menu,a font, or a programitself.
The formatof the data in a resource is determined by the program that uses the resource,

or by the system in the case of standard resources. A program maintains its resources

separate from the program codeitself. This very separation is the primary benefit of using
resources—program code is immuneto data content changes, and program datais
immune to program code changes, even to changes in programming language.

Resources, in turn, are groupedinto resource files, which correspondto the resource

forks of GS/OSfiles. A given resource file may contain one or more resourcesof various
format. An application that uses resources maystore those resourcesin its own resource
file or may access resources in a resourcefile that is not directly associated with the
program. The Resource Manager provides routines to access and manipulate resources in a
resourcefile.

You can create the resource fork for your program in a variety of ways. Resource compilers
convert text-based resource definitions into resources in a valid resourcefile. You can use
an existing resource compiler, or you can create your own. Alternatively, you can write a
program that creates a resourcefile and its resources, using Resource Managertoolcalls.

Finally, resource editors allow you to create resourcesinteractively.

Identifying resources

Programsidentify resources with a resource specification consisting of a resource type
and a resource ID number. The resource type (orjust type) defines a class or group of
resources that share a commonformat. The resource ID (or just ID) uniquely identifies a
specific resource of a given type. Taken together, the resource type and ID completely
identify the resource and define its format. The ID of a resource must be unique within
the context ofits type; however, the same ID number maybe usedfor resources of
different type.

Chapter 45 Resource Manager 45-5

Resource types

The resource type defines a class of resources that share a commonformat. The system

defines several standard types for resources used to interact with system or Toolbox

functions. These standard types and the formats of their associated resources are

documented in Appendix E, “Resource Types,” in this book. In addition, your program

may define unique resource types for its custom resources. Because the Resource Manager
knows nothing about the format or contentof the resources it manages, you have
complete freedom to define the resources you need.

The resource type is a word value. The following list summarizes valid resource type values:

Type value range Use

$0000 Invalid resource type; do not use

$0001 through $7FFF Available for application use

$8000 through $FFFF Reserved for system use

Resource IDs

The resource ID uniquely identifies a particular resource of a given typein a resourcefile.
Every resource in a resourcefile must have an ID value that is unique within the context of
its resource type. Resourcesof different type may, however, have the sameID value.

The resource ID is a long value. Even thoughtheresource ID is meaningful only in the

context of a given resource type, the system does placerestrictions on the ID values you
can assign. The followinglist summarizes the allowable ranges for ID values:

ID value range Use

$00000000 Invalid resource ID; do not use

$00000001 through $07FEFFFF Available for application use
$07FF0000 through $07FFFFFF Reserved for system use

$08000000 through $FFFFFFFF Invalid values; do not use

Whencreating a new resource, use the UniqueResourcelItoolcall to obtain a resource
ID. The Resource Managerwill allocate a new, unique resource ID for you. You can force
the ID to fall within a desired range to group resourcesby resource ID within resource
type. Each ID range contains 65,535 possible values. The ID range value providesthe high-
order word of the long-word resource ID. The following list summarizes the allowable
ranges:

456 Apple IIGs Toolbox Reference, Volume 3

ID range Lowest possible ID returned Highest possible ID returned

$0000 $00000001 (zero is invalid) $0000FFFF

$0001 $00010000 $0001FFFF

$0002 $00020000 $0002FFFF

(and so on)

$07FE $07FE0000 $07FEFFFF
$07FF Reserved for system use

$0800-$FFFE Invalid range values
$FFFF $00000001 $07FEFFFF

(directs Resource Managerto allocate from any application range)

Resource names

As an alternative to identifying a resource of a given type by an ID, you maychoose to
assign it a resource name. Your application may then use the resource type and nameto

identify the resource uniquely. In somecases, this may be more convenient than using the

numeric ID. The resource name must be unique within the context of a given resource

type. You should note that the Resource Manager doesnotprovidecall-level support for

resource names. However, the rResName resource ($8014) defines the standard layout
for resource names.If you choose to use resource names, or you use developertools that
support named resources, be careful to use the standard datastructures for defining those
names.

Chapter 45 Resource Manager 45-7

Using resources

In most cases, applications use the Resource Manageronlyindirectly, that is, by using

othertool sets that, in turn, use resourcesto store their data structures. Even if your

program defines resources,either for its own data or for data to be used by the system,it

will have to issue only a few Resource Managercalls to use those resources. However,
programsthat create and manipulate resources and resourcefiles must make far greater
use of the Resource Manager. The next several paragraphs describe the steps your program
must follow to use its predefined resources.

1. Unlike mostothertoolsets, the Resource Manager need notbe started up by your

program. At startup time, the system automatically loads and initializes the Resource

Manager from the RESOURCE.MGRfile in the SYSTEM.SETUPdirectory of the boot
disk. The Resource Manager then opensthe system resourcesfile, SYS.RESOURCESin
the SYSTEM.SETUP directory, if it is present.

To use the Resource Manager, your program mustlogin, using the ResourceStartUp

toolcall. This call informs the Resource Managerthat your program is going to be using
its services. As an alternative, your program mayissue the Tool Locator
StartUpToolscall.

Issue the OpenResourceFiletoolcall to open each resourcefile for your
application. If your program issued the Tool Locator startUpTools call, thenit
neednotexplicitly open its resource fork before trying to use resourceslocated there.
If, however, your program used the ResourceStartUptoolcall, then it must issue an
OpenResourceFilecall forits resource fork before accessing any resourcesstored
there.

4. As part of termination processing, call ResourceShutDownto log out from the
Resource Manager. The Resource Managerautomatically closes any open resourcefiles.
Once your program issues a ResourceShutDowncall,it should not make any other
Resource Managercalls, except for ResourceStartUp.

45-8 Apple IIGS Toolbox Reference, Volume 3

Resource attributes

Every resource is associated with a set of attributes that define the current state of the

resource andplace limits on how the resource can be used. The Resource Managerstores
these attributes in an attributesflag word (orattributes word) for the resource
(specifically, the resAttr field in the resource reference record). Your program can read
and write this attributes word by means of the GetResourceAttr and

SetResourceaAttr toolcalls. In addition, the MarkResourceChangetoolcall

provides a convenient mechanism for changing the setting of the changed flag, which
indicates whether the resource has been changed since it was read from disk.

Manyof the attributes govern the type of memory usedto store the resource when the
Resource Managerreadsit in from disk. These attributes directly correspondto flags in

the Memory Manager NewHand_1etoolcall memory attributes word. Whenit allocates
memory for a resourceto be loaded from disk, the Resource Manager masksoutthe other
bits and passes the attributes word to the NewHand1lecall. See the NewHand1etoolcall
description in Chapter 12, “Memory Manager,” in Volume 1 of the Toolbox Reference for the
format and content of the memory attributes word.

Here are the contents ofthe attributes word for a resource:

attrLocked bit 15 Passed to Memory Manager NewHand1etoolcall

when memory is allocated for the resource.

0 = Memory for resource not locked
1 = Memory for resource locked; cannot be moved or

purged

attrFixed bit 14 Passed to Memory Manager NewHand_1etoolcall
when memory is allocated for the resource.
0 = Memory for resource need notbefixed

1 = Memory forresourceis fixed and cannot be

moved

Reserved bits 13-12 Mustbesetto 0.

resConverter bit 11 Indicates whether the resource requires a resource
converter routine (see “Resource Converter Routines”

later in this chapter for more information).
0 = Resource does not require a converter routine

1 = Resource requires a converter routine

Chapter 45 Resource Manager 45-9

resAbsLoad

attrPurge

resProtected

resPreLoad

resChanged

attrNoCross

attrNoSpec

bit 10

bits 9-8

bit 7

bit 6

bit 5

bit 4

bit 3

Governs whetherthe resource mustbe loaded ata
specific memory location. Resources that must be

loaded at an absolute location must be created by a

resource editor or compiler.
0 = Resource need not be loadedat a specific
location

1 = Resource to be loadedat specific location
Passed to Memory Manager NewHand_1etoolcall
when memory is allocated for the resource.

00 = Purgelevel 0

01 = Purgelevel 1

10 = Purge level 2
11 = Purgelevel 3

Indicates whether the resource is write-protected.If

this bit is set to 1, then applications may not update

the resource on disk.
0 = Resource is not write-protected

1 = Resource is write-protected
Specifies whether the Resource Manager should load
the resource into memory at OpenResourceFile

time. If this bit is set to 1, then this resourceis

loaded into memory whentheresourcefile is opened,
rather than whenthe resourceitself is accessed.

0 = Do notpreload the resource
1 = Preload the resource
Indicates whether the resource has been changed.If
this bit is set to 1 for a non-write-protected resource,
the Resource Manager updates the resource on disk at

CloseResourceFile time.

0 = Resource has not been changed in memory
1 = Resource has been changed in memory and

therefore differs from the version stored on disk

Passed to Memory Manager NewHand1etoolcall

when memory is allocated for the resource.
0 = Memory maycross bank boundary

1 = Memory maynotcross bank boundary
Passed to Memory Manager NewHand1etoolcall

when memory is allocated for the resource.

0 = Mayuse special memory
1 = Maynot use special memory

45-10 Apple IIGs Toolbox Reference, Volume 3

attrPage bit 2 Passed to Memory Manager NewHand1etoolcall
when memory is-allocated for the resource.
0 = Memory need not be page-aligned

1 = Memory must be page-aligned
Reserved bits 10 Mustbesetto 0.

Chapter 45 Resource Manager 45-11

Resource file format

A resourcefile is not a file in the strictest sense; actually, it is one of two parts, or forks, of

a GS/OSfile. Every file has a resource fork and a data fork, either of which may be empty.
The data fork contains information for the application as well as the application code

itself, and is formatted according to the needs of the application. Programs manipulate
data in the data fork with GS/OSfile system calls.

The Resource Manager defines the format of the resource fork. Programs read and
manipulate resources with Resource Managertoolcalls. As a result, applications do not
need to know the format of the resource fork to use the resources stored there. You can
create resources and load them into a resourcefile with the aid of a resource editor, or

with whatevertools are available in your development environment.

A resource file consists primarily of resource data and a resource map. The resources

themselves constitute the resource data. The resource mapis a directory to those

resources, containing information on both location and size. Each entry in the map on

disk contains the offset of the resource into the file; in memory, the entry contains a

handle to the resource if it is loaded. The Resource Managerreads the resource mapinto

memory at resourcefile open time and maintains it in memory until thefile is closed.

Resourcefile IDs

When an application opensa resourcefile, the Resource Managerassigns that openfile a
file ID, which identifies the file to the Resource Manager. Every open resource file has a
file ID that is unique in the entire system. Many Resource Managertoolcalls require thefile
ID to identify the resource file to be accessed. Thefile ID for the system resourcefile is
always $0001 (sysFileID).

The OpenResourceFiletoolcall returns the file ID for a resourcefile. Note thatthefile
ID does not correspond to the GS/OSfile reference number. Use the

GetOpenFileRefNum Resource Managertoolcall to obtain the GS/OSfile number ofa
resourcefile.

45-12 Apple IIGs Toolbox Reference, Volume 3

Resource file search sequence

As your program opensresourcefiles, the Resource Manageradds thosefiles to the head
of the resourcefile search chain for your application. The Resource Managerusesthis
search chain for manyofits operations, such as locating a resource. The system resource

file is always thelastfile in the search sequence. Whenit runs the search chain, the
Resource Managerfirst checks all files in the application chain, then checks in the system
resourcefile, if one is defined.

You control the application file search sequence by the order in which your program opens
its resource files. For example,if your program issues thetoolcalls

OpenResourceFile File A

OpenResourceFile File B

OpenResourceFile File C

the Resource Manager builds the search chain shownin Figure 45-1 for your application.

a Figure 45-1 A resource file search chain

The most recently openedfile (in this example,File C) is referred to as the current resource
file (or simply the currentfile). It is also called the first resourcefile (orfirst file), because
it is thefirst file accessed during a search. The least recently opened application resource
file (File A) is called the last resource file (or last file), becauseit is the last application file
to be searched.

Chapter 45 Resource Manager 45-13

During a search, which happens on nearly every Resource Managertoolcall that accepts
resource type and ID arguments, the Resource Managerstarts with the currentfile and
searches through the chain until it either finds the desired resource or exhausts thefilelist.

Notethat the search stops with the first occurrence of a matching resource; a second
instance of a resource with the same ID and type will not be found unless your application
asserts further control over the resource search sequence.

The Resource Managerprovides tool calls that allow your program to control the search

sequencefor the resourcefile chain. The SetCurResourceFiletoolcall changes the
current resourcefile, so that any resourcefile, including the System file, can be thefirstfile

searched, thoughthe searchstill terminates when the Resource Managereither finds the

desired resource or encounters the end ofthe file chain. The SetResourceFileDepth

tool call controls the numberoffiles the Resource Managersearchesbefore giving up. By
using thesecalls, your program can fine-tune resource searches for performanceor can
inhibit access to some resource files during some searches.

Resource file layout and data structures

This section describes the format of a resource file on disk. This information is intended

only for application programmers whoare writing tools to create, delete, or edit resources
in the resource fork.

Figure 45-2 showsthe internal layoutof the resource fork of a file. The resource file header

is the only data block that resides at a fixed location in the fork;it is always the first data

item in the fork. Along with other control information, the resourcefile header contains

the file offset to the resource map. The map,in turn,contains location and size
information for each resource contained inthefile.

45-14 Apple IIGs Toolbox Reference, Volume 3

= Figure 45-2 Resourcefile internal layout

Alwaysfirst -—
in resource fork

"| rFileToMap
’

 Anyplace in --7— - \
file after header ~ Resource

 Anyplace in -—4ee

file after header |*

 Anyplace in -— ;

file after header

 Anyplace in -— 7
file after header | Resource

The Resource Managercontrols therelative positionsofall elements of the resource fork.
It moves or resizes the map or resources as required. Therefore, your program should never

rely on the location of any elementin the fork, except for the resourcefile header.

The following sections present the format of the resourcefile header, resource map, and
their associated data structures in greater detail. These descriptions present version 0

layout infomation. Future system releases may support other versions with different

layouts. Your program should checkthe value in the rFileVersionfield in the resource
file header before manipulating a resourcefile.

Chapter 45 Resource Manager 45-15

Resource file header

The resourcefile header, shownin Figure 45-3,is the first data block in every resourcefork.

a Figure 45-3 Resourcefile header (ResHeaderRec)

$00 +
— rFileVersion — Long

$04 }- =
y rFileToMap _ Long

S08 }- =
— rFileMapSize -— Long

Sut : rFileMemo - 128 Bytes
l _I

rFileVersion Version numberdefining layoutof resourcefile. Currently, only version
0 is supported. This field allows Apple IIGs resource files to be
distinguished from Macintosh resourcefiles; the first long in

Macintosh resourcefiles must have a value greater than 127.

rFileToMap Offset, in bytes, to beginning of the resource map. This offset starts

from the beginning of the resourcefile.

rFileMapSize Size, in bytes, of the resource map.

rFileMemo Reserved for application use. The Resource Manager doesnot provide
any facility for reading or writing this field. Your program must use

GS/OSfile system calls to access the rFileMemofield.

45-16 Apple IIGs Toolbox Reference, Volume 3

Resource map

The resource map provides indexesto the resources stored in the resourcefile; Figure 45-4
showsthe layout of the resource map.

s Figure 45-4 Resource map (MapRec)

S00 =
mapNext = Long

$04 - mapFlag 4+ Word

$06 5
— mapOffset Long

SOA 4
— mapSize = Long

SOE mapToIndex 4 Word

$10 L mapFileNum 4 Word

$12 L mapID 4 Word

$14 -
— mapIndexSize = Long

$18 =
— mapIndexUsed = Long

$1C Le mapFreeListSize — Word

SIE mapFreeListUsed Word

$20: mapFreeList : Array of resource free blocks

Sxx|
: mapIndex - Array of resource reference records
L J

mapNext Handle to resource map of next resource file in the search chain. Set to
NILif last file in chain. This field is valid only when the mapis in
memory.

mapFlag Contains controlflags defining the state of the resourcefile.

Reserved bits 15-2 Set to 0.

mapChanged bit 1 Indicates whether the resource map has been

modified and must therefore be written to disk when
the file is closed.
0 = Map not changed
1 = Map changed

Reserved bit 0 Set to 0.

Chapter 45 Resource Manager 45-17

mapOffset

mapSize

mapToIndex

mapFileNum

mapID

mapIndexSize

Offset, in bytes, to the resource map from the beginning of the
resourcefile.

Size, in bytes, of the resource map on disk. Note that the memory
image of the map may havea different size due to changes in the

resource or resource file made during program execution.

Offset, in bytes, from the beginning of the mapto the beginning of

the mapIndex array of resource reference records.

GS/OSfile reference number. Thisfield is valid only in memory.

Resource Managerfile ID for the open resourcefile. This field is valid

only in memory.

Total numberof resource reference records in mapIndex.

mapIndexUsed Numberof used resource reference records in mapIndex.

mMapFreeListSize

Total numberofresource free blocks in mapFreeList.

mapFreeListUsed

mapFreeList

mapIndex

Numberof used resource free blocks in mapFreeList.

Array of resource free blocks, which describe free space in the
resourcefile.

Array of resource reference records, which contain control information
about the resources in the resourcefile.

45-18 Apple IIGs Toolbox Reference, Volume 3

Resource free block

The resource free block describes a contiguous area of free space in the resourcefile. The

resource map containsa variable-sized array of these blocks at mapFreeList. Note that
each resourcefile has at least one resource free block, defining free space from the end of
the resourcefile to $FFFFFFFF. Figure 45-5 showsthe formatof the resourcefree block.

a Figure 45-5 Resource free block (FreeBlockRec)

$00
blkOffset — Long

r
i

$04
blkSize — Long

i
y
]

blkOffset Offset, in bytes, to the free block from thestart of the resource fork.
A NIL value indicates the end of the used blocksin the array.

blkSize Size, in bytes, of the free block of space.

Chapter 45 Resource Manager 45-19

Resource reference record

The resource reference record contains control information about a resource. The resource

map contains a variable-sized array of these blocks, starting at the location specified in

the mapToIndexfield of the resource map (MapRec). Figure 45-6 showsthe format of
the resource reference record.

a Figure 45-6 Resource reference record (ResRefRec)

$00 resType -| Word

$02 - m
— resID = Long

$06 =
— resOffset = Long

SOA resAttr + Word

SOC 4
— resSize = Long

S10 - =
— resHandle 7 Long

resType Resource type. A NIL value indicates the last used entry in the array.

resID Resource ID.

resOffset Offset, in bytes, to the resource from thestart of the resourcefile.

resAttr Resource attributes. See “Resource Attributes” earlier in this chapter
for bit flag definitions.

resSize Size, in bytes, of the resource in the resourcefile. Note that the size of

the resource in memory maydiffer, due to changes madeto the

resource by application programs or by resource converter routines.

resHandle Handle of resource in memory. A NIL value indicates that the resource

has not been loaded into memory. Your program can determinethein-
memory size of the resource by examiningthesize of this handle.

45-20 Apple IIGs Toolbox Reference, Volume 3

Resource converter routines

The Resource Manager supports the concept of resource converter routines. Converter
routines format resources for access by your program, allowing the memory formatof a

resource to differ from its disk representation. These routines can be used, for example,
to store resources in a compressed form on disk, to reformat commonresourcesfor

different programs or operating environments, or to perform coderelocation.

Whenloading or unloading a resource, the Resource Manager determines whetherto
invoke a converter routine by examining the resConverter flagin the attributes word

for the resource. If that flag is set to 1, indicating that the resource must be converted
before being read or written, the Resource Manager invokes the appropriate converter

routine for the resource type. The converter routine may then reformat the resource in any
way it chooses.

Your program uses the ResourceConvertertoolcall to register a converter routine. At

that time, your program mustspecify the resource type to be handled by the converter

routine. One converter routine may handle more than oneresource type; your program

must issue separate ResourceConvertertoolcalls for each type to be converted.

The Resource Managertracks resource converters in two types oflists. Each application
has a private application routine list, which can contain up to 10,922 entries. In addition,
the Resource Manager maintains a system routinelist, which is availabletoall

applications. When searching for a converter routine for a specific resource type, the
Resource Managerfirst checks the applicationlist, then the system list. As a result, your

program can override a standard converter routine by registering a routine for the same

resource typein its application converter routinelist. Applications should never log

routines into or out of the system list.

When the Resource Managerinvokes a converter routine, it loads the stack with values
specifying the operation to be performed and any needed parameters. Before returning

control to the Resource Manager, the converter routine should set a condition code in the
A register (any nonzero valueindicates an error) and return the appropriate result value on

the stack. The following sections provide detailed descriptions of the entry and exit
conditions for each converter routine operation.

@ Note: Notall resource converters support conversion when resources are written back

to disk. The supplied code resource converter functions only on resource read
operations, for example. Consequently, if you are unsure about the behaviorof a given
resource converter, you should not mark converted resources as changed,since the

converter may write them backto disk in an unexpected format.

Chapter 45 Resource Manager 45-21

ReadResource

Reads a resource from disk into memory. The converter routine mustload thefile from

disk and perform any necessary reformatting.

On entry, convertParam contains a pointer to a GS/OSreadfile parameter block (see the
GS/OS Reference for more information on GS/OSfile manipulation and data structures).

The file mark is set to the beginning of the file, and the block is set to read the entire
resource from disk. To read thefile, your program can dothe following:

pushlong convertParam Pointer to read parameter block

pushword $2012 GS/OS read command code

jsl $E100B0 Call GS/OS

check for errors

The resPointer parameter contains a pointer to the resource reference record, which

contains location and size information about the resource in memory (see “ResourceFile

Format” earlier in this chapter for information on the format and content of the resource

reference record). Your program should verify that the number of bytes loaded

corresponds to the size of the resource on disk (compare resSize valueto the size of
the handle that received the resource). Your program should also check whether the
resource must be loaded at an absolute location (resAbsLoadflag set tolin resAttr
word ofthe resource reference record). If so, be careful to convert the resource into the
appropriate location.

If, during resource conversion, the converter routine must copy the resourceinto a

different handle, the routine must load that new handle into the resHand_1efield of the
resource reference record and dispose ofthe original handle. Upon return, the handle to

the converted resource shouldretain its original Memory Managerattributes (locked, and
sO on).

Upon successful completion, the converter routine should retum a NILresult. In case of
error, the routine should return a non-NILresult. It must also free the memory referenced
by the resHand1efield in the resource reference record andsetthatfield to NIL.

45-22 Apple IIGs Toolbox Reference, Volume3

Parameters

Stack before call

Previous contents

- Space - Long—Spaceforresult

convertCommand Word—Commandto be performed(will be 0: ReadResource)

~ convertParam - Long—Pointer to GS/OSread file parameter block

- resPointer - Long—Pointer to resource reference record

<—SP
Stack after call

Previous contents

- Result - Long—NILif successful; error code if error (low-order word)

 <—SP

Chapter 45 Resource Manager 45-23

WriteResource

Writes a resource from memory to disk. The converter routine must perform any necessary
reformatting and write the file to disk.

On entry, convertParam contains a pointer to a GS/OSwrite file parameter block (see the
GS/OS Reference for more information on GS/OSfile manipulation and data structures).

Thefile mark is set to the beginning of the file on disk, and the block is set to write the

entire resource. Before issuing a WriteResource command,the Resource Managercalls

the ReturnDiskSize function in the converter routine to determine how muchdisk
space the resource requires.

To write thefile, your program can dothe following:

pushlong convertParam Pointer to read parameter block

pushword $2013 GS/OS write command code

jsl SE100BO Call GS/OS

check for errors

The resPointer parameter contains a pointer to the resource reference record, which
contains location and size information about the resource in memory (see “ResourceFile

Format” earlier in this chapter for information on the format and contentof the resource
reference record). The Resource Managerdisposesof the handle to the resource after
calling WriteResource.

This function must return a NIL result.

Parameters

Stack before call

Previous contents

- Space - Long—Spaceforresult

convertCommand Word—Commandto be performed (will be 2: writeResource)

~— convertParam —- Long—Pointer to GS/OS write file parameter block

- resPointer - Long—Pointer to resource reference record

<—SP

45-24 Apple IIGs Toolbox Reference, Volume 3

Stack after call

Previous contents

- Result - Long—Must be set to NIL

 <—SP

Chapter 45 Resource Manager 45-25

ReturnDiskSize

Determines the amountofdisk space a resource will require and returnsthatvalue to the

caller. Note that this call is not valid for resources that are loaded into absolute memory,
because the size of these resources cannot change.

The convertParam parameter is undefined.

The resPointer parameter contains a pointer to the resource reference record, which

contains location and size information about the resource in memory (see “Resource File

Format” earlier in this chapter for information on the format and contentof the resource
reference record).

Onexit, Result contains the amountof disk space required to store the resource, in bytes.

If this new size differs from the original file size, the Resource Managerfrees the old space
and allocates a newfile.

Parameters

Stack before call

Previous contents

- Space - Long—Spacefor result

convertCommand Word—Commandto be performed (will be 4: ReturnDiskSize)

— convertParam - Long—Undefined

- resPointer - Long—Pointer to resource reference record

<—SP
Stack after call

Previous contents

- Result - Long—Bytes of disk space required to store resource

<—SP

45-26 Apple IIGs Toolbox Reference, Volume 3

Application switchers and desk accessories

Desk accessories and application-switching programs mustbe careful to preserve the
state of the Resource Managerbefore using its facilities. The Resource Managerprovides

tool calls that allow such programsto switch the currently active Resource Manager

application. The GetCurResourceApptoolcall returns the user ID of the application
that is currently using the Resource Manager. This call returns a special value if the Resource
Manageris not in use. The SetCurResourceApptool call changes the current

application, by loading a new userID value.It is the responsibility of the application-
switching program to use these calls.

In the following example, the Resource Manageris already active, and the application switcher has

previously used the ResourceStartUptoolcall to register itself with the Resource Manager. The
switching program mustsavethe user ID of the program that is currently using the Resource Manager
before it issues any other Resource Managertoolcalls.

pha ; Space for result from GetCurResourceApp

=
e

GetCurResourceApp

Get current app user ID, save on stack

pushword myUserID ; Pass my user ID to Resource Manager

SetCurResourceApp

r
e

Switch to my resources and files

w
e

w
e

v
e

SetCurResourceApp

Restore original application user ID

(saved on stack after GetCurResourceApp

tool call)

w
e

-
—
e

-
e

=
e

(return to caller)

Chapter 45 Resource Manager 45-27

In the case where your program mustfirst log into the Resource Manager,it must issue the
ResourceStartuUptool call before calling any other Resource Managerfunctions.

=
e

m
e

m
e

=
e

N
e

"
e
e

w
e

°
eo

e
4

°
c

NoResMgr
e
v

(on entry to desk

pushword #0

ResourceStatus

pla

beq NoResMgr

pha

GetCurResourceApp

pushword myUserID

SetCurResourceApp

SetCurResourceApp

(return to caller)

accessory task handler)

°
av

Prime for FALSE if Resource Manager

is not active

Check for active Resource Manager

Exit if Resource Manager not active

Space for result

Get current app user ID, save on stack

Pass my user ID to Resource Manager

Switch to my resources and files

Restore original application user ID

(saved on stack after GetCurResourceApp

tool call)

45-28 Apple IIGs Toolbox Reference, Volume 3

Resource Manager housekeeping routines

This section discusses the standard housekeeping routines, in order by call number.

ResourceBootInit SO11E

Initializes the Resource Manager.

A Warning An application must never makethis call.

Parameters The stack is not affected by this call. There are no input or output
parameters.

Errors None

6 This call must not be made by an application.

Chapter 45 Resource Manager 45-29

ResourceStartUp $021E

Notifies the Resource Managerthat an application wishes to open and use its own

resourcefiles. Unlike other tool set Start Upcalls, this call is not required inall

circumstances. If your application uses only system resources (located in the system

resource file), then it does not have to issue a ResourceStartUptoolcall. By contrast,

if your application uses nonsystem resources, then it must issuethis toolcall prior to

opening those resourcefiles.

If your application issues this call, then it must issue the ResourceShutDowntoolcall

before quitting.

Note that the Tool Locator StartUpTools toolcall automatically starts the Resource

Manager.

Parameters

Stack before call

Previous contents

userID Word—Application user ID (obtained at program startup)

<—SP

Stack after call

| Previous contents |

—

Errors Memory Managererrors Returned unchanged.

C extern pascal void ResourceStartUp(userID);

Word userID;

45-30 Apple IIcs Toolbox Reference, Volume 3

ResourceShutDown $031E

Notifies the Resource Managerthat an application is finished using its own resourcefiles.

The Resource Managerupdates, closes, and frees memory for any open resourcefiles.
Unlike after other tool set shutdowncalls, after this call the Resource Managerisstill
active. However,after calling ResourceShut Down,yourapplication can access only the

system resourcefile.

If your application called ResourceStartUp,thenit must issue a ResourceShutDown

call before quitting.

Parameters The stack is not affected by this call. There are no input or output
parameters.

Errors None

C extern pascal void ResourceShutDown() ;

Chapter 45 Resource Manager 45-31

ResourceVersion S04l1E

Retrieves the Resource Managerversion number. The versionInfo result contains the
information in the standard format defined in Appendix A, “Writing Your Own ToolSet,

in Volume2 of the Toolbox Reference.

Parameters

Stack before call

Previous contents

Space

Stack after call

Previous contents

Word—Spacefor result

<—SP

versionInfo Word—Resource Manager version number

<—SP

Errors None

C extern pascal Word ResourceVersion();

45-32 Apple IIGs Toolbox Reference, Volume 3

ResourceReset S051E

Resets the Resource Manager; issued only whenthe system is reset.

A Warning An application must never makethis call. a

Parameters The stack is not affected by this call. There are no input or output
parameters.

Errors None

C This call must not be made by an application.

Chapter 45 Resource Manager 45-33

ResourceStatus S061E

Returnsa flag indicating whether the Resource Manageris active. If the Resource Manager

was loaded andinitialized successfully at system startup, then this function returns a value

of TRUE.If the Resource Manager was notsuccessfully loaded orinitialized, then the Tool
Locator returns a funcNotFoundExrrerror code ($0002).

@ Note: If your program issues this call in assembly language,initialize the result space on

the stack to NIL. Upon retum from ResourceStatus,your program need only check

the value of the returned flag. If the Resource Manageris not active, the returned value
will be FALSE (NIL).

Parameters

Stack before call

Previous contents

Space Word—Spacefor result

<—SP

Stack after call

Previous contents

activeFlag Word—Boolean; TRUE if Resource Manageris active

<—SP

Errors $0002 funcNotFoundErr Resource Manager notactive.

C extern pascal Boolean ResourceStatus();

45-34 Apple IIcs Toolbox Reference, Volume3

Resource Managertool calls

This section discusses the Resource Managertoolcalls, in order bycall name.

AddResource SOCIE

Adds a resource to the current resourcefile. The Resource Manager marks the new resource
as changed and writes the new resource to disk whenthefile is updated. Your program

specifies the attributes of the new resource in a flag word passed to AddResource.

Someofthese attributes control how memory is allocated for the new resource whenit is

loaded by an application; others govern Resource Managerprocessing. For more
information about the various attributes, see “Resource Attributes” earlier in this chapter.

Parameters

Stack before call

Previous contents

— resourceHandle - Long—Handle of resource in memory

resourceAttr Word—aAttributes of the resource

resourceType Word—Type for resource

- resourcID - Long—ID for resource

<—SP
Stack after call

| Previous contents |

| csr

Errors $1E04 resNoCurFile No current resourcefile.
$1E05 resDupID Specified resource ID is already

in use.
$1E0E resDiskFull Volumefull.

WriteResource errors Returned unchanged.
Memory Managererrors Returned unchanged.
GS/OSerrors Returned unchanged.

Chapter 45 Resource Manager 45-35

C extern pascal void AddResource (resourceHandle,

resourceAttr, resourceType, resourcelID);

Long resourceHandle, resourceID;

Word resourceAttr, resourceType;

resourceHandle Specifies the memory location and size of the resource to be added
to the currentresourcefile. If the handle is empty, AddResource
creates a resource with zero length. Never pass a handle that was
created by the Resource Manager,unless the resource in that handle

has been detached (see “Det achResource $181E”laterin this
chapter).

If resAbsLoadin resourceAttr is set to 1, then the Resource Manager

obtains the size of the resource from the mapSizefield in the

resource map.

resourceAttr Bit flags defining the attributes of the resource to be added.For
information about the specific flags, see “Resource Attributes” earlier
in this chapter.

resourceType Type of resource to be added. See “Identifying Resources” earlier in

this chapter for details.

resourcelD ID of new resource. Must be unique amongresourcesof the sametype.

See “Identifying Resources” earlier in this chapter for more

information. Use the UniqueResourceIDtool call to obtain a

unique ID.

45-36 Apple IIGS Toolbox Reference, Volume 3

CloseResourceFile SOQBIE

Updates a specified resourcefile, frees any memory used bythe resource mapforthefile and any
resources currently loaded, andclosesthe file. Your program passes thefile ID of the resourcefile to be
closed. This file ID is obtained from the OpenResourceFiletoolcall.

If the file being closed is the current resourcefile, the next file in the resourcefile list
becomesthe current resourcefile. Your program can close the system resourcefile by
passing the system file ID ($0001). Note, however, that sometoolcalls require system

resources (for example, the system stores the control definition procedure for icon

button controls in the system resourcefile). These calls will not work if you close the

system resourcefile or if you set the search depth so shallow that the system resourcefile
is inaccessible (see the description of the SetResourceFileDepthtoolcall later in this
chapter).

@ Note: When quitting, your program need not issue CloseResourceFilecalls forall
open resourcefiles. The ResourceShutDowncall automatically updates and closes

any openresourcefiles.

Parameters

Stack before call

Previous contents

fileID Word—ID of open resourcefile; NIL to close all open files

<—SP

Stack after call

| Previous contents |

| | <—SP

Errors GS/OSerrors Returned unchanged.
WriteResourceerrors Returned unchanged.

C extern pascal void CloseResourceFile(fileID);

Word fileID;

Chapter 45 Resource Manager 45-37

CountResources $221E

Counts the numberofresources of a specified typein all resource files available to the

calling program in its search sequence. Your program specifies the resource type to be

counted. The Resource Managercounts all resources of that type in open resourcefiles

available to your program,including the system resourcefile,if it is in the search

sequence.

@ Note: This call can be very slow when you have manyresourcesor resource files. Do not

issue this call in time-critical procedures.

Parameters

Stack before call

Previous contents

- Space - Long—Spacefor result

resourceType Word—Resource type to be counted

<—SP
Stack after call

Previous contents

— totalResources —- Long—Numberof resources of specified type

<—SP

Errors None

C extern pascal Long CountResources (resourceType);

Word resourceType;

45-38 Apple IIGs Toolbox Reference, Volume 3

CountTypes $201E

Counts the numberof different resource types in all resource files available to the calling
program in its search sequence,including the system resourcefile,if it is in the search
sequence.

@ Note: This call can be very slow when you have manyresourcesor resourcefiles. Do not

issue this call in time-critical procedures.

Parameters

Stack before call

Previous contents

Space Word—Space for result

<—SP

Stack after call

Previous contents

totalTypes Word—Numberofdifferent resource types

<—SP

Errors Memory Managererrors Returned unchanged.

C extern pascal Word CountTypes() ;

Chapter 45 Resource Manager 45-39

CreateResourceFile S09I1E

Initializes a resource fork with no resources. If necessary, CceateResourceFile
creates the file to contain the resource fork. The specific actions performed bythis call
depend onthestate of the specified inputfile.

No file of specified name Createfile with specified auxType, fileType,

fileAccess, and fileName. Create andinitialize
resource fork.

File with no resource fork Create andinitialize resource fork.

File with empty resource fork Initialize resource fork.
File with nonempty

Parameters

Stack before call

Previous contents

resource fork Retum resForkUsederror.

- QuxType - Long—GS/OSauxiliary file type (used only if file does not exist)

fileType Word—GS/OSfile type (used only if file does not exist)

fileAccess Word—GS/OSfile access (used onlyif file does not exist)

- fileName - Long—Pointer to GS/OSclass 1 input pathnamefor resourcefile

<—SP

Stack aftercall

| Previous contents |

| | <—SP

Errors $1E01 resForkUsed Resource fork not empty.
GS/OSerrors Returned unchanged.

C extern pascal void CreateResourceFile (auxType,

fileType, fileAccess, fileName) ;

Long auxType, fileName;

Word fileType, fileAccess;

4540 Apple IIGS Toolbox Reference, Volume 3

DetachResource S181E

Instructs the Resource Managerto dispose ofits control blocks for a specified resource.

The resourceitself remains in memory;thecalling program is responsible for freeing its
handle. The resource to be detached must be marked as unchanged.

This call can be used to copy resources between different resource files. After you issue

DetachResource,add the resource to the new resourcefile by calling AddResource.

After you issue the AddResourcecall, the Resource Manageris again responsible for the

resource handle.

Parameters

Stack before call

Previous contents

resourceType

resourcelD -

Stack

| Previous contents

after call

Errors $1E06
$1E0C

Word—Type of resource to be detached

Long—ID of resource to be detached

<—SP

<—SP

resNotFound Specified resource not found.
resHasChanged Resource has been changed and

has not been updated.

extern pascal void DetachResource (resourceType,

Word

Long

resourcelID);

resourceType;

resourcelID;

Chapter 45 Resource Manager 45-41

GetCurResourceApp S$141E

Returnsthe user ID for the application that is currently using the Resource Manager.If the
Resource Manageris not in use,this call returns the Resource Manager's user ID ($401E).
This call is used by desk accessories and application switchers (see “Application Switchers

and Desk Accessories” earlier in this chapter for more information).

Parameters

Stack before call

Previous contents

Space

Stack after call

Word—Spacefor result

<—SP

Previous contents

userID Word—wserID of current application; $401E if none

<—S$P

Errors None

C extern pascal Word GetCurResourceApp() ;

45-42 Apple IIGs Toolbox Reference, Volume 3

GetCurResourceFile S$121E

Returnsthefile ID of the current resourcefile. This call returns a NIL valueif there is no

currentfile.

Parameters

Stack before call

Previous contents

Space

Stack after call

Previous contents

Word—Space for result

<—SP

fileID Word—File ID of current resourcefile; NIL if none

<—S§P

Errors $1E04 resNoCurFile No current resourcefile.

C extern pascal Word GetCurResourceFile();

Chapter 45 Resource Manager 45-43

GetIndResource $231E

Finds a resource of a specified type by meansofits index and returns the resource ID for

that resource. The index value corresponds to the position of the desired resource among

all resources of the specified typein all resourcefiles available to the calling program inits
search sequence;thefirst resource is number1.

Use this call to find every resource of a given type by repeatedly issuingthecall,
incrementing the index value until the call returns resIndexRange.

@ Note: This call can be very slow when you have manyresources or resourcefiles. Do not

issue this call in time-critical procedures.

Parameters

Stack before call

Previous contents

- Space - Long—Spacefor result

resourceType Word—Type of resource to find

— resourcelndex - Long—Index of resource to find

<—SP

Stack after call

Previous contents

- resourceID - Long—ID of resource matching type and index

<—SP

Errors $1E0A resIndexRange Index is out of range (no resource

found).
Memory Managererrors Returned unchanged.

4544 Apple IIcs Toolbox Reference, Volume 3

extern pascal Long GetIndResource (resourceType,

resourcelIndex) ;

Word resourceType;

Long resourceIndex

Chapter 45 Resource Manager 45-45

GetIndType $211E

Finds a resource type value by meansofits index. The index value corresponds to the

1-relative position of the desired resource type amongall types in all resource files
available to the calling program in its search sequence.

Use this call to find every resource type in all files available to an application by repeatedly

issuingthecall, incrementing the index value until the call returns resIndexRange.

@ Note: This call can be very slow when you have manyresourcesor resourcefiles. Do not
issue this call in time-critical procedures.

Parameters

Stack before call

Previous contents

Space Word—Spacefor result

typelndex Word—Index of type to find

<—SP

Stack after call

Previous contents

resourceType Word—Type matching index

<—SP

Errors $1EO0A §resIndexRange Indexis out of range (no resource

found).
Memory Managererrors Returned unchanged.

C extern pascal Word GetIndType (typeIndex);

Word typeIndex;

45-46 Apple Ics Toolbox Reference, Volume 3

GetMapHandle $261E

Returns a handle to the resource map for a specified resource file. Your program specifies
the desired resource file by passingits file ID to GetMapHand1e.This call searches all
open resourcefiles, irrespective of the search sequence ineffect.

For information on the format and content of resource file maps, see “Resource File
Format” earlier in this chapter.

@ Note: This call provides greater application flexibility; however, most applications will
not needto issuethis call.

Parameters

Stack before call

Previous contents

- Space - Long—Spaceforresult

fileID Word—ID ofresource file to find

<—SP
Stack after call

Previous contents

- mapHandle - Long—Handle of resource file map; NIL if none found

<—SP

Errors $1E07 resFileNotFound Specified file ID does not match

an openfile.

C extern pascal Long GetMapHandle(fileID);

Word fileID;

Chapter 45 Resource Manager 45-47

fileID Specifies the resource file whose mapis to be returned. This valueis

obtained from the OpenResourceFiletoolcall. Typically, your

program sets this parameter with thefile ID of a particular resource
file. However,this field also supports the following special values:

NIL Returns handle to mapof current resourcefile
$FFFF Returns handle to map of system resourcefile

4548 Apple IIGs Toolbox Reference, Volume 3

GetOpenFileRefNum S1F1E

Returns the GS/OSfile reference number (refNum) associated with the resource fork of
an open resourcefile. Your program specifies the resource file by meansofits file ID. The
Resource Managersearchesall open resourcefiles for a file with a matching ID.

Your program may usethis reference numberto read data from the resourcefile. However,

your program should be very careful to maintain the structure of the fork during write
operations; careless writing could destroy the resource fork. Further, your program should
neverdirectly close thefile using the reference number. Only the Resource Manager should
closefiles it has opened.

For information on the format and contentof resourcefile maps, see “Resource File
Format” earlier in this chapter.

@ Note: This call provides greater application flexibility; however, most applications will

not needtoissue thiscall.

Parameters

Stack before call

Previous contents

Space Word—Spacefor result

filelD Word—ID of resource file to find

<—SP
Stack after call

Previous contents

openRefNum Word—GS/OSfile reference number

<—SP

Errors $1E07 resFileNotFound Specified file ID does not match
an openfile.

C extern pascal Word GetOpenFileRefNum(fileID);

Word fileID;

Chapter 45 Resource Manager 45-49

fileID Specifies the resource file whose reference numberis to be returned.
This value is obtained from the openResourceFiletool call.

Typically, your program sets this parameter with the file ID of a
particular resource file. However, this field also supports the following

special values:

NIL Returns reference numberof current resourcefile

$FFFF Returns reference numberof system resourcefile

45-50 Apple IIGS Toolbox Reference, Volume 3

GetResourceAttr S1BIE

Returns the attributes word for a specified resource. Your program specifies the type and
ID of the desired resource. For more information about the format and content of the
attributes word, see “Resource Attributes” earlier in this chapter.

Parameters

Stack before call

Previous contents

Space

resourceType

resourceID

Stack after call

Previous contents

resourceAttr

Errors $1E06

Word—Spacefor result

Word—Type of resourceto find

Long—ID ofresource to find

<—SP

Word—aAttributes word for specified resource

<—SP

resNotFound Specified resource not found.

extern pascal Word. GetResourceAttr (resourceType,

Word

Long

resourcelID);

resourcetType;

resourceID;

Chapter 45 Resource Manager 45-51

GetResourceSize SIDIE

Retums the size of the specified resource. Your program specifies the type and ID ofthe
desired resource. Resource size is defined as the numberof bytes the resource occupies in
the resource fork on disk.

Parameters

Stack before call

Previous contents

- Space - Long—Spacefor result

resourceType Word—Type ofresource to find

— resourceID - Long—ID ofresourceto find

<—SP

Stack after call

Previous contents

- resourceSize - Long—Size of specified resource

<—SP

Errors $1E06. resNotFound Specified resource not found.

C extern pascal Long GetResourceSize (resourceType,

resourcelID);

Word resourceType;

Long resourcelID;

45-52 Apple IIGs Toolbox Reference, Volume 3

HomeResourceFile S$151E

Returnsthefile ID of the resource file that contains a specified resource. Your program
specifies the type and ID of the resource in question.

@ Note: If multiple resources share the specified type and ID values, and your program

has changedthe resource search sequence (with the SetCurResourceFile or
SetResourceFileDepthtoolcalls), the result of this call may be different from

those of previouscalls.

Parameters

Stack before call

Previous contents

Space

resourceType

resourcelD

Stack after call

Previous contents

fileID

Errors $1E06

Word—Spacefor result

Word—Typeof resource to find

Long—ID ofresource to find

<—SP

Word—File ID of home resourcefile for resource; NIL if not found

<—SP

resNotFound Specified resource not found.

extern pascal Word HomeResourceFile (resourceType,

Word

Long

resourcelID);

resourcetType;

resourcelID;

Chapter 45 Resource Manager 45-53

LoadAbsResource S$271E

Loads a resource into a specified absolute memory location. Your program specifies the
type and ID ofthe resource to load, the memory location into which the Resource
Manageris to load the resource, and the maximum numberofbytes to load. Note that the
resAbsLoadflag in theattributes word for the desired resource mustbesetto 1.

@ Note: This call does not respect the disk load setting maintained by the

SetResourceLoadtoolcall.

A Warning Most applications will not have to issue this call. To usethis call you

must have a thorough understanding of absolute memory.Issuing this
call with an incorrectly set loadAddress parameterwill corrupt system

memory. a

Parameters

Stack before call

Previous contents

- Space - Long—Spacefor result

- loadAddress - Long—Address at which to load resource

- maxSize - Long—Maximum numberofbytes to load

resourceType Word—Type of resource to find

- resourceID - Long—ID ofresourceto find

<—SP

Stack after call

Previous contents

- resourceSize —- Long—Size of resource on disk

<—SP

45-54 Apple IIcs Toolbox Reference, Volume3

Errors

loadAddress

$1E03 resNoConverter No converter routine found for
resource type.

$1E06 resNotFound Specified resource not found.
GS/OSerrors Retumed unchanged.

extern pascal Long LoadAbsResource (loadAddress,

maxSize, resourceType, resourceID);

Word resourceType;

Long loadAddress, maxSize, resourceID;

Specifies the memory location at which the Resource Manageris to
load the resource. If your program passes a NIL value, the Resource
Manageruses the address stored in the resHand1efield ofthe
appropriate entry in the resource index.

Chapter 45 Resource Manager 45-55

LoadResource SQEIE

Loads a resource into memory and retumsa handleto that location. Your program

specifies the type and ID of the resource to load. The returned handle provides
addressability to the resource.

The LoadResourceCall searches both memory and disk for the specified resource. If the
resource is already in memory, LoadResourcereturns a handle to that memory location.
If the resource has been purged from memory, LoadResourcereloads the resource and
retumsits handle.If the resource has not been loaded, LoadResourceallocates a handle,
loads the resource, and returns the handle to your program.

Your program may manipulate the resource whileit is in memory and may even change the

size of the resource (to any size other than 0 bytes). If you want the changes to be

reflected in the resource file, use the MarkResourceChangetoolcall to set the changed

attribute for the file. The Resource Managerwill then write the changed resource to disk
the next time the resourcefile is updated. Your program can force the Resource Manager
to write the resource to disk immediately by issuing either the WriteResourceorthe

UpdateResourceFiletoolcall.

Note that your program should not dispose of the handle; only the Resource Manager
should free the memory thatit allocates.

Parameters

Stack before call

Previous contents

- Space - Long—Spaceforresult

resourceType Word—Typeof resource to find

-— resourcelID - Long—ID of resourceto find

<—SP

Stack after call

Previous contents

- resourceHandle - Long—Handle of resource in memory

<—SP

45-56 Apple IIGs Toolbox Reference, Volume 3

Errors $1E03 resNoConverter No converter routine found for

resource type.
$1E06 xresNotFound Specified resource not found.
GS/OSerrors Returned unchanged.
Memory Managererrors Retumed unchanged.

extern pascal Long LoadResource (resourceType,

resourcelID);

Word resourceType;

Long resourcelID;

Chapter 45 Resource Manager 45-57

MarkResourceChange S101E

Instructs the Resource Managerto write the specified resource to disk the next time its

resourcefile is updated. Your program specifies the type andID ofthe resource to be

marked as changed.

Use this call when you wantto make permanentthe in-memory changes you have madeto
a resource.

Parameters

Stack before call

Previous contents

changeFlag Word—Boolean; TRUE for changed, FALSE for not changed.

resourceType Word—Type of resource to find

- resourceID - Long—IDofresource tofind

<—SP

Stack after call

| Previous contents |

| ce

Errors $1E06. resNotFound Specified resource not found.

C extern pascal void MarkResourceChange (changeFlag,

resourceType, resourceID);

Word changeFlag, resourceType;

Long resourcelID;

45-58 Apple IIGs Toolbox Reference, Volume 3

MatchResourceHandle SIEI1E

Returns the type andID of a resource, given a handleto that resource. The Resource
Managersearchesall open resourcefiles for a match, without regard for the search
sequencein effect. As a consequenceof the search algorithm used by the Resource
Manager, the type and ID values retumedbythis call are unreliable if your program
subsequentlyalters the resource search path (with the SetCurResourceFile or
SetResourceFileDepthtoolcalls).

@ Note: The Resource Manager has been optimized to access resources by type andID,

irrespective of the number of resources in the system. Although

MatchResourceHand1leworkswell with relatively small numbers of resources (less
than 100), this call can be very slow whenappliedto files with large numbers of
resources. To avoid this overhead, consider storing the resource type and ID in the
resource structure, so that your program can access this information directly.

Parameters

Stack before call

Previous contents

- foundRec - Long—Pointer to location in which to return type and ID

— resourceHandle - Long—Handle of resource

<—SP
Stack after call

| Previous contents |

—,

Errors $1E06 resNotFound Specified resource not found.

C extern pascal void MatchResourceHandle (foundRec,

resourceHandle);

Pointer foundRec;

Long resourceHandle;

Chapter 45 Resource Manager 45-59

foundRec Must pointto a location in memory that can accept 6 bytes of data: the
type and ID ofthe resource in question. On successful return from
MatchResourceHandle,thatlocation will contain the following data:

SOO + resourceType Word—Type of resource

$02

J
t
f

Long—ID ofresource— resourceID

45-60 Apple IIGs Toolbox Reference, Volume 3

OpenResourceFile SOAIE

Opensa specified resource file, making it the currentfile, and returns a uniquefile ID to
the calling program. Your program specifies the class 1 GS/OS pathnameto the desired

resourcefile. The Resource Managerloads the resource map into memory,along with any
resources marked to be preloaded (resPreLoadflag is set to 1 in the attributes word for
the resource).

Parameters

Stack before call

Previous contents

Space Word—Spaceforresult

openAccess Word—File access

— resourceMapPtr — Long—Pointer to resource map in memory

- fileName - Long—Pointer to GS/OSclass 1 pathnameofresourcefile

<—SP
Stack after call

Previous contents

fileID Word—ID of open resource file

<—SP

Errors $1E06 resNotFound Specified resource not found.
$1E09 resNoUniqueID No more resource IDs available.
$1EOB resSysIsOpen System resourcefile is already

open.
GS/OSerrors Returned unchanged (EOFif

empty fork).

Memory Managererrors Returned unchanged.

C extern pascal Word OpenResourceFile (openAccess,

resourceMapPtr, fileName);

Word openAccess;

Pointer resourceMapPtr, fileName;

Chapter 45 Resource Manager 45-46]

openAccess Contains GS/OSfile access privileges for the resource file. See the
GS/OS Reference for more information.

resourceMapPtr To open resourcefile on disk, set this field to NIL. If the mapis in
memory, loadthis field with a pointer to that map. In this case, the
Resource Manager opensthefile that is already in memory.

4562 Apple Ilcs Toolbox Reference, Volume 3

ReleaseResource SI71E

Sets the purge level of the memory used by a resource. Your program specifies the type

and ID of the resource whose memory is to be freed and the purgelevel to be assigned to
the memory. See Chapter 12, “Memory Manager,” in Volume1 of the Toolbax Reference for
more information about purge levels and memory management. Notethat this call does
not unlock the handle.

Parameters

Stack before call

Stack after call

Previous contents

purgeLevel Word—Purge level of memory

resourceType Word—Typeof resource to find

- resourcID - Long—IDofresource to find

<—SP
Previous contents |

Errors

purgeLevel

| <—SP

$1E06 resNotFound Specified resource not found.

$1EOC resHasChanged Resource has been changed and
has not been updated.

extern pascal void ReleaseResource (purgeLevel,

resourceType, resourcelID);

Word purgeLevel, resourceType;

Long resourcelID;

Specifies the Memory Managerpurgelevel to be assignedto the freed

memory. Valid Memory Managerpurge levels lie in the rangeof0 to 3.

To direct the Resource Managerto dispose of the handle immediately,
set this field to a negative value.

Chapter 45 Resource Manager 45-63

RemoveResource SOFIE

Deletes a resource from its resource file and releases any memory usedbytheresource.

Your program specifies the type and ID ofthe resource to be deleted. After successful
return from this call, the specified resource is no longer available for access or loading.

Parameters

Stack before call

Previous contents

resourceType Word—Type ofresourceto find

- resourcelD - Long—ID of resource to find

<—SP

Stack after call

| Previous contents |

—
Errors $1E06 resNotFound Specified resource not found.

$1E0E resDiskFull Volumefull.
Memory Managererrors Retumed unchanged.

C extern pascal void RemoveResource (resourceType,

Word

Long

resourceID);

resourcetType;

resourcelID;

45-64 Apple IIGs Toolbox Reference, Volume3

ResourceConverter $281E

Installs or removes a converter routine from either the application or system converterlist.
Your program specifies the address of the converter routine, the type of resource the
routine acts on, and flags indicating the type of operation to perform andthelist to

modify. For background information on resource converter routines, see “Resource

Converter Routines”earlier in this chapter.

The Resource Manager maintains twoclasses of converter routinelists: one for your
application and onefor the system. Each application has its own converter routinelist. All
programsshare accessto the system list. When searching for a routine to convert a resource

of a given type, the Resource Managerfirst searches the application list of the calling
program,then the system list. As a result, your program can override converterroutines in the

system list by installing a routine for the same resource typein its application list.
Applications must never log routines into or out of the system converterlist.

An application can log in up to 10,922 converter routines. Note, however, that the
Resource Manager does not checkforthis limit. The same converter routine can be logged
in for more than one resource type.

The system contains a standard routine to convert code resources. Use the
GetCodeResConverter Miscellaneous Tool Set tool call to obtain the address of that
routine (see Chapter 39, “Miscellaneous Tool Set Update,” in this book for details on the
GetCodeResConverterCall).

Parameters

Stack before call

Previous contents

— converterProc - Long—Pointer to converter routine

resourceType Word—Typeof resource acted on by the routine

logFlags Word—Flag governing action andlist to access

<—SP
Stack after call

| Previous contents |

|

Chapter 45 Resource Manager 45-65

Errors

logFlags

Reserved

list

action

$1E0D xresDiffConverter Another converter already logged
in for this resource type.

Memory Managererrors Returned unchanged.

extern pascal void ResourceConverter(converterProc,

resourceType, logFlags) ;

Pointer converterProc;

Word resourceType, logFlags;

Specifies whether to log the converter routine into or outofits list,
and specifies which list (application or system) to access.

bits 15-2 Mustbesetto 0.

bit 1 Indicates which routine list to access.

0 = Application converterlist
1 = System converterlist

bit 0 Specifies action to take.
0 = Log routine outoflist
1 = Log routineinto list

45-66 Apple IIGs Toolbox Reference, Volume 3

SetCurResourceApp $131E

Tells the Resource Managerthat another application will now be issuing Resource Manager
calls. This call is used by desk accessories and application switchers (see “Application
Switchers and Desk Accessories” earlier in this chapter for more information). Before

issuing this call, your program must call ResourceStartUpto registeritself with the
Resource Manager.

Parameters

Stack before call

Previous contents

userID Word—UserID of application that will be using Resource Manager

<—SP

Stack after call

| Previous contents |

| <—SP

Errors $1E08 resBadAppID User ID not found;calling

program has not issued

ResourceStartUptoolcall.

C extern pascal void SetCurResourceApp (userID) ;

Word userID;

Chapter 45 Resource Manager 45-67

SetCurResourceFile SI111E

Makes a specified resource file the currentfile. Because Resource Manager searches
typically start with the currentresourcefile, your program can controlthefile search

sequenceby specifying a particular file as the currentfile. For more information about

Resource Managersearch processing, see “Using Resources” earlier in this chapter.

Parameters

Stack before call

Previous contents

fileID Word—File ID of resourcefile to be madecurrentfile

<—SP

Stack after call

| Previous contents |

| <—SP

Errors $1E07 resFileNotFound Specified file ID does not match
an openfile.

C extern pascal void SetCurResourceFile (fileID);

Word fileID;

45-68 Apple IIGs Toolbox Reference, Volume 3

SetResourceAttr SICIE

Sets the attributes of a resource. Your program specifies the type and ID ofthe desired

resource and a newattributes word for the resource. The Resource Managerreplaces the

existing attributes word with the one providedto this call. For more information about

the format and content of the attributes word, see “Resource Attributes” earlier in this
chapter.

If your program changestheattributes of a resource, it should not also mark the resource

as changed. The Resource Managerautomatically tracks these changes.

Note that these changesaffect only future use of the resource. For example, if your

program changestheattributes of a resource to indicate that it should be locked into
memory (sets the att rLockedflag to 1), that action does not changethestatus of any
current instances of that resource in memory. However, the next time the Resource

Managerallocates a handle for the resource, the memory for that new handle will be
locked.

Parameters

Stack before call

Previous contents

resourceAttr Word—Newattributes flag word for resource

resourceType Word—Type of resource to find

- resourceID - Long—ID of resource to find

<—SP
Stack after call

| Previous contents |

| ——,

Errors $1E06 resNotFound Specified resource not found.

C extern pascal void SetResourceAttr(resourceAttr,

resourceType, resourcelID);

Word resourceAttr, resourceType;

Long resourceID;

Chapter 45 Resource Manager 45-69

SetResourceFileDepth §$251E

Sets the numberoffiles the Resource Manageris to search during a search operation and
returns the previous search depth setting. For more information about the Resource

Manager’s search sequence, see “Resource File Search Sequence’earlier in this chapter.

Parameters

Stack before call

Previous contents

Space Word—Spacefor result

searchDepth Word—Numberoffiles to search

<—SP

Stack aftercall

Previous contents

originalDepth Word—Searchfile depth beforecall

<—SP

Errors None

C extern pascal Word

SetResourceFileDepth (searchDepth);

Word searchDepth;

searchDepth Specifies the numberoffiles to search. SetResourceFileDepth
accepts the following special values:

NIL Retum current search depth without changingit
$FFFF Searchallfiles

45-70 Apple IIGs Toolbox Reference, Volume 3

SetResourceID SI1AI1E

Changesthe ID of a resource to a new value. Your program specifies the type and current
ID of the resource to be changed.

If your program changesthe ID value ofa resource, it should not mark the resource as
changed. The Resource Manager automatically tracks these changes.

Parameters

Stack before call

Previous contents

- newID - Long—NewID ofresource

resourceType Word—Type of resource to find

- currentID - Long—Current ID of resource to find

<—SP
Stack after call

| Previous contents |

| <—SP

Errors $1E05 resDupID Specified resource ID is already
in use.

$1E06 resNotFound Specified resource not found.

C extern pascal void SetResourceID (newID,

resourceType, currentID);

Long newID, current ID;

Word resourceType;

Chapter 45 Resource Manager 45.7]

SetResourceLoad $241E

Controls Resource Manageraccessto the disk when resourcesare loaded. If you disable
disk loading, the Resource Manager does not load resources from disk but instead
allocates empty handles for requested resources. However, if a resource had been loaded
into memory priorto the disabling of disk loading, the Resource Managerreturns a valid
handle. For example, a LoadResourcetoolcall returns an empty handle if loading is set
to FALSE andthe resource has not been loaded into memory previously.

@ Note: Most applications will notissue this call.

Parameters

Stack before call

Previous contents

Space Word—Spaceforresult

readFlag Word—Flag controlling Resource Manager disk access

<—SP
Stack after call

Previous contents

originalFlag Word—Flag setting prior to call

<—SP

Errors None

C extern pascal Word SetResourceLoad (readFlag);

Word readFlag;

readFlag Specifies the new setting for the read flag. This call also supports a
special value that just returns the currentflag setting.

0 Do not read resources from disk
1 Read resourcesfrom disk,if necessary
Negative Retum currentsetting only—no changeto current

setting

originalFlag Contains the previousflag setting.

0 Do not read resources from disk

1 Read resources from disk, if necessary

45-72 Apple IIGs Toolbox Reference, Volume 3

UniqueResourceID $191E

Returns a unique resource ID for a specified resource type. Your program specifies the
resource type of the ID and mayoptionally constrain the new ID to a defined range. The
Resource Managerallocates the new ID, guaranteeing thatit is not used by any of your

program’s currently available resources.

Parameters

Stack before call

Previous contents

- Space - Long—Spacefor result

IDRange Word—Rangeof ID; $FFFF for any valid ID value

resourceType Word—Typeof resource

<—SP

Stack after call

Previous contents

- resourcelID - Long—Unique resource ID

<—SP

Errors $1E04. resNoCurFile Nocurrent resourcefile.
$1E09 resNoUniqueID No more resource IDsavailable.

C extern pascal Long UniqueResourceID (IDRange,

resourceType);

Word IDRange, resourceType;

IDRange Specifies a 65,535-element range within which the Resource Manageris

to allocate the new resource ID. The value of JDRange becomesthe

high-order word of the new ID. The Resource Managerthenallocates a

unique ID from the 65,535 possible values. This facility is provided so
that applications can managelogical groups of resources
differentiated by ID numberranges.

Chapter 45 Resource Manager 45-73

ResourceIDs in the $07FF rangeare reserved for system use. Ranges

from $0800 through $FFFE are invalid. The following list summarizes
the valid values for IDRange:

IDRange Lowest possible ID returned Highest possible ID returned

$0000 $00000001 (zero is invalid) $0000FFFF

$0001 $00010000 $0001FFFF

$0002 $00020000 $0002FFFF

(and so on)

$07FE $07FE0000 $07FEFFFF

$07FF Reserved for system use

$0800-$FFFE Invalid range values

$FFFF $00000001 $07FEFFFF
(directs Resource Managerto allocate from any
application range)

45-74 Apple IIGs Toolbox Reference, Volume 3

UpdateResourceFile SO0QDIE

Transfers modifications made to resources in memory to the appropriate resourcefile,

thus making those changes permanent. Your program specifies the file ID of the resource

file to be updated. The Resource Managerthen locates and updates all resources for that
file. If necessary, UpdateResourceFile writes the resource map todisk.

@ Note: Most applications will notissue this call because the ResourceShut Downtool
call automatically updatesall resources opened by a program.

Parameters

Stack before call

Previous contents

fileID Word—ID of open resource file

<—SP

Stack after call

Previous contents |

| | <—SP

Errors $1E03 resNoConverter No converter routine found for

resource (ype.

$1E07 resFileNotFound Specified file ID does not match
an openfile.

$1E0E resDiskFull Volumefull.

GS/OSerrors Returned unchanged.

C extern pascal void UpdateResourceFile (fileID);

Word fileID;

Chapter 45 Resource Manager 45-75

WriteResource SI161E

Directs the Resource Managerto write a modified resourceto its resourcefile. Your

program specifies the type and ID ofthe resource. If that resource has been modified
(resChangedflagset to 1 in the attributes word), the Resource Manager writes the

resource to its resourcefile on disk. The AddResource, MarkResourceChange,or

SetResourceAttr (with resChangedsetto 1) toolcalls cause a resource to be

marked as changed.

@ Note: Most applications will not issue this call because the ResourceShutDown,

CloseResourceFile, and UpdateResourceFiletoolcalls automatically write

all changed resources to the appropriate resource file (unless the resourceis

write-protected).

Parameters

Stack before call

Previous contents

resourceType Word—Type of resource to write

- resourceID - Long—ID of resource to write

<—SP
Stack after call

| Previous contents |

| J cs

Errors $1E03 resNoConverter No converter routine found for
resource type.

$1E06. resNotFound Specified resource not found.
$1E0E resDiskFull Volumefull.

GS/OSerrors Returned unchanged.

C extern pascal void WriteResource (resourceType,

resourcelID);

Word resourceType;

Long resourceID;

45-76 Apple IIcs Toolbox Reference, Volume3

Resource Manager summary

Tables 45-1, 45-2, and 45-3 summarize the constants, data structures, and error codes

(respectively) used by the Resource Manager.

a Table 45-1 Resource Manager constants

Name Value

mapFlag values

mapChanged $0002

resAttr flag values

resChanged $0020

resPreLoad $0040

resProtected $0080

resAbsLoad $0400

resConverter $0800

resMemAttr $C31C

System file ID

sysFileID $0001

Description

Set to 1 if the map has changed and mustbe written
to disk.

Set to 1 if the resource has changed and must be
written to disk.
Set to 1 if (penResourceFile should be used to

load the resource into memory.

Set to 1 if the resource should never be written to

disk.

Set to 1 if the resource should be loaded at an

absolute memory location.

Set to 1 if a converter routine is required as the

resource is loaded into memory or written to disk.
Flags passed to the NewHandle Memory Manager
tool call when memory is allocated for the resource.

File ID of the system resourcefile.

Chapter 45 Resource Manager 45-77

= Table 45-2 Resource Manager data structures

Name Offset/Value Type Description

ResHeaderRec(resource file header record)

rFileVersion $0000 Long Format version of resource fork
rFileToMap $0004 Long Offset from start of fork to resource

map record
rFileMapSize $0008 Long Size, in bytes, of resource map

rFileMemo $000C 128 bytes Space reserved for application use
rFileRecSize $008C Size of ResHeaderRec

MapRec (resource map record)

mapNext $0000 Handle Handle of next resource mapin
memory

mapFlag $0004 Word Bit flags

mapOffset $0006 Long Offset from start of fork to resource
map record

mapSize $000A Long Size, in bytes, of resource map

mapToIndex $000E Word Offset from start of map to the

mapIndexarray

mapFileNum $0010 Word GS/OSfile reference number for open
resourcefile

mapID $0012 Word Resource Managerfile ID assigned to
this resource file

mapIndexSize $0014 Long Total numberof resource reference
records in mapIndex

mapIndexUsed $0018 Long Numberof used resource reference
records

mapFreeListSize

$001C Word Total numberof free block records in
the mapFreeList array

mapFreeListUsed

$001E Word Numberof used free block records
mapFreeList $0020 n bytes Array of free block records

(FreeBlockRec)
mapIndex $0020+n m bytes Array of resource reference records

(ResRefRec)

[continued]

45-78 Apple IIGs Toolbox Reference, Volume 3

a Table 45-2 Resource Managerdata structures [continued]

Name Offset/Value Type

FreeBlockRec (free block record)

blkOffset

b1lkSize

blkRecSize

ResRefRec (resource reference record)

resType

resID

resOffset

resAttr

resSize

resHandle

resRecSize

$0000

$0004

$0008

$0000

$0002

$0006

$000A

$000C

$0010

$0014

Long

Long

Word

Long

Long

Word

Long

Handle

Description

Offset, in bytes, to start of this block
of free space
Size, in bytes, of this block offree

space

Size of FreeBlockRec

Resource type

Resource ID

Offset, in bytes, from start of resource
fork to this resource

Attribute bit flags for the resource
Size, in bytes, of the resource in the

resource fork

Handle of resource in memory
Size of ResRefRec

Chapter 45 Resource Manager 45-79

a Table 45-3 Resource Managererror codes

Code Name Description

$1E01 resForkUsed Resource fork not empty.

$1E02 resBadFormat Resource fork not correctly formatted.

$1E03 resNoConverter No converter routine found for
resource type.

$1E04 resNoCurFile No current resourcefile.

$1E05 resDupID Specified resource ID is already in use.

$1E06 resNotFound Specified resource not found.
$1E07 resFileNotFound Specified ID does not match an openfile.

$1E08 resBadAppID User ID not found; calling program has not
issued ResourceStartUptoolcall.

$1E09 resNoUniqueID No moreresource IDs available.

$1E0A resIndexRange Index is out of range (no resource found).

$1E0B resSysIsOpen System resourcefile is already open.
$1E0C resHasChanged Resource has been changed andhas not

been updated.

$1E0D resDiffConverter Another converter already logged in for
this resource type.

$1E0E resDiskFull Volumefull.

45-80 Apple IIGs Toolbox Reference, Volume 3

Chapter 460 Scheduler

There are no changes in the Scheduler. The complete reference for the
Scheduleris in Volume 2, Chapter 19 of the Apple lics Toolbox Reference.

Chapter 47 Sound Tool Set Update

This chapter documents new features of the Sound ToolSet. The

complete reference to the Sound ToolSet is in Volume 2, Chapter 21 of
the Apple IIcs Toolbox Reference.

@ Note: You must read the Apple Ilcs Hardware Reference to understand
someof the concepts presented in this chapter.

47-1

Error corrections

This section contains corrections to the documentation of the Sound Tool Set in

Volume2 of the Toolbox Reference.

a The documentation of the FFSoundDoneStatuscall contains an error. Youwill note
that the paragraph that describes the call does not agree with the diagram describing

the stack after the call. The text states that the call returns TRUEif the specified sound

is still playing, whereas the diagram statesthatit returns FALSEifstill playing. The
diagram, not the text, is correct.

= There is an undocumenteddistinction between a generator that is playing a sound and

one thatis active. A generatorthat is playing a sound returns FALSE in responseto an

FFSoundDoneStatusCall. One that is active may or may not be playing a sound;the

value ofthe flag returned by FFSoundStatus is TRUE.Active generators are those
that are allocated to a voice. At any given momentthe generator maybeplaying a

sound, and so the FFSoundDoneStatus retums FALSE—orit may besilent between
notes, in which case FFSoundDoneStatus returns TRUE.

= The description of the Get SoundVolumetoolcall is misleading with respect to the
numberofsignificant bits in the returned volumesetting. The text accompanying the
stack diagram is correct—only the high nibble of the low-order byte contains valid
volume data.

a The FFGeneratorStatustool call can return error code $0813, indicating that the

genNumber parameter contains an invalid generator number.

47-2 Apple IlGs Toolbox Reference, Volume3

Clarification

This section presents more complete information about the FFStartSoundtoolcall,
including further explanation ofits parameters, a new error code, an example procedure
for moving a sound from the Macintosh computerto the Apple IIGS computer, and some
sample code demonstrating the useof the call. The original documentation forthis call is

in Chapter 21, “Sound ToolSet,” in Volume 2 of the Toolbox Reference.

FFStartSound

The free-form synthesizer is designed to play back long waveforms. To handle longer

waveforms, the synthesizer uses two buffers (which must be the samesize), alternatingits
input from oneto the other. When the synthesizer exhausts a buffer, it generates an

interrupt and thenstarts reading data from the other buffer. The Sound ToolSet services
the interrupt and beginsrefilling the empty buffer. This process continues until the
waveform has been completely played.

Note that all synthesizer input buffers must be buffer-size aligned. Thatis, if you have
allocated 4 KB buffers, then those buffers must be aligned on 4 KB memory boundaries.

Parameter block

$00 _
— waveStart - Long

$04 + waveSize + Word

$06 — freqOffset + Word

S08 |- docBuffer — Word

SOA | bufferSize + Word

SOC 4
— nextWavePtr — Long

$10 L volSetting Word

waveStart The starting address of the wave to be played, notin Digital Oscillator
Chip (DOC) RAM but in Apple IIGs system RAM. The Sound ToolSet
loads the waveform data into DOC RAM asit is played.

Chapter 47 Sound ToolSet Update 47.3

waveSize

freqOffset

docBuffer

bufferSize

nextWavePtr

volSetting

The size in pages of the waveto be played. A value of 1 indicates that

the wave is one page (256 bytes) in size, a value of 2 indicates thatit
is two pages (512 bytes) in size, and so on, as you might expect. The
only anomalyis that a value of 0 specifies that the wave is 65,536
pagesin size.

This parameter is copied directly into the Frequency High and

Frequency Low registers of the DOC. See the discussion of those
registers in “New Information”later in this chapter for more complete
information.

Contains the address in Sound RAM where buffers are to be allocated.
This value is written to the DOC Waveform Table Pointer register. The

low-order byte is not used and should alwaysbesetto 0.

The lowest3 bits set the values for the table-size and resolution
portions of the DOC Bank-Select/Table-Size/Resolution register.

This is the address of the next waveform to be played.If the field’s
value is 0, then the current waveform is the last waveform to be

played.

The low byte of the volSettingfield is copied directly into the
Volumeregister of the DOC.All possible byte values are valid.

New error code $0817 IRQNotAssignedErr No master IRQ wasassigned.

Moving a sound from the Macintosh computer to the Apple Ics computer

To move a digitized sound from the Macintosh computerto the Apple IIGS computer and
play the sound, you perform the followingsteps:

1. Save the sound as a pure data file on the Macintosh computer.

2. Transfer the file to the Apple IIGs computer (using Apple File Exchange, for example).

3. Filter all the 0 sample bytes outofthe file by replacing them with bytesset to $01. This
is very important, because the Apple IIGS computerinterprets 0 bytes as the end of a
sample.

4. Load the sound into memory with GS/OScalls.

. Issue the FFStart Soundtoolcall to play the sound. Set the freqoffset parameter
to $01B7 to match the tempo at which the sound is played on the Macintosh
computer, assuming that you recorded the original sound at the standard Macintosh
sampling rate of 22 kHz.

474 Apple Ics Toolbox Reference, Volume3

Sample code

This assembly-language code sample demonstrates the use of the FFStart Soundtoolcall.

PushWord chanGenType

PushLong #STParamBlk

_FFStartSound

ChanGenType DC.W $0201

STParamBlk DS.L 1

Entry WaveSize

WaveSize DS.W 1

Freq DC.W $200

Start DC.W $8000

Size DC.W $6

Nxtwave DC.L $0

Vol DC.W SFF

V
e

=
e

m
e

=
e

m
e

v
e

m
e

™
e

™
e

m
e

w
e

m
e

Set generator for FFSynth

Address of param block

Start free-form synth

Generator 2, FFSynth

Store the address of the

sound in system memory here

Store the number of pages to

play here

A9 set for each sample once

Start at beginning

16k buffers

No new param block

Maximum volume

Chapter 47 Sound Tool Set Update 47-5

New information

This section provides new information about the Sound ToolSet.

w The four sound and music tools—that is, the Note Sequencer, Note Synthesizer, MIDI
Tool Set, and Sound Tool Set—work together, and their versions must be compatible.
The currently required versionsare

Note Synthesizer version 1.3

Note Sequencer version 1.3

MIDI Tool Set version 1.2

Sound ToolSet version 2.4

= The Sound Tool Set SoundBoot Init call has been changedtoinitialize the

MidiInitPol1 vector ($E101B2) to an RTL.

ew The SetUserSoundIROQVtoolcall allows you to establish a custom synthesizer

interrupt handler. See the description in Volume2 of the Toolbox Reference. Note also

that your interrupt handler should check the synthesizer modevalueto verify thatit

should handle the interrupt. This mode value is passed as an input parameterto the
interrupt handler in the accumulatorregister.

If your routine does not processtheinterrupt, it should jump to the next routine in the
interrupt chain, taking care to preserve the state of the accumulator. If your routine
does processthe interrupt,it shouldset the carry flag to 0 and return via an RTL
instruction.

474 Apple IIGs Toolbox Reference, Volume 3

Introduction to sound on the Apple IGS computer

This section provides some general background on the various sound-related toolsets
available on the Apple IIGs. There are five sound tool sets: the Note Sequencer, the Note

Synthesizer, the MIDI ToolSet, the Sound Tool Set, and the Audio Compression and

Expansion (ACE) Tool Set. Although each provides distinct functionality, they can
complement one another and generate fairly sophisticated sound applications.

= The Sound ToolSet plays back a digitized sample of any length and at any frequency.

Note that the sample mustfit into system memory.

= The Note Synthesizeralso plays digitized samples, but with much greater control over

the sound sample,including the ability to loop within the sample and control the sound

envelope. The Note Synthesizer, however,is limited to sound samples smaller than

65,536 bytes.

s The MIDI ToolSet allows you to send and receive MIDI data.

a The Note Sequencer combines the functionality of the Note Synthesizer and MIDI
Tool Set, allowing you to send MIDI data and drive the Note Synthesizer

simultaneously.

a The Audio Compression and Expansion ToolSet provides dramatic reduction in
sound disk-storage requirements, with only slight degradation in sound quality.

By combiningthefacilities offered by these tools, you can easily build impressive sound

applications. For example, you could develop a program that reads MIDI data into the
Note Synthesizer while also saving that data to disk for later input to the Note Sequencer.

This program would turn the Apple IIGS computer into a MIDI sound source with the
capability to save its songs for later playback.

Note Sequencer

The DOCinterrupts that drive the Note Synthesizer also drive the Note Sequencer. Before
the Note Synthesizer handles an interrupt, the tool set passes it to the Note Sequencer and
allows other interrupt handlers access to it before taking control. The Note Sequencer
checksits increment value against its clock value to determine whether to take any

action. If enough time has passed,it checks for delay; if a delay is specified, it checks to

determine whetherit has waited long enoughto satisfy the delay requirement.If it hasn't,

it simply returns.If it has waited long enough,then it checks all playing notesof specified

durations to determine whether it is time to turn them off. If so, it turns those notesoff.

It then parses the next seqItem in the current sequence and makes Note Synthesizer and
MIDI ToolSetcalls to execute it. If the chord bit is set in the current seqltem, the Note
Sequencer immediately fetches the next seqItem for execution.If the a (delay) bit is set,
then it calculates the required delay andsets the delayflag. It then returns.

Chapter 47 Sound Tool Set Update 47-7

Note Synthesizer

One DOCoscillator drives the Note Synthesizer and the Note Sequencer, using the
interrupts that it generates at the end of waveforms,or at 0 values in the waveform. The
Sound ToolSet services such interrupts, then passes them to the Note Synthesizer for
further handlingif it is needed. Because the Sound Tool Set and the Note Synthesizer use
the same direct-page space,it is appropriate to use the Note Synthesizer to assign
oscillators for your own purposes even if you don’t use the Note Synthesizer any further

with the assigned oscillators.

The Note Synthesizer’s operation requires considerable processing. If processor timeis in

short supply and you wantto use the Note Synthesizer to produce sounds, do not use

vibrato, and use low updateRatevalues. See Chapter 41, “Note Synthesizer,” in this

book for further information.

The Note Synthesizer and Note Sequencer runat interrupt time, and current versions are
fully compatible with the MIDI ToolSet.

Sound general logic unit (GLU)

One quirk of the sound generallogic unit (GLU) is that the value for volumein the control
register is a write-only value.It is possible, however, to maintain the system volume
specified by the Control Panelsetting andstill write to the GLU. To find the system
volumesetting, use the Miscellaneous Tool Set GetAddrcall to find the address of
IRQ.Volume and use the value stored at that address.

Vocabulary

This section describes a numberof terms that have special meanings in the context of the
Apple Ics DOC.

Oscillator

There are 32 oscillators on the DOC. Theyare nottrueoscillators in the ordinary sense of
a circuit that generates a waveform.Rather, they are circuits that accept as input a

waveform stored as digital data, and generate an audio signal based on that data.

47 Apple IIGs Toolbox Reference, Volume 3

Generator

Each generator used by the Sound ToolSet is actually a pair of DOC oscillators, usually

Operating in swap mode whenusedbythe Sound Tool Set. In swap mode the two

oscillators alternate playing and halting, with oneoscillator playing while the otheris

halted. When oneoscillator reaches the end ofits current waveform,it stops playing and

the other oscillator takes over, until it reaches the end of its waveform andthefirst

oscillator takes over again.

Voice

A voice is a single audio signal that can be independently controlled. A synthesizer that
can play eight notes at one time is normally said to have eight voices.

Sample rate

A waveform is stored in the Apple IIGs computer’s memory as some numberofdigital
samples of a sound. The numberof samples that the Apple IIGS computer plays each

secondis referred to as the sample rate. The sample rate of the DOCis fixed by the

numberofoscillators that are enabled, thatis, by the value of register $E1 on the DOC.
The sample rate depends only uponthis value; changing other parameters does notaffect

sample rate. The sample rate is determined by the formula

(§)

~ 042)

where

S is the sample rate
C is the input clock rate, which is always 7.159 MHz
O is the numberof oscillators enabled (32 is standard)

The default sample rate, with all 32 oscillators enabled, is about 26.31985 kHz; that is, the

Apple IIcGs computer, operating at its default sample rate, plays about 26,320 samples per
second.It is possible to generate higher sampling rates by reducing the numberof enabled

oscillators. However, the low-passfilter on the Apple IIGS computer is a 5-pole Chebyshev

active filter with a roll-off at 10 kHz. Consequently, higher sampling rates may notresult in
higher perceived sound quality.

Chapter 47 Sound Tool Set Update 47.9

Drop sample tuning

The DOC plays waveforms by looking up wave data in a table in memory and sweeping
through a stored waveform. This strategy allows very faithful reproductions ofdigitally

sampled sound.If, however, you want the DOCto play a waveform ata pitch different
from that at which it was recorded,it cannot simply generateit at a different frequency,

as a true voltage-controlled oscillator can. Instead, the DOC changesthe pitch by using a

method called drop sample tuning.To raise the pitch of a sample one octave, the DOC

doublesits frequency by skipping every other sample in the sequence.Similarly, to lower

the pitch one octave,it cuts the frequency in half by playing each sample in the
sequence twice.

The disadvantage of drop sample tuningis that at higher frequencies, some of the samples
are dropped, orlost, and changing the pitch also changes the duration of each waveform.

Frequency

Frequency refers both to the output frequency ofthe audio signal generated by the DOC
andto the value of the DOC frequency register. Normally frequency refers to the value of
the frequency register, which determines, but is not equal to, the output frequency.
Frequency directly determines the perceived pitchof a sound; higher frequencies result in
higher pitches.

Sound RAM

The DOChas 64 KB of RAM dedicated to the storage of sound samples. This RAM, which
contains the sampled waveforms the DOCplays,is referred to as Sound RAM.

Waveform

A waveform consists of data representing the stored form of a digitally sampled
audio signal.

DOC registers

There are ten different registers in the DOC. Thereis a set of registers for each of the DOC
oscillators. That is, each of the first seven registers has 32 different values, one for each
DOCoscillator. The registers are Frequency Low, Frequency High, Volume, Waveform
Data Sample, Waveform Table Pointer, Control, Bank-Select/Table-Size/Resolution,
Oscillator Interrupt, Oscillator Enable, and A/D Converter.

47-10 Apple Ics Toolbox Reference, Volume 3

Frequency registers

Two 8-bit frequency registers, Frequency Low and Frequency High,are paired to produce
a single 16-bit frequency value. The output frequency of a sample can be represented by

S
0- (Sam) ¢ FHL

where

O is the output frequency in hertz, assuming that one cycle of the sound

exactly fills the table size

S is the sample rate (26.32 kHz) with all 32 oscillators enabled

R is the resolution value in the Bank-Select/Table-Size/Resolution register;
valid values lie in the range from 0 through 7

FHL is the combined values of the Frequency Low and Frequency High
registers; valid valueslie in the range from 0 through 65,535

This calculation assumes that the wave table contains exactly one cycle of the waveform.
The resolution and thetable size are 3-bit values, and this calculation assumes they are
equal.

If one cycle of the sound doesnotexactly fill the table size, then you can use the following
formula to calculate the output frequency:

Fi * FHL

= -9(9+RTAB)

where

O is the output frequency in hertz
Fj is the frequency of the sampled waveform in hertz
SRi is the rate at which you sampled theoriginal sound (in samples per

second)
S is the Apple IIGs samplerate (26.32 kHz) with all 32 oscillators enabled
FHL is the combined valuesof the Frequency Low and Frequency High

registers; valid valueslie in the range from 0 through 65,535
R is the resolution value in the Bank-Select/Table-Size/Resolution register,

valid valueslie in the range from 0 through 7
TAB is the table size value in the Bank-Select/Table-Size/Resolution register;

valid valueslie in the range from 0 through 7

Chapter 47 Sound Tool Set Update 47.44

Volumeregister

The value in the Volumeregister directly controls the volume of the sound outputfor that

oscillator.

Waveform Data Sample register

This is a read-only register that always containsthe value of the samplethat anoscillator is

currently playing.

Waveform Table Pointer register

This register is also referred to as the Address Pointer register. It identifies which page of
Sound RAM containsthestart of the current sample. The FFStartSound parameter

docBuffer is written directly to this register.

Control register

The Control register establishes several attributes of its associated oscillator. These

attributes include what oscillator modeis in effect, whether the oscillator is halted,

whetherit will generate an interruptat the endofits cycle, and what channel has been
assigned to the oscillator.

a Interrupt-enable bit Bit 3 of the Control register is the interrupt-enable bit. When

this bit is set to 1, the oscillator generates an interrupt whenit reaches the end of a
waveform or plays a sample with a value of0.

Unless you have issued the Set SoundMIROVtoolcall to set a custom interrupt vector

(see Chapter 21, “Sound ToolSet,” in Volume 2 of the Toolbox Reference for more

information), the Sound ToolSetfields these interrupts first. Upon entry to the
interrupt routine, the accumulator register contains the low-order nibble of the
genNumFFSynth parameter of the FFStart Soundtoolcall that assigned the
oscillator. If the value of this nibble indicates that the interrupt is for the Sound Tool
Set, the interrupt handler processes the interrupt. Otherwise, it passes the interrupt to
other interrupt routines (see the discussion of the Set UserSoundIRQVtoolcall in
Chapter 21, “Sound ToolSet,” in Volume2 of the Toolbox Reference for information on

setting vectors to user interrupt routines).

= Mode The modevalue consists of two bits, MO and M1. There are thus four possible
modes, which are designatedas free-run or loop mode (00), one-shot mode (01),

sync/AM mode (10), and swap mode(11).

In free-run or loop mode,the oscillator sweeps through a waveform to the end, playing

the values it encounters, then starts again at the beginning of the waveform and
generates an interruptif the interrupt-enable bit is set to 1.

47-12 Apple IIGs Toolbox Reference, Volume 3

In one-shot mode,the oscillator sweeps through its waveform to thefirst 0 value or to
the end, generates an interrupt if the interrupt-enable bit is set to 1, and halts.

In swap mode,anoscillator sweeps through its waveform to the first 0 value or to the end

of the waveform, generates an interrupt, and halts, turning control over to a partner
oscillator. Only one halt bit can be set to 1 at any given time for a pair of oscillators in
swap mode;setting the halt bit of one oscillator to 1 forces the other's to 0.

Generators always consist of an even/odd pair of oscillators—for example, oscillators

0 and 1 form a generator, as do oscillators 2 and 3, and so on. The Note Synthesizer

normally uses each pair with the even-numberedoscillator in swap modeandthe odd-

numberedoscillator in loop mode. The Sound ToolSet normally uses both oscillators
of a pair in swap mode.

a Channel The Channelvalue specifies a sound’s stereo position. Currently, only the low-
orderbit is significant. A value of 0 in this bit sets the oscillator’s stereo position to

the right channel; a value of 1 sets it to the left channel.

Bank-Select/Table-Size/Resolution register

This register sets the table size for stored waveforms, the resolution of the waveform, and

the bankselection for the oscillator. When it plays a sound, the DOC adds the value of the
frequency register to its accumulator. It multiplexes the resulting value with the address
pointer to determine the address in DOC RAM ofthe sample to play. The table size

determines how manybits of the Waveform Table Pointer register are accessible to the
DOCforthis operation; a larger table size reduces the number of Waveform Table Pointer
register bits used in the address calculation and reduces the precision with which a

particular sample can belocated. If 8 bits of the Waveform Table Pointer register are used
to locate the next sample, the DOC can distinguish twice as manystarting points as it can

if only 7 bits are used.

Each time the DOCcycles it adds the contents of the frequency registers to its 24-bit
accumulator. It then appends a subrange of the accumulator’s 24 bits to the value of the
Waveform Table Pointer register and uses the resulting value as an absolute addressin

DOC RAM.It then plays the sample stored at that location.

The resolution value, which is the lowest 3 bits of the Bank-Select/Table-Size/Resolution

register, determines the lowest bit of the accumulatorvalue that will be appended to the
Waveform Table Pointerregister.

The table size value, which is the next 3 bits above the resolution, determines both the

width of the address pointer value and the width of the accumulator value. The width of
each value is the numberofbits the DOC uses from that register. For example, the DOC

accumulator is a 24-bit register, but the DOC uses only 8 of those bits when the table size
is 256 bytes.

Chapter 47 Sound Tool Set Update 47-13

The DOCuses only part of each register, the accumulator and the address pointer, to

determine where in memory to find the sounds thatit will play next. For any table size
greater than 256 bytes (1 page), it overwrites the lowest bits of the address pointer with

bits from the accumulator. Figure 47-1 shows the correspondence betweentablesize,

resolution, and the portions of the Waveform Table Pointer register and accumulator used

to determine the location of the next sample to be played.

ws Figure 47-1 DOC registers

Table Final Address Resolution

Text [15] 14] 13{ 12| 11] 10] 9| 8] 7] 6] 5] 4] 3] 2] 1] 0] R2| Ri] Ro
256 Address Pointer Register 23 AccumulatorBits 16) 1) 1] 1

7 16 9} of of o
5! 1] 111

512 23

J 16 8| o}| o| 0
“4. 1fal1

1024 23

7 2/16 71 of ol 0
7 Bl 11111

2048 3

] 16 6} o| ol o

2 2) 1) 1) 14096 3

! 416 s| ol o| 0
23 nl 1f}1/18192

7 5116
sl ol ol o

2 iol 1) 111
16,384 3

! 16 31 0] ol 0

2 op atala32,768 3
7 116

lol olo

The resolution acts as an offset value, determining which bit is the lowest accumulatorbit

to be appended to the Waveform Table Pointer register. The effect of these
computations is that if you increase the resolution by 1, the pitch of the waveform will be
one octave lower.If you increase the resolution value by 2, the pitch will be four octaves
lower—andso on in powersoftwo.

47-14 Apple IIGs Toolbox Reference, Volume 3

Thetable size value is a 3-bit value that is equal to the resolution valuein calls to

FFStartSound.It specifies the size of the DOC RAM partitions used to contain
waveformsthat are to be played. The following list shows the correspondence between

table size values and thetable sizes.

Table size 3-bit value RAM buffer size

0 000 1 page (256 bytes)

1 001 2 page (512 bytes)
2 010 4 pages (1024 bytes)

3 011 8 pages (2048 bytes)

4 100 16 pages (4096 bytes)
5 101 32 pages (8192 bytes)

6 110 64 pages (16,384 bytes)

7 111 128 pages (32,768 bytes)

Both the table size value and resolution value are copied into their respective bits in the

Bank-Select/Table-Size/Resolution register from the lowest 3 bits of the bu/ffersize
parameter to the FFStart Soundcall.

The bank-selectbitis bit 6. It is reserved for the use of Apple Computer,Inc., and should
always be0.

Oscillator Interrupt register

This register contains a bit that specifies whether an interrupt has occurred and,if so,

contains the numberofthe oscillator that generated the interrupt. The oscillator number

(0-31) is stored in bits 1 through ofthis register.

Oscillator Enable register

The Oscillator Enable register specifies the numberof enabled oscillators (0-31).

A/D Converter register

This register always contains the current sample from the analog-to-digital converterbuilt
into the Digital Oscillator Chip.

Chapter 47 Sound Tool Set Update 47-15

MIDI and interrupts

The MIDI Tool Set automatically recovers incoming MIDI data, but to do so it requires
that interrupts never be disabled for longer than 290 microseconds.If an application
disables interrupts for longer than this, it should call the Midi InputPo1l1 vectoratleast

every 270 microseconds to ensure that the data is properly received and the input bufferis
cleared. When MIDI input is not enabled, the vectoris still serviced, but at minimal costin

CPU cycles. Under these circumstances, the call to the vector sacrifices only two

instructions, a JSL and an RTL.

47-16 Apple IIGS Toolbox Reference, Volume 3

New Sound Tool Set calls

Four new tool calls provide greater flexibility for applications playing free-form sounds.
The FFSetUpSound and FFStartPlayingcalls allow you to schedule a soundfor

playbackat a later time. The ReadDOCReg and Set DOCRegcalls provide easy access to

the DOC registers.

FFSetUpSound $1508

Identical to the FFStart Soundtoolcall but does not actually start playing the specified

sound. Use the FFStartPlayingtoolcallto start playing. This call gives you the option

of setting up a sound andplayingitlater.

Parameters

Stack before call

Stack after call

Previous contents

channelGen Word—Channel, generator type word

— paramBlockPtr - Long—Pointer to FFStart Sound parameter block

<—SP
Previous contents |

Errors

channelGen

paramBlockPtr

| <—SP

None

extern pascal void FFSetUpSound (channelGen,

paramBlockPtr);

Word channelGen;

Pointer paramBlockPtr;

For complete information on the channelGen parameter, refer to the
description of the FFStart Soundtool call in Chapter 21, “Sound
Tool Set,” in Volume 2 of the Toolbox Reference.

For complete information on the parameter block pointed to by the
paramBlockPtr parameter, see “FFSt art Sound’earlier in this
chapter.

Chapter 47 Sound Tool Set Update 47-17

FFStartPlaying $1608

Starts playing the sound specified by the FFSetUpSoundtool call on a specified set of

generators. Your program passes a parameterto this call indicating which generators are to
play the sound.

Parameters

Stack before call

Previous contents

genWord Word—Flag word indicating which generators tostart

<—SP

Stack after call

| Previous contents |

| <—SP

Errors None

C extern pascal void FFStartPlaying (genWord);

Word genWord;

genWord Specifies which generators to start. Each bit in the word corresponds
to a generator. Setting a bit to 1 indicates that the matching generator
is to play the sound. For example, a genWord value of $4071
(%0100 0000 0111 0001) would start generators 0, 4, 5, 6, and 14.

A Warning A value of $0000 for this parameteris illegal and will cause the system
to hang. a

47-18 Apple IIGsS Toolbox Reference, Volume 3

ReadDOCReg $1808

Reads the DOCregisters for a generator’s oscillator and stores the register contents in a
special format in the target memory location. Your program specifies the generator and

the oscillator, as well as the destination for the register information. The format of the
resultant data structure correspondsto the input to the Set DOCRegtoolcall.

A Warning This is a very low-level call. Do not use it unless you have a thorough

understanding of the DOC.This call may not be supportedin future
versions of the system hardware. a

Parameters

Stack before call

Previous contents

- pBlockPtr - Long—Pointer to DOC register parameter block

<—SP
Stack after call

| Previous contents |

| | <—SP

Errors None

C extern pascal void ReadDOCReg(pBlockPtr);

Pointer pBlockPtr;

Chapter 47 Sound Tool Set Update 47.19

pBlockPtr Refers to a location in memory to be loaded with the contents of the

DOC registers for the specified generator.

$00 oscGenType Word—(see below)

$02 f 1 Byte—Frequency Lowregisterforfirst oscillator
$03 f 1 Byte—Frequency High registerforfirst oscillator
S04 voll Byte—Volumeregisterforfirst oscillator
$05 tablePtrl Byte—Waveform TablePointerregisterforfirst oscillator
$06 controll Byte—Controlregisterforfirst oscillator
$07 tableSizel Byte—Table-size registerforfirst oscillator
S08 f Byte—Frequency Lowregister for secondoscillator
$09 f Byte—Frequency High register for second oscillator
SOA vol2 Byte—Volumeregister for secondoscillator
SOB 2 Byte—Waveform Table Pointerregister for secondoscillator
SOC control2 Byte—Controlregister for secondoscillator
SOD tableSize2 Byte—Table-size register for secondoscillator

oscGenType Bits 8 through 11 specify the generator number ($0 through $F)
whoseregisters are to be retrieved.

bit 15 Determines whether to get DOCregisters for thefirst
oscillator.
0 = Do not gettheregisters
1 = Getthe registers

bit 14 Determines whether to get DOCregisters for the second
oscillator.

0 = Do notgetthe registers
1 = Get the registers

bits 13-12 Reserved; mustbeset to 0.

bits 11-8 Specify the generator numberfor the operation. Valid
values lie in the range from $0 through $F.

bits 7-4 Reserved; must besetto 0.

bits 3-0 Specify whois using the generator (this value is
returned).

47-20 Apple IIGs Toolbox Reference, Volume 3

SetDOCReg $1708

Sets the DOCregisters for a generator's oscillator from register contents stored in a special
format. Your program specifies the generator, the oscillator(s), and the register
information. The format of the input data structure corresponds to that of the output
from the ReadDOCRegtoolcall.

A Warning This is a very low-levelcall. Do not use it unless you have a thorough
understanding of the DOC.This call may not be supportedin future
versions of the system hardware. a

Parameters

Stack before call

Previous contents

—- pBlockPtr - Long—Pointer to DOC register parameter block

 <—SP

Stack after call

| Previous contents |

| | <—SP

Errors None

C extern pascal void SetDOCReg (pBlockPtr);

Pointer pBlockPtr;

Chapter 47 Sound Tool Set Update 47-21

pBlockPtr

$00

$02
$03
S04
$05
$06
$07
$08
$09
SOA
SOB
SOC
SOD

oscGenType

Refers to a location in memory containing the new contents of the
DOCregisters for the specified generator.

oscGenType

f 1

Word—{see below)

Byte—Frequency Lowregisterforfirst oscillator
f Byte—Frequency High registerforfirst oscillator

lePtri

controll

tableSizel

Byte—Volumeregisterforfirst oscillator
Byte—Waveform Table Pointerregister forfirst oscillator
Byte—Conwol register forfirst oscillator
Byte—Table-size registerforfirst oscillator

f Byte—Frequency Lowregister for second oscillator
f Byte—Frequency High register for secondoscillator

vol2 Byte—Volumeregister for second oscillator
tablePtr2

control2

tableSize2

Byte—Waveform Table Pointer register for secondoscillator
Byte—Controlregister for secondoscillator
Byte—Table-size register for secondoscillator

Specifies the generator whoseoscillators are to be written, along with

other generator control block (GCB) information (see Chapter41,

“Note Synthesizer,” in this book for detailed information on the

format and content of the GCB).

bit 15

bit 14

bits 13-12

bits 11-8

bits 7-4

bits 3-0

Determines whether to set DOCregisters for thefirst
oscillator.

0 = Do notsettheregisters
1 = Set the registers
Determines whether to set DOCregisters for the second
oscillator.

0 = Do notset the registers
1 = Set the registers

Reserved; mustbesetto 0.
Specify the generator numberforthe operation. Valid
valueslie in the range from $0 through$F.
Reserved; must beset to 0.

Specify whois using the generator.
$0 = Invalid value
$1 = Free-form synthesizer

$2 = Note Synthesizer
$3 = Reserved
$4 = MIDI
$5-$7 = Reserved
$8-$F = User-defined

47-22 Apple IIGs Toolbox Reference, Volume 3

Chapter 48 Standard File Operations Tool Set
Update

This chapter documents new features of the Standard File Operations
Tool Set. The complete reference to this tool set is in Volume 2,
Chapter 22 of the Apple IIGs Toolbox Reference.

New features of the Standard File Operations Tool Set

This section explains new features of the Standard File Operations ToolSet.

= TheStandard File Operations Tool Set now usesclass 1 calls to fully support GS/OS. As
a result, new toolset calls accept full GS/OS filenames and pathnames:

o A total of 13,107 files, with a total of up to 64 KB of namestrings, can residein a
single folder.

o A filename can now contain up to 253 characters.

o A pathname can now contain up to 508 characters.

New applications should use the newtoolsetcalls to gain access to this functionality.

@ Note: Since old Standard File Operations ToolSet calls use the new, longer filenames

and pathnamesinternally, it is possible for an old-style Get or Put call to access an
AppleSharefile with a name that is more than 15 characters long. In this case, the
system truncatesthe filename in the reply record. If necessary, the pathnameisalso

truncated. Note, however,that if the pathname will fit in the reply record, thenit is
returnedintact, regardless of the length of the filename portion of the path. As a
result, this representation ofthe filename may exceed 15 characters. Althoughthis
allows the application to open the file, programs that cannot accept a filename with
more than 15 characters may not function predictably.

m The Standard File Operations Tool Set now usesthe List Manager for someinternal
functions, freeing up memory for application use.

w The Standard File Operations Tool Set now requires that there be at least four pagesof

RAM available on the application stack (three for the List Manager and onefor the
Standard File Operations ToolSetitself).

= The new toolcalls use prefixes differently. Thesecalls first check prefix 8 for a valid
path. If prefix 8 is valid, the routines use that path. If not, they check prefix 0. If

prefix 0 is valid, the routines copyit to prefix 8, then useit. If prefix 0 is also invalid,
the search continues to the next volume.

Wheneverthe user changes the pathname,even in a StandardFile dialog boxthatis
subsequently canceled, the new path is placed in prefix 8. In addition, this current path
is placed into prefix 0,ifit fits. If the path will notfit, prefix 0 is left unchanged and
containsthelast legitimate pathnameentered.

Internally, both old and new StandardFile calls use prefix 8, allowing up to 508
characters in the pathname. However, the Standard File Operations Tool Set displays a
wamingif, as a result of an old call, a pathname longerthan 64 characterswill be
created.

48-2 Apple IIGs Toolbox Reference, Volume 3

The Standard File Operations Tool Set now scans AppleShare volumes every eight
seconds for changes. The system automatically updates the displayedfile list.

The Standard File Operations Tool Set now returnserror codes. For manyinternal

errors, the Standard File Operations Tool Set displays a detailed information dialog
box andallowsthe user to cancel the operation.

When displaying a complete path, the system now uses the separator character found

in either prefix 8 or 0. Previously, the separator was always a slash (/), but nowitis
typically a colon (:).

The system now disables the Save and New Folder buttons in Put dialog boxes
referencing write-protected volumes. In addition, the system now displays a lock icon
for such volumes.

The Standard File Operations Tool Set now supports multiple file Get calls, which are
collectively referred to as multifile calls. See “New or Changed StandardFile Calls” later

in this chapter for call syntax details.

Multifile dialog boxes include a new Accept button in addition to the Open button.
These buttons operate as follows:

ao Whenthe userhasselected a single file, both the Open and Accept buttonsare

enabled. If the selected file is not a folder, clicking either button returns the
filename.If the file is a folder, clicking Open lists the folder contents, and clicking
Acceptreturnsthe folder nameto the calling program. Double-clickinga file has the

same effect as clicking Accept; double-clicking a folder has the sameeffect as
clicking Open.

ao Whenthe user has selected multiple files, the Open button is disabled. The user
must click Accept to return the filenamesto the calling application. In this case,

the returnedfile list may contain both folder and file names. Double-clicking is not
allowed when multiple files have been selected.

The Standard File Operations Tool Set now usesstatic text items in its dialog box
templates. The system automatically changes custom dialog box templates to use

Static text rather than user items. In addition, the system now uses a custom item-

drawing routine for the path entry item. The system automatically changes input dialog
box templatesto call the Standard File Operations Tool Set’s custom item-drawing
routine, unless the input template already references a custom routine, in which case
that reference is not changed.

Your application can now provide custom draw routines foritemsin displayedfile lists.

The Standard File Operations Tool Set takes care of dimming andselecting the item.

Chapter 48 Standard File Operations Tool Set Update 483

s Standard File dialog boxes support the following keystroke equivalents:

Key Button equivalent

Esc Close

Command-Up Arrow Close

Tab Volume
Command-period Cancel
Command-o Open

Command-O Open

Command-Down Arrow Open

Command-n New Folder
Command-N New Folder

New filter procedure entry interface

ManyStandard File calls allow you to specify a custom filter procedure. These custom
routines can perform specific checking of items for file list inclusion, beyond that

performed by the system. To learn more about Standard File filter procedures, see
Chapter 22, “Standard File Operations ToolSet,” in Volume 2 of the Toolbox Reference.

The new Standard File calls support a different filter procedure entry interface. Previously,
Standard File filter procedures received a pointer to a file directory entry (defined in the

Toolbox Reference). New Standard File calls pass a pointer toa GetDirEntryrecord,

which corresponds to the formatted output of the GS/OS GetDirEnt ry call. For the
format and content of the GetDirEntryrecord,refer to the GS/OS Reference.

The exit interface from thesefilter procedures has not changed. Your program must
removethe input pointer from the stack and retum a response wordindicating how the
currentfile is to be displayedin thefile list.

Value Name Description

0 noDisplay Do notdisplayfile

1 noSelect Display thefile, but do not allow the user to
select it

2 displaySelect Display the file and allow the userto selectit

484 Apple IIcs Toolbox Reference, Volume 3

Custom item-drawing routines

Some new StandardFile calls allow you to specify custom item-drawing routines. These

routines give you the opportunity to create highly customized displays ofitemsinfile
lists. The Standard File Operations Tool Set handles item dimming andselecting.

On entry to the custom item-drawing routine, the Standard File Operations Tool Set
formats the stack as follows:

Previous contents

— memRectPtr - Long—Pointer to the memberrectangle

— memberPtr - Long—Pointer to the member record

- controlHndl - Long—Handle to thelist control

Reserved Block—Reserved data for Standard File—24 bytes

- itemDrawPtr - Long—Pointer to item draw record

- returnAddr - Block—RTL address—3 bytes

<—SP

itemDrawPtr Pointer to a record formatted as follows:

0 count | Byte—Length of nameSt ring,in bytes
I J

$01 . nameString . Array—count bytes offile name

count +1 }- fileType — Word—File type

count +3 —
— auxType -—; Long—Auxiliary file type

The routine must removethis pointer from the stack before returning
to the Standard File Operations Tool Set. The custom item-drawing
routine should not change anyof the other information on the stack.

Chapter 48 Standard File Operations Tool Set Update 48-5

The custom item-drawing routine must draw both the filenamestring
and any associated icon. The Standard File Operations ToolSet
assumes that the standard system font and character size are used for

all list items; changing either the font or the charactersize is not
recommended. Note that any icons must also comply with these

restrictions (currently icons are eight lines high).

Standard File data structures

The new StandardFile tool calls accept and return new-style reply records and typelists.
The formats for these records follow.

Reply record

Figure 48-1 defines the layout for the new-style Standard File reply record. You pass this
record to manyof the new toolcalls. Those calls, in turn, update the record and return it to
your program.

= Figure 48-1 New-style reply record

$00 good Word

$02 - fileType + Word

$044 + =
— auxType = Long

$08 - nameRe fDesc + Word

SOA -- 4
— nameRef = Long

SOE | pathRefDesc — Word

$10 —
pathRef = Long

good Boolean indicating the status of the request. TRUE indicates that the
user openedthefile; FALSE indicates that the user canceled the
request.

486 Apple IIGs Toolbox Reference, Volume 3

fileType

auxType

nameRefDesc

nameRef

pathRefDesc

pathRef

The GS/OSfile type information.

The GS/OSauxiliary type information.

Type of reference stored in nameRef (your program mustset this
field).

$0000

$0001

$0003

Reference in nameRefis a pointer to a GS/OSclass 1 output
string

Reference in nameRefis a handle to a GS/OSclass 1 output
string

Reference in nameRef is undefined (The system will

allocate a new handle,correctly sized for the resulting GS/OS
class 1 outputstring, and return that handle in nameRef.
This is the recommendedoption.)

On input, may contain a reference to the output buffer for the
filename string, depending on the contents of nameRefDesc. On
output, contains a reference to the filenamestring. The reference type

is defined by the contents of nameRefDesc.If your program set
nameRefDescto $0003, then your program mustreleasethe resulting
handle whenit is done with the returned data.

Type of reference stored in pathRef (your program mustsetthis
field).

$0000

$0001

$0003

Reference in pathRefis a pointer to a GS/OSclass 1 output
string

Reference in pathRefis a handle to a GS/OSclass 1 output
string

Reference in pathRefis undefined (The system will allocate

a new handle, correctly sized for the resulting GS/OSclass 1
outputstring, and retum that handle in pathRef.Thisis the
recommended option.)

On input, may contain a reference to the output buffer for thefile
pathnamestring, depending on the contents of pathRefDesc. On

output, contains a reference to the pathnamestring. The reference

type is defined by the contents of pathRefDesc.If your program
set pathRefDescto $0003, then your program mustrelease the

resulting handle whenit is done with the returned data.

Chapter 48 Standard File Operations Tool Set Update

Multifile reply record

Figure 48-2 defines the formatof the Standard File multifile reply record. The system

returns this record format in response to multifile Get requests.

s Figure 48-2 Multifile reply record

$00 - good — Word

$02 | _
namesHandle = Long

good Either the numberoffiles selected, or FALSE if the user canceled the
request.

namesHandle Handle to the returned data record. Your program must dispose of
this handle whenit is done with the returned data. The returned data

record is formatted as follows:

$00 E bufferLength 4 Word

$02!
fileEntryArray - Array

bufferLength Thetotallength, in bytes, of the returned data record, including
the length of bufferLength.

48-8 Apple IIcs Toolbox Reference, Volume 3

fileEntryArray

$00 fileType

$02
auxType

$06 name h

$07 fixl
$08 £1x2

$09 °
: name :

l __Jj

fileType

auxType

nameLength

prefixl

prefix2

name

File type list record

An arrayoffile entries, each formatted as follows:

Word

Long

Byte
Byte
Byte

The GS/OSfile type.

The GS/OSauxiliary type.

The length of the following filename, including the
volumeprefix bytes (prefix1 and prefix2).

Volumeprefix for the pathname,first byte. Alwayssetto 8.

Volumeprefix for the pathname, second byte. Alwaysset
to a colon (:).

Filenamestring, containing (nameLength = 2) bytes of
data, not to exceed 253 characters.

Figure 48-3 showsthe layout of the Standard File typelist record. You use this record with
new StandardFile calls that require a file type list as input (such as SFGetFile2).

= Figure 48-3 File type list record

$00 encryCount
 so2 !

entryArray

Word

- Array
r __j

Chapter 48 Standard File Operations Tool Set Update 48-9

entryCount The numberof items in entryArray.

entryArray Array offile type entries, each formatted asfollows:

$00 L flags Word

$02 fileType + Word

S04 4
— auxType — long

flags Defines how the system is to use £ileType and auxType when
selecting files to be displayed.

bit 15

bit 14

bit 13

bits 12-0

Controls whether Standard File cares about
auxiliary types.

0 = Match only the specified auxType value
1 = Match any auxType value

Controls whether Standard File cares aboutfile

types.

0 = Match only the specified £ileType value
1 = Match any fileTypevalue

Disable selection.
0 = Makeall displayed files selectable
1 = Display as dimmed, and thus unselectable,
any files matching criteria specified in bits 14

and 15 (Note thatthefiles will not be passed to
the filter procedure for the toolcall.)

Reserved; must besetto 0.

@ Note: The settings of bits 14 and 15 are independent.If you set both bits to 1, the
Standard File Operations ToolSet will match allfiles.

fileType

auxType

The GS/OSfile type value to match, according to the settings of
the flags bits.

The GS/OS auxiliary type value to match, according to the
settings of the flags bits.

48-10 Apple IIGs Toolbox Reference, Volume 3

Standard File dialog box templates

The Standard File Operations Tool Set allows you to define custom dialog boxes for the

OpenFile and Save File dialog boxes. To use a custom dialog box, your program must
provide a pointer to a dialog box template to the appropriate Standard File routine
(SFPPutFile2, SFPGetFile2, or SFPMultiFile2). The Standard File Operations

Tool Set passes the dialog box template to the Dialog Manager (GetNewModalDialog
call) whenit establishes the user dialog box.

Althoughthelatest version of the Standard File Operations Tool Set uses someofthe

template fields differently, old templates should still work. The system internally modifies

old-style input templates to make them compatible with current usage. New usagediffers

in the following ways:

ws The boundary rectangle for file list is taken from the Files item in each dialog box
template and copied to the List Manager record. The numberoffiles to be displayed is
derived from the rectangle coordinates by subtracting 2 from the height of the
rectangle in pixels and dividing the result by 10. To avoid displaying partial filenames,

you should set the rectangle height using the same formula;thatis,

height = ((num_files * 10) + 2).

a TheScroll item is no longer used for single-file requests. However, it has been retained
in the record for compatibility with old templates. For multifile Get requests, the new

tool calls define the Accept button in the space previously used by the Scroll item.

a Standard File calls copy the input dialog box template header to memory and then
updateit. Note that, for single-file Get calls, items 5 and 7 are not copied (for multifile
Getcalls, item 5 is copied). Similarly, items 6 and 8 are not copied forPutcalls.

The following code examples contain the templates for the standard Open File and Save

File dialog boxes. All these templates depend uponthe following string definitions:

SaveStr str 'Save'

OpenStr str ‘Open'

CloseStr str ‘Close'

DriveStr str "Disk'

CancelStr str 'Cancel'

FolderStr str "New Folder'

AcceptStr str ‘Accept '

KbFreeStr str "*0 free of “1 k.' ;Dialog Manager routine

; replaces *0 & “1 with real

¢; values from the disk.

PPromptStr dc.b ‘Save which file:'

PEndBuf dc.b 0 ,end-of-string byte

GPromptStr dc.b 'Load which file:'

GEndBuf dc.b 0 ;end-of-string byte

Chapter 48 Standard File Operations Tool Set Undate 4811

Open File dialog box templates

The OpenFile dialog box must contain the following items in‘ this exact order:

Item Item type Item ID

Open button buttonItem 1

Close button buttonItem 2
Next button buttonItem 3

Cancel button buttonItem 4

Scroll bar userItemtitemDisable 5

Path userItem 6

Files userItemtitemDisable 7

Prompt userItem 8

@ Note: Thescroll bar item (item 5) is not used for single-file calls. For multifile calls, this
item contains the Accept button definition.

The files item (item 7) contains the boundary rectangle for the List Manager and serves
no other purpose.

First, here are the templates for 640 mode:

GetDialog640

dc.w 0,0,114, 400 ; recommended drect of dialog

; (640 mode)

dc.w -1

dc.w 0,0 ; reserved words

dc.l OpenBut 640 ; item 1

dc.l CloseBut 640 ; item 2

dc.l NextBut 640 ; item 3

dc.l CancelBut 640 ; item 4

dc.l Scrol1640 ; Gummy item or ACCEPT button

dc.l Path640 ; item 6

dce.l Files640 ; item 7

dc.l Prompt 640 ; item 8

dc.l1 0

48-12 Apple IIGs Toolbox Reference, Volume 3

OpenBut 640

dc.w

dc.w

dc.w

dc.l

dc.w

dce.l

CloseBut 640

dc.w

dc.w

dc.w

dc.l

dc.w

de.l

NextBut 640

dc.w

dc.w

dc.w

dc.l

dc.w

dc.l

CancelBut 640

dc.w

dc.w

dc.w

dc.l

dc.w

de.l

1

61,265, 73,375

ButtoniItem

OpenSstr

0,0

0

2

79,265,91,375

Buttonitem

CloseStr

0,0

0

3

25,265,37,375

ButtonItem

DriveStr

0,0

0

4

97,265,109,375

ButtonItem

CancelStr

0,0

0

zitem #

;drect

stype of item

zitem descriptor

s;item value & bit flags

;color table ptr (nil is default)

;item #

7,drect

stype of item

jitem descriptor

jitem value & bit flags

;color table ptr (nil is default)

z;item #

;drect

stype of item

;item descriptor

jitem value & bit flags

;color table ptr (nil is default)

;item #

7;drect

stype of item

zitem descriptor

j;item value & bit flags

;color table ptr (nil is default)

Chapter 48 Standard File Operations Tool Set Update 48-13

Scrol1640

; SPECIAL NOTE: Scroll items are no longer used by the new calls,

s
e

Get calls (also any OLD call),

N
e

-
e

™
~
e

Multi-Get calls,

T
T

m
e

dc.w 5

dc.w 43,265,55,375

dc.w ButtonIitem

dc.l AcceptStr

dc.w 0,0

dc.l 0

Path640

dc.w 6

dc.w 12,15,24,395

dc.w UserItem

de.l PathDraw

specific)

dc.w 0,0

dc.l 0

Files640

dc.w 7

dc.w 25,18,107,215

dc.w UserItem+ItemDisable

dc.l 0

dc.w 0,0

dc.1 0

Prompt 640

dc.w 8

dc.w 03,15,12,395

dc.w StatText+ItemDisable

dc.l 0

dc.w 0

dc.w 0

dc.l 0

48-14 Apple Ics Toolbox Reference, Volume 3

since

the List Manager takes care of all scroll “stuff.” In single-file

this item is simply ignored and its

pointer is left out of the header when copied to RAM. However,

this item IS used for the Accept button. The

following is the recommended content for the Accept button:

in

sitem #

;darect

r type

s;item descriptor

z;item value and bit flags

;color table

(DUMMY or ACCEPT button)

zitem #

;drect

;type

zitem descriptor (user app.)

sitem value and bit flags

;color table

sitem #

rboundary rect for List Manager

; type

zitem descriptor

zitem value and bit flags

color table

zitem #

,;drect

; type

sitem descriptor (text passed)

;Size of text

bit flags

color table

Now,here are the templates for 320 mode:

GetDialog320

dc.w

dc.w

dc.w

dc.l

dc.l

dc.l

dce.l

dc.l

dce.l

dc.l

dc.l

dc.l

OpenBut320

dc.w

dc.w

dc.w

dc.l

dc.w

dc.l

CloseBut320

dc.w

dc.w

dc.w

dc.l

dc.w

dc.l

NextBut 320

dc.w

dc.w

dc.w

dc.l

dc.w

dc.l

0,0,114,260

-1

0,0

OpenBut320

CloseBut320

NextBut320

CancelBut320

Scro11320

Path320

Files320

Prompt 320

0

1

53,160,65,255

ButtoniItem

OpenStr

0,0

0

2

71,160, 83,255

ButtonItem

CloseStr

0,0

0

3

27,160,39,255

ButtonItem

DriveStr

0,0

0

drect of dialog (320 mode)N
e

reserved word

item 1

item 2

item 3

item 4

dummy item or ACCEPT button

item 6

item 7

item 8

m
e

™
e

w
e

=
e

™
e

~
e

m
e

=
e

r
e

zitem #

;drect

ztype of item

z;item descriptor

j;item value & bit flags

s;color table ptr (nil is default)

zitem #

;drect

type of item

z;item descriptor

s;item value & bit flags

;color table ptr (nil is default)

zitem #

;drect

stype of item

sitem descriptor

zitem value & bit flags

;color table ptr (nil is default)

Chapter 48 Standard File Operations Tool Set Update 48-15

CancelBut320

dc.w 4

dc.w 97,160,109,255

dc.w ButtonItem

dc.1 CancelStr

dc.w 0,0

dce.l 0

Scro11320

=
e

m
e

m
e

=
e

Get calls (also any OLD call),

Multi-Get calls,

w
e

w
e

"
e
e

N
e

dc.w 5

dc.w 118,160,130,255

dc.w ButtonItem

dc.l AcceptStr

dc.w 0,0

dc.l 0

Path320

dc.w 6

dc.w 14,06,26,256

dc.w UseriItem

dc.l PathDraw

dc.w 0,0

dc.l1 0

Files320

dc.w 7

dc.w 27,05,109,140

dc.w UserItem+ItemDisable

dc.l 0

dc.w 0,0

de.l 0

48-16 Apple IIGs Toolbox Reference, Volume 3

SPECIAL NOTE: Scroll items are no longer used by the new calls,

the List Manager takes care of all scroll “stuff.” In single-file

sitem #

;darect

s;type of item

;item descriptor

s;item value & bit flags

;color table ptr (nil is default)

since

this item is simply ignored and its

pointer is left out of the header when copied to RAM. However,

this item IS used for the Accept button. The

following is the recommended content for the Accept button:

in

;item # (see SPECIAL NOTE)

;drect

s; type

zitem descriptor

;item value and bit flags

;color table

zitem #

;drect

; type

;item descriptor

zitem value and bit flags

;color table

sitem #

sboundary rect for list manager

;type

sitem descriptor

zitem value and bit flags

color table

Prompt 320

8 jitem #dc.w

dc.w 03,05,12,255 7;drect

dc.w StatText+tItemDisable ;type

de.l 0 zitem descriptor (text passed)

dc.w 0 size of string

dc.w 0 ;bit flags

dc.l 0 ;color table (0 = default)

Chapter 48 Standard File Operations Tool Set Update 48-17

Save File dialog box templates

The Save File dialog box must contain the following items in this exact order:

Item Item type Item ID

Save button buttonItem 1

Open button buttonItem 2

Close button buttonItem 3

Next button buttonItem 4

Cancel button buttonItem 5
Scroll bar userItemtitemDisable 6

Path userItem 7

Files userItemtitemDisable 8
Prompt userItem 9
Filename editItem 10

Free space statText 11

Create button buttonItem 12

@ Note: The scroll bar item (item 6) is not used for single-file calls.

Thefiles item (item 8) contains the boundary rectangle for the List Manager and serves
no other purpose.

48-18 Apple IIGs Toolbox Reference, Volume 3

First, here are the templates for 640 mode:

PutDialog640

dc.w 0,0,120, 320 ; recommended drect of dialog

; (640 mode)

dc.w -1

dc.w 0,0 7; reserved word

dc.l SaveButP640 z; item l

dc.l OpenButP 640 7; item 2

dc.l CloseButP640 ; item 3

dc.l NextButP640 z item 4

dc.l CancelButP640 ; item 5

dc.l Scrol1P640 ; DUMMY item

dc.l PathP640 ; item 7

dce.l FilesP640 ; contains boundary rect only

dc.l PromptP640 ; item 9

dc.l EditP640 ; item 10

dc.l StatTextP640 ; item 11

dc.l CreateButP 640 ; item 12

dc.l 0

SaveButP640

dc.w 1 ;item #

dc.w 87,204, 99,310 ;drect

dc.w ButtonItem ;type of item

dc.l SaveStr zitem descriptor

dc.w 0,0 j;item value & bit flags

dce.l) scolor table ptr (nil is default)

OpenButP 640

dc.w 2 sitem #

dc.w 49,204, 61, 310 ;drect

dc.w ButtonItem stype of item

dc.l OpenStr sitem descriptor

dc.w 0,0 ;item value & bit flags

dc.l 0 ;color table ptr (nil is default)

Chapter 48 Standard File Operations Tool Set Update 48-19

CloseButP640

dc.w 3

dc.w 64,204, 76,310

dc.w ButtonItem

dc.l CloseStr

dc.w 0,0

dc.l 0

NextButP640

dc.w 4

dc.w 15,204,27,310

dc.w ButtonItem

dc.l DriveStr

dc.w 0,0

de.l 0

CancelButP640

dc.w 5

dc.w 104,204,116, 310

dc.w ButtonItem

dc.l CancelStr

dc.w 0,0

de.l 0

Scrol1P640

w
e

m
e

w
e

=
e

dc.w 6

dc.w 0,0,0,0

dc.w UserItem

dce.l 0

dc.w 0,0

dc.l 0

48-20 Apple IIGs Toolbox Reference, Volume 3

sitem #

;darect

stype of item

item descriptor

z;item value & bit flags

;color table ptr (nil is default)

;item #

;drect

sztype of item

item descriptor

;item value & bit flags

;color table ptr (nil is default)

zitem #

;drect

stype of item

;item descriptor

;item value & bit flags

;color table ptr (nil is default)

Special Note: Unlike Scroll item in Get, Scroll is never used

in Put, since there is not a multifile Put call.

sitem # (dummy item)

;dummy drect (must be 0)

type

sitem descriptor

gitem value and bit flags

7color table

PathP640

dc.w

dc.w

dc.w

dc.

dc.

dc. b
o
b

FilesP640

dc.

dc.

dc.

dc.

dc.

dc. M
e
r
e

££
E

PromptP640

dc.w

dc.w

dc.w

dc.l

dc.w

dc.w

de.l

EditP640

dc.w

dc.w

dc.w

dc.l

dc.w

dc.w

dc.l

7

0,10,12,315

UserItem

PathDraw

0,0

0

8

26,10,88,170

UserItem+ItemDisable

0

0,0

0

9

88,10,100, 200

StatText+ItemDisable

0

0

0

0

10

100,10,118,194

EditLine+ItemDisable

0

63

0

0

zitem #

;drect

stype

sitem descriptor (user app.specific)

s;item value and bit flags

;color table

zitem #

;boundary rect for list manager

;type

zitem descriptor

zitem value and bit flags

;color table

zitem #

7;drect

; type

item descriptor

;size of text (text passed)

bit flags

;color table

s;item #

;drect

;type

;item descriptor

;size of text

bit flags

zcolor table

Chapter 48 Standard File Operations Tool Set Update 48-21

StatTextP640

dc.w 11

dc.w 12,10,22,200

dc.w StatText+ItemDisable

dc.l KbFreeStr

dc.w 0

dc.w 0

dc.l 0

CreateButP640

dc.w 12

dc.w 29,204, 41,310

dc.w ButtonItem

dc.l FolderStr

dc.w 0

dc.w 0

dc.l 0

48-22 Apple IIGs Toolbox Reference, Volume 3

zitem #

;drect

;type
s;item descriptor

;size of text

;bit flags

;color table

;item #

;drect

; type

sitem descriptor

;size of text

s;bit flags

;color table

Now,here are the templates for 320 mode:

PutDialog320

drect of dialog (320 mode)‘
u
edc.w 0,0,128,270

dc.w -1

dc.w 0,0 ; reserved word

dc.l SaveButP320 ; item 1

dc.l OpenButP320 7; item 2

dc.l CloseButP320 7; item 3

dc.l NextButP320 ; item 4

dc.l CancelButP320 ; item 5

dc.l Scrol11P320 7; DUMMY item

dc.l PathP320 ; item 7

dc.l FilesP320 7; contains boundary rect

dc.l PromptP320 ; item 9

dc.l EditP320 7 item 10

dc.l StatTextP320 7; item 11

dc.l CreateButP320 7 item 12

dc.l 0

SaveButP320

dc.w 1 zitem #

dc.w 93,165,105, 265 ;drect

dc.w ButtonItem ztype of item

dc.l SaveStr zitem descriptor

dc.w 0,0 zitem value & bit flags

dc.l 0 ;color table ptr (nil is default)

OpenButP320

dc.w 2 zitem #

dc.w 54,165, 66,265 ;drect

dc.w ButtonItem stype of item

dc.l OpenStr zitem descriptor

dc.w 0,0 z;item value & bit flags

dc.l 0 ;color table ptr (nil is default)

Chapter 48 Standard File Operations Tool Set Update 48-23

CloseButP320

dc.w 3

dc.w 72,165, 84,265

dc.w ButtonItem

dc.l CloseStr

dc.w 0,0

dc.l 0

NextButP320

dc.w 4

dc.w 15,165,27,265

dc.w ButtonItem

dc.l DriveStr

dc.w 0,0

dc.l 0

CancelButP320

dc.w 5

dc.w 111,165,123,265

dc.w ButtonItem

dc.l CancelStr

dc.w 0,0

dc.l 0

Scro11P320

sitem #

;drect

stype of item

z;item descriptor

sjitem value & bit flags

;color table ptr (nil is default)

sitem #

;drect

stype of item

sitem descriptor

gitem value & bit flags

;color table ptr (nil is default)

sitem #

;drect

stype of item

s;item descriptor

zitem value & bit flags

;color table ptr (nil is default)

; Special Note: Unlike Scroll item in Get, Scroll is never used

Since there is not a multifile Put call.; in Put,

dc.w

dc.w

dc.w

dc.l

dc.w

dce.l

48-24 Apple IIGs Toolbox Reference, Volume 3

6

00,00,00,00

UserItem

0

0,0

0

s;item # (dummy item)

;drect

;type

zitem descriptor

zitem value and bit flags

;color table

PathP320

dc.

dc.

dc.

dc.

dc.

dc. r
P
Z
R
r
z
e
e
E
e

FilesP320

dc.w

dc.w

dc.w

de.l

dc.w

dce.l

PromptP320

dc.w

dc.w

dc.w

dc.l

dc.w

dc.w

dc.l

EditP320

dc.w

dc.w

dc.w

dc.l

dc.w

dc.w

dc.l

7

00,10,12,265

UserItem

PathDraw

0,0

0

8

26,10,88,145

UseriItem+ItemDisable

0

0,0

0

9

88,10,100,170

StatText+ItemDisable

0

0

0

0

10

100,10,118,157

EditLine+ItemDisable

0

32

0

0

z;item #

7;drect

; type

;item descriptor

;item value and bit flags

;color table

sitem #

;boundary rect for list manager

type

z;item descriptor

z;item value and bit flags

7color table

;item #

;drect

;type

item descriptor (text passed)

bit flags

;color table

;item #

7;drect

;type
item descriptor

Size of text

bit flags

;color table

Chapter 48 Standard File Operations Tool Set Update 48-25

StatTextP320

dc.w

dc.w

dc.w

dc.l

dc.w

dc.w

dc.l

CreateButP320

dc.w

dc.w

dc.w

dc.l

dc.w

dc.w

dc.1

48-26 Apple IIGs Toolbox Reference, Volume 3

11

12,10,22,160

StatText+ItemDisable

KbFreeStr

0

0

0

12

33,165, 45,265

ButtonItem

FolderStr

0

9)

0

zitem #

;drect

; type

item descriptor

size of text

bit flags

;color table

zitem #

7;drect

;type

;item descriptor

Size of text

bit flags

;color table

New or changed Standard File calls

The following sections discuss several new or changed Standard File toolcalls.

SFAl11Caps $0D17

This call has been disabled so thatfilenames will appear exactly as entered. Existing
programs maystill issue the call, but it will have no effect.

Parameters

Stack before call

Previous contents

allCapsFlag Word—Not used

<—SP

Stack after call

| Previous contents |

| <—SP

Errors None

C extern pascal void SFA11Caps (allCapsFlag);

Boolean allCapsFlag;

Chapter 48 Standard File Operations Tool Set Update 48-27

SFGetFile2 S$0E17

Displays the standard OpenFile dialog box and returns information aboutthefile selected

by the user.This call differs from SFGet Filein that it uses class 1 GS/OScalls, thereby
allowing selection ofa file with a full name length of up to 763 characters.

Parameters

Stack before call

Previous contents

- filterProcPtr -

- typelistPtr —-

- replyPtr -

<—SP

Stack after call

| Previous contents |

—

Errors $1701 badPromptDesc

$1704 badReplyNameDesc

$1705 badReplyPathDesc

GS/OSerrors

wherex Word—x coordinate of upper-left corner of dialog box

whereY Word—y coordinate of upper-left corner of dialog box

promptRefDesc Word—Type ofreference in promptRef

— promptRef - Long—Reference to Pascalstring forfile prompt

Long—Pointerto filter procedure; NIL for none

Long—Pointerto typelist record; NIL for none

Long—Pointer to new-style reply record

Invalid promptRefDescvalue.
Invalid nameRe fDescvaluein

the reply record.

Invalid pathRefDescvalue in

the reply record.

Returned unchanged.

@ Note: The GS/OS bufferTooSmallerror can occurif the outputstrings you supply
in the reply record are too small to receive the resulting filenamestring.In this case,
the buffer will contain as many namecharacters as would fit, and the length word will

contain the namelength the Standard File Operations ToolSet tried to return.

48-28 Apple IIGS Toolbox Reference, Volume 3

C extern pascal void SFGetFile2 (wherexX, whereyY,

promptRefDesc, promptRef, filterProcPtr,

typeListPtr, replyPtr);

Pointer filterProcPtr, typeListPtr, replyPtr;

Word wherexX, whereY, promptRefDesc;

Long promptRef;

promptRefDes The type of reference in promptRef.

$0000 Reference in promptRef is a pointerto a Pascalstring
$0001 Reference in promptRefis a handle ofa Pascalstring
$0002 Reference in promptRefis the resource ID of a Pascalstring

filterProcPtr Pointer to a new-style filter procedure, as described in “New Filter
Procedure Entry Interface” earlier in this chapter.

Chapter 48 Standard File Operations Tool Set Update 48-29

SFMultiGet2 $1417

Displays the standard Open Multifile dialog box and returns information aboutthefile or

files selected by the user. The call returnsfile selection information in a multifile reply
record. Note that folders may be includedin thelist of returned files; your program should
check the file type field before using any retumedfilenames.

Parameters

Stack before call

Previous contents

whereX Word—x coordinate of upper-left corner of dialog box

whereY Word—y coordinate of upper-left corner of dialog box

promptRefDesc Word—Typeof reference in promptRef

- promptRef - Long—Reference to Pascalstring for file prompt

- filterProcPtr —- Long—Pointertofilter procedure; NIL for none

- typelistPtr —- Long—Pointerto typelist record; NIL for none

- replyPtr - Long—Pointer to multifile reply record

<—SP

Stack after call

| Previous contents |

| <—SP

Errors $1701 badPromptDesc Invalid promptRefDesc value.

C extern pascal void SFMultiGet2(wherexX, wherey,

promptRefDesc, promptRef, filterProcPtr,

typeListPtr, replyPtr);

Pointer filterProcPtr, typeListPtr, replyPtr;

Word whereX, whereY, promptRefDesc;

Long promptRef;

48-30 Apple IIcs Toolbox Reference, Volume 3

promptRefDesc Thetype ofreference in promptRef

$0000 Reference in promptRefis a pointer to a Pascal string

$0001 Reference in promptRefis a handle ofa Pascalstring
$0002 Reference in promptRefis the resource ID ofa Pascalstring

filterProcPtr Pointer to a new-style filter procedure, as described in “NewFilter
Procedure Entry Interface” earlier in this chapter.

Chapter 48 Standard File Operations Tool Set Update 483)

SFPGetFile2 $1017

Displays a custom OpenFile dialog box and returns information aboutthe file selected by

the user. This call differs from sFGetFile in that it uses class 1 GS/OScalls, thereby
allowing selection ofa file with a full name length of up to 763 characters.

Parameters

Stack before call

Previous contents

whereX Word—x coordinate of upper-left corner of dialog box

whereY Word—y coordinate of upper-left corner of dialog box

- itemDrawPtr - Long—Pointer to item-drawing routine; NIL for none

promptRefDesc Word—Typeof reference in promptRef

- promptRef - Long—Reference to Pascal string for file prompt

— ffilterProcPtr - Long—Pointerto filter procedure; NIL for none

— typelistPtr - Long—Pointerto type list record; NIL for none

— dialogTempPtr - Long—Pointer to dialog box template

— dialogHookPtr - Long—Pointerto routine to handle item hits

- replyPtr —- Long—Pointer to new-style reply record

<—SP

Stack aftercall

| Previous contents |

| | <—SP

Errors $1701 badPromptDesc Invalid promptRefDescvalue.
$1704 badReplyNameDesc

$1705 badReplyPathDesc

GS/OSerrors

48-32 Apple IIGs Toolbox Reference, Volume3

Invalid nameRefDescvaluein
the reply record.

Invalid pathRefDescvalue in

the reply record.

Returned unchanged.

@ Note: The GS/OS bufferTooSmall error can occurif the outputstrings you supply
in the reply record are too small to receive the resulting filenamestring. In this case,
the buffer will contain as many name characters as wouldfit, and the length word will
contain the name length that the Standard File Operations ToolSet tried to return.

C extern pascal void SFPGetFile2 (wherex, wherey,

itemDrawPtr, promptRefDesc, promptRef,

filterProcPtr, typeListPtr, dialogTempPtr,

dialogHookPtr, replyPtr);

Pointer itemDrawPtr, filterProcPtr, typeListPtr,

dialogTempPtr, dialogHookPtr, replyPtr;

Word whereX, whereY, promptRefDesc;

Long promptRef;

itemDrawPtr Pointer to a custom item-drawing routine, as described in “Custom

Item-Drawing Routines” earlier in this chapter.

promptRefDesc Thetype ofreference in promptRef.

$0000 Reference in promptRefis a pointer to a Pascalstring
$0001 Reference in promptRefis a handle to a Pascalstring
$0002 Reference in promptRef is the resource ID to a Pascalstring

filterProcPtr Pointer to a new-style filter procedure, as described in “New Filter

Procedure Entry Interface” earlier in this chapter.

dialogTempPtr, dialogHookPtr
For more information aboutthese fields, see the discussion of the

SFPPutFilecall in Chapter 22, “Standard File Operations ToolSet,”

in Volume 2 of the Toolbox Reference.

Chapter 48 Standard File Operations Tool Set Update 4833

SFPMultiGet2 $1517

Displays a custom Open Multifile dialog box and returns information aboutthefile orfiles

selected by the user. Thecall returnsfile selection information in a multifile reply record.
Note that folders may be includedin the list of returned files; your program should check
the file type field before using any retumed filenames.

Parameters

Stack before call

Previous contents

whereX Word—x coordinate of upper-left corner of dialog box

whereY Word—y coordinate of upper-left corner of dialog box

— itemDrawPtr - Long—Pointer to item-drawing routine; NIL for none

promptRefDesc Word—Typeofreference in promptRef

- promptRef —- Long—Reference to Pascal string for file prompt

— filterProcPtr - Long—Pointertofilter procedure; NIL for none

— typelistPtr - Long—Pointerto typelist record; NIL for none

— dialogTempPtr - Long—Pointer to dialog box template

~ dialogHookPtr - Long—Pointerto routine to handle item hits

- replyPtr — Long—Pointer to multifile reply record

<—SP

Stack after call

| Previous contents |

—

Errors $1701 badPromptDesc Invalid promptRefDescvalue.

48-34 Apple IIGs Toolbox Reference, Volume 3

C extern pascal void SFPMultiGet2 (whereX, whereyY,

itemDrawPtr, promptRefDesc, promptRef,

filterProcPtr, typeListPtr, dialogTempPtr,

dialogHookPtr, replyPtr);

Pointer itemDrawPtr, filterProcPtr, typeListPtr,

dialogTempPtr, dialogHookPtr, replyPtr;

Word wherexX, whereY, promptRefDesc;

Long promptRef;

itemDrawPtr Pointer to a custom item-drawing routine, as described in “Custom
Item-Drawing Routines”earlier in this chapter.

promptRefDesc Thetype of reference in promptRef.

$0000 Reference in promptRef is a pointer to a Pascal string
$0001 Reference in promptRefis a handle of a Pascalstring
$0002 Reference in promptRefis the resource ID of a Pascal string

filterProcPtr Pointer to a new-style filter procedure, as described in “New Filter
Procedure Entry Interface” earlier in this chapter.

dialogTempPtr, dialogHookPtr
For more information about these fields, see the discussion of the

SFPPutFile call in Chapter 22, “Standard File Operations ToolSet,”

in Volume2 of the Toolbox Reference.

Chapter 48 Standard File Operations Tool Set Update 48-35

SFPPutFile2 $1117

Displays a custom Save File dialog box and returns information aboutthefile

specification entered by the user. This call performs the same function as SFPPutFile,
but uses class 1 GS/OScalls, allowing the user to specify a full filename. In addition,this
call does not support the maxLen parameter provided in SFPPutFile. This parameter
allowed the calling program tolimit the filename length.

Parameters

Stack before call

Previous contents

whereX Word—x coordinate of upper-left corner of dialog box

whereY Word—y coordinate of upper-left corner of dialog box

— itemDrawPtr - Long—Pointer to item-drawing routine; NIL for none

promptRefDesc Word—Typeof reference in promptRef

- promptRef - Long—Referenceto Pascal string for file prompt

origNameRefDesc Word—Typeof reference in origNameRef

- origNameRef - Long—Reference to GS/OSclass 1 input string with default name

- dialogTempPtr —- Long—Pointer to dialog box template

— dialogHookPtr - Long—Pointer to routine to handle item hits

- replyPtr —- Long—Pointer to new-style reply record

<—SP

Stack after call

Previous contents |

| <—SP

Errors $1701 badPromptDesc Invalid promptRefDesc value.

$1702 badOrigNameDesc Invalid origNameRefDescvalue.
$1704 badReplyNameDesc Invalid nameRe fDescvalue in

the reply record.
$1705 badReplyPathDesc Invalid pat hRefDescvalue in

the reply record.

GS/OSerrors Returned unchanged.

48-36 Apple Ics Toolbox Reference, Volume3

@ Note: The GS/OS bufferTooSmallerror can occurif the outputstrings you supply

in the reply record are too small to receive the resulting filenamestring. In this case,

the buffer will contain as many namecharacters as would fit, and the length wordwill
contain the namelength that the Standard File Operations ToolSet tried to return.

itemDrawPtr

promptRefDesc

origNameRefDesc

origNameRef

extern pascal void SFPPutFile2 (wherex, wherey,

itemDrawPtr, promptRefDesc, promptRef,

origNameRefDesc, origNameRef,

dialogTempPtr, dialogHookPtr, replyPtr);

Pointer itemDrawPtr, dialogTempPtr, dialogHookPtr,

replyPtr;

Word wherexX, whereY, promptRefDesc,

origNameRefDesc;

Long promptRef, origNameRef;

Pointer to a custom item-drawing routine, as described in “Custom

Item-Drawing Routines” earlier in this chapter

The type of reference in promptRef

$0000 Reference in promptRefis a pointer to a Pascalstring
$0001 Reference in promptRefis a handle of a Pascal string

$0002 Reference in promptRefis the resource ID ofa Pascalstring

The type of reference in origNameRef.

$0000 Reference in origNameRefis a pointer to a GS/OSclass 1
input string

$0001 Reference in origNameRefis a handle to a GS/OSclass 1
input string

$0002 Reference in origNameRefis the resource ID to a GS/OS
class 1 input string

Reference to a GS/OSclass 1 inputstring. On input to SFPPutFile2,
this string contains the default filename for the Put operation. On

output, this string contains the string confirmed by the user, which
may not be the same asthe default value.

dialogTempPtr, dialogHookPtr
For more information about these fields, see the discussion of the

SFPPutFilecall in Chapter 22, “Standard File Operations ToolSet,”
in Volume 2 of the Toolbox Reference.

Chapter 48 Standard File Operations Tool Set Update 48-37

SFPutFile2 S0F17

Displays the standard Save File dialog box and retumsthefile specification entered by the
user. This call performs the same function as SFPPutFile butuses class 1 GS/OScalls,

allowing the user to specify a full filename. In addition, this call does not support the
maxLen parameter provided in SFPPutFile. This parameter allowedthe calling program
to limit the filename length.

Parameters

Stack before call

Stack after call

| Previous contents |

<—SP

Errors $1701 badPromptDesc

$1702 badOrigNameDesc

$1704 badReplyNameDesc

$1705 badReplyPathDesc

GS/OSerrors

48-38 Apple IIcs Toolbox Reference, Volume 3

Previous contents

whereX Word—xcoordinate of upper-left corner of dialog box

whereY Word—y coordinate of upper-left corner of dialog box

promptRefDesc Word—Typeof reference in promptRef

- promptRef - Long—Reference to Pascalstring for file prompt

origNameRefDesc Word—Type of reference in origNameRef

~ origNameRef - Long—Reference to GS/OSclass 1 inputstring with default name

- replyPtr - Long—Pointer to a new-style reply record

<—SP

Invalid promptRefDesc value.
Invalid origNameRefDesc value.
Invalid nameRefDescvaluein

the reply record.
Invalid pathRe£fDesc valuein
the reply record.

Returned unchanged.

@ Note: The GS/OS bufferTooSmall error can occurif the outputstrings you supply
in the reply record are too small to receive the resulting filename string. In this case,
the buffer will contain as many namecharacters as would fit, and the length word will
contain the namelength that the Standard File Operations Tool Set tried to return.

promptRefDesc

origNameRefDesc

origNameRef

extern pascal void SFPutFile2 (wherexX, whereyY,

promptRefDesc, promptRef, origNameRefDesc,

origNameRef, replyPtr);

Pointer replyPtr;

Word wherex, whereY, promptRefDesc,

origNameRefDesc;

Long promptRef, origNameRef;

The type of reference in promptRef.

$0000 Reference in promptRefis a pointer to a Pascalstring

$0001 Reference in promptRefis a handle of a Pascalstring
$0002 Reference in promptRefis the resource ID ofa Pascalstring

The type of reference in origNameRef.

$0000 Reference in origNameRefis a pointer to a GS/OSclass 1
input string

$0001 Reference in origNameRefis a handle of a GS/OSclass 1
input string

$0002 Reference in origNameRefis the resource ID of a GS/OS
class 1 inputstring

Reference to a GS/OSclass 1 input string. On input to SFPutFile2,
this string contains the default filename for the Put operation. On
output,this string contains the string confirmed by the user, which
may notbe the sameasthe default value.

Chapter 48 Standard File Operations Tool Set Update 48-39

SFReScan $1317

Forces the system to rebuild and redisplay the currentlist of files. Your program may
specify a newfile typelist or filter procedure.

Makethis call only while SFpGetFile, SFPGetFile2, Of SFPMult iGet2 is running,

and only from within a dialog hook routine (for information on dialog hook routines, see

the description of SFPGetFile in Chapter 22, “Standard File Operations Tool Set,” in
Volume2 of the Toolbox Reference).

Parameters

Stack before call

Previous contents

— filterProcPtr —- Long—Pointerto filter procedure; NIL for no change

— typelistPtr - Long—Pointerto typelist record; NIL for no change

<—SP
Stack after call

| Previous contents |

| | <—SP

Errors $1706 badCall SFPGetFile, SFPGetFile2,

and SFPMultiGet2 are not

active.

C extern pascal void SFReScan(filterProcPtr,

typeListPtr);

Pointer filterProcPtr, typeListPtr;

4840 Apple IIGs Toolbox Reference, Volume 3

SFShowInvisible $1217

Controls the display of invisible files. When the Standard File Operations Tool Set
initializes itself, invisible files are not displayed and are not passedto filter procedures.

Parameters

Stack before call

Previous contents

Space

invisibleState

Stack after call

Previous contents

Word—Space for result

Word—Flag: 1 = display invisible files; 0 = no display (default)

<—SP

oldState Word—Previoussetting of invisible flag

<—SP

Errors None

C extern pascal word SFShowInvisible (invisibleState);

Word invisibleState;

Chapter 48 Standard File Operations Tool Set Update 48-41

Standard File error codes

Table 48-1lists all valid Standard File error codes.

ws Table 48-1 Standard File error codes

Value Name Definition

$1701 badPromptDesc Invalid promptRefDesc value.

$1702 badOrigNameDesc Invalid origNameRefDescvalue.
$1704 badReplyNameDesc Invalid nameRefDescvalue in the

reply record.

$1705 badReplyPathDesc Invalid pathRefDescvaluein the
reply record.

$1706 badCali SFPGetFile, SFPGetFile2, and
SFPMultiGet2 are notactive.

4842 Apple IIGs Toolbox Reference, Volume 3

Chapter 49 TextEdit Tool Set

This chapter documents the features of the TextEdit toolset.
This is a new tool set not previously documented in the Apple Ics
Toolbox Reference.

49-1

About the TextEdit Tool Set

The TextEdit Tool Set provides basic text-editing capabilities for any application. You
can use TextEdit to support anything from a simple text-based dialog box to a complete

text editor. Although it has been loosely based on the Macintoshtool set of the same

name, TextEdit for the Apple IIGs includes many enhancementsthat expand both the
flexibility and functionality of the toolset.

TextEdit for the Apple IIGs supports a number ofcapabilities and features, including

m text insertion, deletion, selection, copying, and cutting and pasting, all with standard
keyboard and mouseinterfaces

m editing very large documents, up to the limit of system memory

m word wrap, which avoids splitting words at the right text edge

optional support for intelligent cut and paste, which eliminates the need for the userto
add or remove extra spacesafter pasting word-based selections

style variations in the text, affecting text font, style, size, or color

formatting for margins, indentation, justification, and tabs

left-justified tabs, either evenly spaced or at specified locations

vertical scrolling of text that extends beyond the current display window

vertical scroll bar, automatic scrolling

TextEdit provides your program with thefacilities to create, display, and manage oneor
moreblocksofeditable text. These blocks can be controls (such as the text in a dialog
box or the text window for an editor) or they can be independently managed by your

application. The Control Manager and the Window Managerhelp your program manage
TextEdit controls; your program is solely responsible for TextEdit blocks that are not

controls. All TextEdit blocks, whether ornot they are controls, are called records or
TextEdit records.

Because many TextEdit records can be displayed at the same time, TextEdit provides a
mechanism for distinguishing between them. This works muchlike thefacility the Control
Manageruses to move amongcontrols in a window. Thecurrent oractive TextEdit record
is referred to as the target record. That record receives all user keystrokes and mouse
clicks, The user can switch between TextEdit records by pressing the Tab key(if your
program has enabledthat option) or byclicking in the appropriate record.

49-2 Apple IIcs Toolbox Reference, Volume 3

TextEdit maintains a numberof data structures for each record. The TERecordis the
main structure of a TextEdit record. All control information needed for the record is either

stored in or accessible through the TERecord.In general, your program need notaccess

or modify the TERecord unless you want to use some of TextEdit’s internal features.
Your program creates a TextEdit record, and its TERecord,by formatting a

TEParamBlockandpassingthat structure to the TENew TextEdit toolcall or the
NewCont ro12 Control Managertoolcall. The TERecordis an extension of the generic
control record defined by the Control Manager.

For each TextEdit record, your program caninstruct TextEdit to use intelligent (or smart)
cut and paste. Thegoalofintelligent cut and paste is to eliminate the needforthe user to
insert spacesto fix a paste. With intelligent cut and paste enabled, TextEdit can make the

following adjustments to the current selection:

m Whentext is cut, TextEdit removes all leading spaces; if there are no leading spaces,it
removesall trailing spaces.

= When textis pasted, if the current selection is adjacent to a nonspace character,
TextEdit first inserts a space, then the text.

By making these adjustments,intelligent cut and paste allows the user to select a word (by
double-clicking, for instance), and cut and paste that selected text without adding or
removing any space characters. Your program specifies intelligent cut and paste bysetting
a bit flag in the text Flagsfield of the TEParamBlock usedto create the record.

TextEdit supports four types of text justification:left, center, right, and full. Left-justified
text lies flush with the left margin, with ragged right edges. Right-justified text is flush

with the right margin, with ragged left edges. Each line of centered text is centered
betweenthe left and right margins. Fully justified text is blocked flush with both left and
right margins; TextEdit pads spaces (but not characters) with extra pixels to fully justify
the text. Your program specifies the type ofjustification for a TextEdit record as part of
the initial style information in the TEParamBlockfor the record. Your program can

changethe text justification for a record with the TESetRuler toolcall.

TextEdit supports tabs in two ways. Regular tabs are spaced evenlyin thetext, at

consistentpixel intervals. Absolute tabs reside at specified pixel locations and can be

spacedirregularly in the text. All TextEdit tabs are left justified. Your program specifies

whether a TextEdit record supports tabs and, if so, the type and spacing for those tabs in

the TEParamBlockfor the record. Your program can changethe tabs for a record with
the TESetRuler toolcall.

Chapter 49 TextEdit Tool Set 49-3

TextEdit call summary

The followinglist of tool calls, grouped according to function, summarizes the
capabilities of the TextEdit Tool Set. Later sections of this chapter discuss TextEdit and
its capabilities and data structures in greater detail and define the precise syntax of the
TextEdit tool calls.

Routine

Housekeeping routines

TEBoot Init

TEStartUp

TEShutDown

TEVersion

TEReset

TEStatus

Record and text management

TENew

TEKill

TESetText

TEGetText

TEGetTextiInfo

Description

Initializes TextEdit; called only by the Tool Locator

Initializes TextEdit facilities for an application—must

precede any other TextEdit toolcalls

Frees TextEdit facilities used by an application—

TextEdit applications must issue this call before
quitting

Returns TextEdit version number

Resets TextEdit; called only when the system is reset

Retums status information about TextEdit

Allocates a new TextEdit record

Disposes of an old TextEdit record

Sets the text for an existing TextEdit record

Returns the text from an existing TextEdit record

Returns information aboutthe text in a TextEdit record
Insertion point and selection range

TEIdle

TEActivate

TEDeactivate

TEClick

TEUpdate

Provides processor time to TextEdit so that it can
display the blinking cursor and perform background
tasks

Activates a specified TextEdit record

Deactivates a specified TextEdit record

Activates a specified TextEdit record andselects text
within that record

Redraws a TextEdit record

494 AppleIcs Toolbox Reference, Volume 3

Editing

TEKey

TECut

TECopy

TEPaste

TEClear

TEInsert

TEReplace

TEGetSelection

TESetSelection

Text display andscrolling

TEGetSelectionStyle

TEStyleChange

TEGetRuler

TESetRuler

TEScroll

TEOffsetToPoint

TEPointToOffset

TEPaintText

Miscellaneous routines

TEGetDefProc

TEGetInternalProc

TEGetLastError

TECompactRecord

Inserts a character into the target TextEdit record

Cuts the current selection and places it in the Clipboard

Copies the current selection into the Clipboard

Pastes the contents of the Clipboard into the text,
replacing the current selection

Clears the currentselection

Inserts the specified text before the current selection

Replaces the current selection with the specified text

Returnsthe starting and ending character offsets for the
current selection

Sets the current selection to the specified starting and
ending character offsets

Returns style information for the current selection

Changesthestyle of the currentselection

Returns format information for a TextEdit record

Sets format information for a TextEdit record

Scrolls to a specified line, text offset, or pixel position

Converts a text offset into a point (in local

coordinates)

Converts a point (in local coordinates) into a text
offset

Paints TextEdit text into an off-screen port—usedfor
printing

Returns a pointer to the TextEdit custom control
definition procedure

Retums a pointer to the TextEdit low-level routine
dispatcher

Retumsthe last error code generated for a TextEdit
record

Compresses the data structures associated with a
TextEdit record

Chapter 49 TextEdit Tool Set 49-5

How to use TextEdit

You may choose between several techniques for creating and controlling TextEdit
records.

m Create a TextEdit control with the NewContro12 Control Managertoolcall, or use

TENew and allow TaskMaster to managethe control for you.

m Create a TextEdit control with the NewCont rol2 or TENew tool call and managethe

control yourself.

w Create a TextEdit record that is not a control with the TENew TextEdit tool call and

manage it yourself.

The remainder of this section discusses each of these techniques in more detail. Note that

the pseudocodepresentedin this discussion addresses only those issues of program logic
that relate directly to TextEdit; much more logic is required to interact correctly with
other tool sets or perform meaningful application-related work.

The simplest techniqueis to create a TextEdit control, using either the TENew TextEdit

tool call or the NewCont ro12 Control Managercall, and use TaskMaster to manage the
record (see Chapter 25, “Window Manager,” in the Toolbox Reference for more information

on TaskMaster). TaskMaster handles all TextEdit events and user interaction for single-
style records. The following pseudocode describes the basic program logic forthis
technique.

Initialize all the tools including TextEdit.

Create a new window.

Call NewControl2 or TENew to allocate a new TextEdit control.

while(quitFlag != TRUE)

{

Call TaskMaster. This handles all the events; it inserts all the

keys that the user types, handles all the mouse activity,

and causes the cursor to blink. It even calls TECut,

TECopy, TEPaste, and TEClear for the TextEdit record.

if(the user selects the save item)

{

Call TEGetText. This extracts the text and style information

that the user has typed.

}
Dispose of the window. This deallocates the TextEdit record and all

other controls in the window.

Shut down all the tools and exit.

494

—

Apple IIGs Toolbox Reference, Volume 3

Your application does not need to do anything if the user presses a key, presses the mouse

button, or chooses a command from a menu. TaskMaster and the TextEdit control

definition procedure handle all these standard events. The Window Manager disposes of

the TextEdit control when your application closes its window.

However, your program does give up someflexibility in exchangefor the simplicity of this
approach. To exert more control over the TextEdit record, you may choose to create a
TextEdit control and managethat control in your program, rather than with TaskMaster.
Your program wouldthen issue the GetNextEvent Window Managercall to trap user
actions and then process those actions accordingly. The following pseudocode shows

sample logic for this approach:

Initialize all the tools including TextEdit.

Create a new window.

Call NewControl2 or TENew to allocate a new TextEdit control.

while(quitFlag != TRUE)

{

Call TEIdle. This causes the cursor to blink and performs

background tasks.

Call GetNextEvent.

Switch theEvent.what

{

case updateEvent:

Call DrawControls. This draws the TextEdit control

(and all others in the window).

case mouseDownEvent:

Call FindWindow. This determines where in the

desktop the mouse was clicked.

if(FindWindow returned inMenu)

{

call MenuSelect. This tracks the menu and

returns which item the user clicked in.

switch theMenuItem

{

case CutItem:

Call TECut. This tells TextEdit to cut

the current selection into the

Clipboard.

case CopyItem:

Call TECopy. This tells TextEdit to copy

the current selection into the

Clipboard.

Chapter 49 TextEdit Tool Set 49-7

case PasteItem:

Call TEPaste. This tells TextEdit to

replace the current selection with the

Clipboard.

case ClearItem:

Call TEClear. This tells TextEdit to

clear the current selection.

case SavelItem:

Call TEGetText. This extracts the text

and style information that the user

has typed.

case QuitItem:

Set the quitFlag to TRUE.

}

else if(FindWindow returned inContent)

{

Call FindControl. This returns which control

was clicked in.

if(FindControl returned the TextEdit control)

{

call TEClick. This tracks the mouse

within the TextEdit record; it does

all the selecting and all the

scrolling.

else

}

case keyDownEvent, autoKeyEvent:

Call TEKey. This inserts the key that the user typed

into the TextEdit record. It also performs

editing operations if the key is a “control key"

(such as Delete, Control-Y, arrow keys, and so

on).

}
Dispose of the window. This deallocates the TextEdit record and all

other controls in the window.

Shut down all the tools and exit.

49-8 AppleIIGs Toolbox Reference, Volume 3

Finally, you may chooseto create TextEdit records that are not controls. In this case, your
program must not only provide complete functional support for the record, as shown in

the non-TaskMaster pseudocode, but must also manage the TextEdit windowitself. You
must use the TENewcall to create TextEdit records that are not controls. Because these
TextEdit records are not inserted into the controllist, your program may notissue Control
Managercalls to manipulate or control them. Similarly, your program may not use Window
Managercalls on them. The following pseudocode presents sample logic for this approach:

Initialize all the tools including TextEdit.

Create a new window.

Call TENew to allocate a new TextEdit record that is not a control.

while(quitFlag != TRUE)

{

Call TEIdle. This causes the cursor to blink and performs

background tasks.

Call GetNextEvent.

switch theEvent.what

{

case updateEvent:

Call TEUpdate. This draws the TextEdit record.

case mouseDownEvent:

Call FindWindow. This determines where in the desktop the

mouse was Clicked.

if(FindWindow returned inMenu)

{

call MenuSelect. This tracks the menu and returns

which item the user clicked in.

switch theMenuItem

{

case CutItem:

Call TECut. This tells TextEdit to cut the

current selection into the Clipboard.

case CopyItem:

Call TECopy. This tells TextEdit to copy the

current selection into the Clipboard.

case PasteItem:

Call TEPaste. This tells TextEdit to replace

the current selection with the Clipboard.

case ClearItem:

Call TEClear. This tells TextEdit to clear the

current selection.

Chapter 49 TextEdit Tool Set 49.9

case SavelItem:

Call TEGetText. This extracts the text and

style information that the user has typed.

case QuitItem:

Set the quitFlag to TRUE.

}

else if (FindWindow returned inContent)

{

Figure out whether the click occurred in the TextEdit

record.

if(the click occurred in the TextEdit record)

{

call TEClick. This tracks the mouse within the

TextEdit record; it does all the selecting

and all the scrolling.

}
case keyDownEvent, autoKeyEvent:

Call TEKey. This inserts the key that the user typed into

the TextEdit record. It also performs editing

operations if the key is a "control key" (such as

Delete, Control-Y, arrow keys, and so on).

}

Dispose of the window. This deallocates the TextEdit record and all
other controls in the window.

Shut down all the tools and exit.

Whenyou usethis technique, your program has much moreresponsibility. First, your

program must issue the TEUpdatecall for each record that must be redrawn,rather than

relying on the Control Manager DrawCont rols toolcall. In addition, your program must

use the TEActivate and TEDeact ivatetool calls wheneverthe user switches between
TextEdit records. Finally, for each mouse-downevent, your program must determinein
which TextEdit record the user clicked—FindControl will not work with TextEdit

records that are not controls.

49-10 Apple IIcs Toolbox Reference, Volume 3

A Warning If you have defined TextEdit records that are controls in a window,

you must notalso try to define noncontrol TextEdit records in the

same window. a

All TextEdit tool calls require that you specify a handle to the appropriate TERecord,so

that TextEdit knows which record to address. For TextEdit records that are controls, your

program mayspecify a NIL value for the TERecordhandle. TextEdit will then access the
currently active TextEdit control (the target TextEdit record).

A Warning Never pass a NIL TERecordhandle to access TextEdit records that
are not controls. a

Note that TextEdit routines always use the same TERecordlayout, whether or not the
TextEdit record is a control. However, recall that if the TextEdit record is not a control,

your program cannotissue Control Managertoolcalls forit.

Standard TextEdit key sequences

TextEdit provides a keyboard and mouseinterface that supports a numberofediting
keys. The following list summarizes the effect of control keystrokes and mouseclicks.

Key Alias Description

Left Arrow Control-H Movesthe insertion point to the previous characterin
the text

Command key causes movement by word rather than by
character

Option key movesthe insertion point to the beginning
of the previousline in the text

Shift key extends the selection from the current
insertion point back by a character, word Cif the
Commandkeyis also held down), orline (if the Option
key is also held down)

Chapter 49 TextEdit Tool Set 49-11

Right Arrow

Up Arrow

Down Arrow

Delete

Clear

Control-F

Control-Y

Control-U

Control-K

Control-J

Control-D

Movestheinsertion point to the next character in

the text

Command key causes movement by word rather than by
character

Option key movesthe insertion point to the end of the
currentline in the text

Shift key extends the selection from the current

insertion point forward by a character, word (if the

Commandkeyis also held down), orline (if the Option
key is also held down)

Movestheinsertion pointup oneline

Command key movestheinsertion point to the
beginning ofthe current page

Option key movesthe insertion point to the beginning
of the document

Shift key extends the selection from the current
insertion point up by a line or page(if the Command
key is also held down), or to the beginning of the
document(if the Option key is also held down)

Movestheinsertion point down oneline

Commandkey movesthe insertion pointto the current
columnposition onthelastline of the page

Option key movesthe insertion point to the end ofthe
document

Shift key extends the selection from the current
insertion point downby

a

line or page (if the Command
key is also held down), or to the end of the document
(if the Option keyis also held down)
If there is no current selection, removes the character to
the left of the insertion point; if there is a selection,
removesthe selected text

Clears the currentselection (does nothingif there is no
selection)
If there is no current selection, removes the characterto
the right of the insertion point; if there is a selection,
removes the selected text

Removes all characters from the insertion point to the
end oftheline, not including any terminating ASCII
return characters ($0D)

49-12 Apple IIcs Toolbox Reference, Volume 3

Control-X

Control-C

Control-V

Click

Double click

Triple click

Cuts the current selection and places it in the Clipboard
(same as the TECuttoolcall)

Copies the current selection into the Clipboard (same as
the TECopytoolcall)

Pastes the contents of the Clipboard at the current
insertion point, or in place of any selected text (same

as the TEPastetoolcall)

Moves the insertion point—dragging selects by
character

Selects a word—dragging extends the selection by
words

Selects a line—dragging extends the selection by lines

Chapter 49 TextEdit Tool Set 49-13

Internal structure of the TextEdit Tool Set

This section discusses several topics relating to the internal structure and function of the

TextEdit Tool Set. This information is not relevant to most application programmers but
does provide insight into how TextEdit operates and howto tailor TextEdit for special
applications.

TextEdit controls and the Control Manager

TextEdit records may or may not be controls. Your program creates TextEdit controls by

issuing the NewCont ro12 Control Managertoolcall. The Control Managerhandles nearly
all the support calls needed to maintain the TextEdit record. However, you may choose to
use certain Control Managertoolcalls with the TextEdit control. The following tables list
which Control Managercalls may or may not be used with TextEdit controls. In this

context, the TextEdit control is taken to include the actual TextEdit record and its

associated scroll bars and size box.

The following Control Managercalls may be used with TextEdit controls:

Call Description

DisposeControl Disposes of the TextEdit control—analogous to
TEKil1 TextEdit toolcall

KillControls Disposesofall controls, including the TextEdit

controls—analogous to TEKil1 toolcalls for each
control

HideControl Hides the TextEdit control—note that this call does

not affect the status of the control with respect to user
keystokes;if you hide the target control,it is still the
target control, although no user keystrokes are
displayed

EraseControl Erases the TextEdit control—similar to HideControl,

except that EraseControl doesnotinvalidate the
boundary rectangle for the control

ShowControl Reshows the TextEdit control, reversing the effect of
HideControl Or EraseControl

DrawControls Drawsall controls in the window

DrawOneCtl Drawsthe specified TextEdit control

49-14. Apple IIGs Toolbox Reference, Volume 3

HilightControl

FindControl

TestControl

TrackControl

MoveControl

DragControl

SetCtlRefCon

GetCtlRefCon

Activates or deactivates the TextEdit control—note
that only hiliteState values of 0 and 255 are valid

Returns point-location control-identification

information—returns partCodeof 130 if pointis in text,
131 if point is in vertical scroll bar, and 132 if pointis in

size box

Returns the same point-location information as
FindControl but without any control identification

Selects text—actionProcPtr must be set to a negative
value (forces the Control Managerto use TextEdit’s
built-in action procedure)

Movesthe TextEdit control

Allows the user to reposition the TextEdit control

Sets the refCon field

Returns the contents of the refConfield

Your program mustnotissue the following Control Managertoolcalls with a TextEdit

control:

GetCtlTitle

GetCtlValue

GetCtlAction

GetCtl1Params

SetCtlTitle

SetCtlValue

SetCtlAction

SetCtlParams

TextEdit filter procedures and hook routines

TextEdit provides you with several mechanismsto tailor the operation of the tool set to
the particular needs of your application. Filter procedures give you a chanceto affect the

behavior of the tool set by modifying screen display activity or user keystrokes. Hook

routines allow you to replace standard TextEdit code for such functions as word wrap or
word break. The following sections discuss each ofthe variousfilter procedures and hook
routines in more detail.

Chapter 49 TextEdit Tool Set 49-15

Generic filter procedure

TextEdit provides a facility whereby your application can supply special logic to replace

someof the standard TextEdit routines. The program code that usesthis facility is called
a genericfilterprocedure. The generic filter procedureis, in turn, made up of several
routines that address particular TextEdit processing requirements. At present, generic
filter routines can provide three functions:

m erasing rectangles in the display port

m erasing rectangles in the off-screen TextEdit buffer

m updating the TextEdit record screen display

The filterProcfield of the TERecord contains a pointerto the genericfilter
procedure.If this field has a non-NIL value, TextEdit calls the filter procedure to perform
the activities just mentioned. You set this pointer by specifying the appropriate value in

the filterProcPtr field of the TEParamBlock passed to TENew (or NewContro12)
whenyoucreate the TextEdit record. TextEdit then loads the £ilterProcfield ofthe
TERecordfrom this value.

The routines in the filter procedure must adhereto the followingrules:

= The routine mustpreserve the direct-page and data bank registers and mustreturn in
full native mode.

= All entry and exit parameter and status fields must be passed through the appropriate
TERecord.

w Filter routines must not issue TextEdit tool calls, move memory, or cause memory to
be moved.

= Any application-specific routine messages must have message numbers greater than
$8000—TextEdit reservesall message numbervaluesin the range from $0000 through
$7FFF.

TextEdit invokes the genericfilter procedurein full native mode by executing a JSL. On
entry to the filter procedure, the stack is formatted as follows:

Previous contents

Space Word—Spaceforresult

- teH - Long—Handle to the appropriate TERecord

message Word—Message numberindicating action to take

- RTL - Three bytes—Return address

<—SP
49-16 Apple IIcs Toolbox Reference, Volume3

On exit, the filter procedure must format the stack as follows:

Previous contents

Result Word—Result code

Result

 <—SP

Indicates whetherthefilter procedure handled the message.If the
field is set to $0000, then TextEdit performsits standard processing.

If the field is nonzero, then thefilter procedure handled the message,
and TextEdit does not perform its standard processing.

The following sections discuss each defined filter procedure message, defining the
actions thefilter procedure is to take and the affected TERecordfields.

doEraseRect $0001

The filter procedure is to erase a rectangle in the display port for the current TextEdit
record. TextEdit has already set up the port forthefilter routine.

TextEdit provides this routine to support applications that maintain overlaying objects

on the display. Under such circumstances, the application must decide what object to

makevisible after the user has caused a currently visible object to be deleted.

Input TERecordfield

theFilterRect The rectangle to erase, expressed in local

coordinates for the port

Output TERecordfield None

Chapter 49 TextEdit Tool Set 49-17

doEraseBuffer $0002

Thefilter procedure is to move a rectangle from TextEdit’s offscreen buffer to the display

port. The TERecordcontains information defining the source and destination data
locations. TextEdit has already set up the port for the filter routine.

This routine is used in much the same way as doEraseRect, except that it operates off

screen rather than on screen.

Input TERecord field

theFilterRect The rectangle to erase, expressed in local

coordinates for the off-screen buffer port

theBuffervPos Vertical position corresponding to the top of the

destination buffer in the display port, expressed

in local coordinates for the port

theBufferHPos Horizontal position corresponding to theleft
edge of the destination buffer in the display
port, expressed in local coordinates for the port

Output TERecord field None

doRectChanged $0003

Thefilter procedure is to handle a changeto the display windowfor the TextEdit record.

Note that TextEdit has not set up the port; thefilter procedure must obtain the port from
the inPortfield of the TERecord andset up the display port.

With this routine your application can maintain an off-screen copy ofits TextEdit
display. Whenever TextEdit updates the screen, it issues this message to the genericfilter
procedure, which can update the saved screen copy.

Input TERecordfield

theFilterRect The rectangle that changed, expressedin local
coordinates for the port

Output TERecord field None

49-18 Apple IIGs Toolbox Reference, Volume 3

Keystroke filter procedure

TextEdit also provides a mechanism for applications to supply custom keystroke

processing for a TextEdit record. TextEdit’s internal keystroke routine supports the
standard keyboard interface described in “Standard TextEdit Key Sequences”in this

chapter. Custom keystroke filter procedures may support different keyboard mappings or
macro facilities.

The keyFilter field of the TERecord can contain a pointer to a keystrokefilter

procedure. If keyFilter is NIL, TextEdit uses its standard keystroke routine.If

keyFilteris non-NIL, TextEdit calls the routine pointed to by keyFilter to process
all user keyboard input.

Keystrokefilter procedures must follow many of the samerules established for generic

filter procedures.

m The procedure must preservethe direct-page and data bank registers, and must return

in full native mode.

w Keystrokefilter procedures must not issue TextEdit toolcalls.

mw Keystroke filter procedures may move memory.

TextEdit invokes the keystrokefilter procedure in full native mode by executing a JSL.
Fields in the KeyRecordsubstructure in the TERecordcontain information defining the

data to be processed.

TextEdit loads additional control information onto the stack. On entry tothefilter

procedure, the stack is formatted as follows:

Previous contents

- teH - Long—Handle to the appropriate TERecord

type Word—Typeof data to be processed

- RTL - Three bytes—Return address

<—SP

type The type of data to be processed.

$0001 The character to be processedis stored in the theChar
field of the KeyRecord

$0002 Reserved

Chapter 49 TextEdit Tool Set 49-19

The keystrokefilter procedure is now free to perform whatever processing is appropriate.
For example, it may change the input keystroke value to support a different mapping of

the standard TextEdit keyboard functions. Or the routine may expand the keystroke in

theCharinto a block of text to be inserted at the currentlocation. The routine then
formats the appropriate return data into the KeyRecordfields and retumscontrolto
TextEdit by issuing an RTL instruction (after removingall input parameters from the
stack).

Oneof the returned KeyRecordfields (theOpCode)specifies what action TextEditis
to take upon return from thefilter procedure. This code in turn governs how TextEdit

interprets the remainderof the returned KeyRecord.Here are the valid theOpcode
values:

opNormal $0000 TextEdit performsits standard processing on the

character stored in the location referred to by

theInputHandle

opNothing $0002 TextEdit ignores the keystroke

opReplaceText $0004 TextEdit inserts the text referred to by

theInputHandlein place ofthe current selectionin
the record,if there is no current selection, TextEdit

inserts the text at the current insertion point; if the size

of theInputHand1leis 0, TextEdit deletes the current

selection and inserts nothing

opMoveCursor $0006 TextEdit movesthe cursor to the location specified
by cursorOffset

opExtendCursor $0008 TextEdit extends the current selection from its anchor
point to the location specified by cursorOffset

opCut $000A TextEdit cuts the currentselection and placesit in the
Clipboard

opCopy $000C TextEdit copies the current selection to the Clipboard

opPaste $000E TextEdit replaces the current selection with the
contents of the Clipboard

opClear $0010 TextEdit clears the current selection

49-20 Apple IIGs Toolbox Reference, Volume 3

Onexit, the filter procedure must format the stack as follows:

| Previous contents |

| <—SP
Input KeyRecordfields

theChar The keystroke to process

theModifiers Flags indicating the state of the modifier keys at the

time the key was pressed; the keystroke is contained

in theCharandin the location referred to by

theInputHandle

theInputHandle Handle to a copy of theChar

Output KeyRecordfields

theChar Unchanged

theModifiers Changed modifiers (only for opNormal)

theInputHandle Handle to replacementtext (only for opNormal and

opReplaceText), length of text indicated by size

of handle

cursorOffset If TextEdit is to move the cursor (theOpCodeis set

to either opMoveCursorOf opExtendCursor),

this field contains the new cursorlocation; otherwise,
TextEdit ignores this field

theOpCode Next action for TextEdit

Chapter 49 TextEdit Tool Set 49-21

Word wrap hook

Your program may supply its own routine to handle word wrap. This word wrap hook

routine determines whether a characterstring typed bytheuserfits on the currentline

(does not wrap) or needs to begin a new line (does wrap). TextEdit then displays the

character string on the appropriateline.

TextEdit determines whetherto call a custom word wrap routine by examining the

wordWrapHookfield of the TERecord.If that field is NIL, TextEdit uses its standard

word wrap routine. If that field is non-NIL, TextEdit calls the routine pointed to bythat
field whenever a word wrap decision is required. Your program sets this pointer by directly

modifying the wordWrapHookfield of the appropriate TERecord.

Word wrap hook routines must follow manyofthe rules established for genericfilter
procedures.

= The routine must preserve the direct-page and data bankregisters, and mustreturn in
full native mode.

ws Word wraproutines must not issue TextEdit tool calls, move memory, or cause

memory to be moved.

TextEdit invokes the word wrap hook procedure in full native mode by executing a JSL.

Entry parameters refer the procedure to the correct TERecord and character. On exit, the
word wrap procedure returnsa flag indicating whether the character caused a word wrap.

On entry to the procedure, the stack is formatted as follows:

Previous contents

Space Word—Spaceforresult

- teH - Long—Handle to the appropriate TERecord

theChar Word—Character to check

- RTL - Three bytes—Return address

<—SP
On exit, the filter procedure must format the stack as follows:

Previous contents

wrapFlag Word—Flag indicating wrap status

<—SP

49-22 Apple IIGs Toolbox Reference, Volume 3

wrapFlag Wrap status of the current character.

$0000 Not a word wrap (TextEdit leaves the word on the
currentline)

$FFFF Word wrap (TextEdit moves the word to the nextline)

Chapter 49 TextEdit Tool Set 49-23

Word break hook

Your program may supply its own routine to determine word breaks when theuseris
selecting text by words (the user has double-clicked on a word and is now extendingthat
selection). This word break hook routine decides whetherthe cursor resides at a break

between words. If so, TextEdit includes the next word in the current selection.

TextEdit determines whetherto call a custom word wrap routine by examining the

wordBreakHookfield of the TERecord.If that field is NIL, TextEdit uses its standard

word break routine. If that field is non-NIL, TextEdit calls the routine pointed to by that

field whenever a word break decision is required. Your program sets this pointer by

directly modifying the wordBreakHookfield of the appropriate TERecord.

Word break hook routines must follow manyoftherules established for generic filter
procedures. '

= The routine must preserve the direct-page and data bankregisters, and must return in
full native mode.

m Word break routines must not issue TextEdit tool calls, move memory, or cause

memory to be moved.

TextEdit invokes the word break hook procedure in full native mode by executing a JSL.
Entry parameters refer the procedure to the correct TERecord and character. On exit, the
word break procedure returns a flag indicating whether the character constitutes a word
break.

On entry to the procedure, the stack is formatted as follows:

Previous contents

Space Word—Space for result

- teH - Long—Handle to the appropriate TERecord

theChar Word—Character to check

- RTL - Three bytes—Return address

<—SP
On exit, the filter procedure must format the stack as follows:

Previous contents

breakFlag Word—Flag indicating break status

<—SP

49-24 Apple IIcs Toolbox Reference, Volume 3

breakFlag Break status of the current character.

$0000 Not a word break (TextEdit does not extend the

selection)

$FFFF Word break (TextEdit extends the selection to include

the next word)

Chapter 49 TextEdit Tool Set 49-25

Custom scroll bars

Your program mayspecify a custom scroll bar for vertical scrolling of a TextEdit record.

Use the vertBarfield of the TEParamBlockrecord to specify a handle to the control

record for the custom scroll bar. This scroll bar need not reside in the TextEdit record
display port, but it must follow certain rules with respect to the format and contentofits
control record (see Chapter 28, “Control Manager Update,” in this book and Chapter4,
“Control Manager,” in Volume1 of the Toolbox Referencefor details on scroll bar controls
and control records).

a Fields corresponding to the dataSize, viewSize, and ct1lvValuefields of a

standard scroll bar control record must be located at the samerelative locations within

the custom control record.

= TextEdit stores a handle to the appropriate TERecordin the ct LRefConfield of the

scroll bar control record. Do not change the contents ofthis field. If you need to store

additional information in the scroll bar control record, extend the record handle and

format that data after the standard control record fields (be sure to extract the size of

the returned handle, rather than relying on current record definitions for the size of the
control record).

m TextEdit stores a pointerto its internal text scroll routine in the ct 1Act ionfield of
the scroll bar control record when the TextEdit record is created (during execution of
the TENew Or NewControl2tool call). Your program may change the contents ofthis
field, but should save the pointer, so that you cancall the TextEdit text scroll routine
when appropriate. For information on the interface to action routines, see “Track
Control” in Chapter 4, “Control Manager,” in Volume1 of the Toolbox Reference.

Refer to Chapter 4, “Control Manager,” in Volume 1 of the Toolbox Reference for

backgroundinformation on writing and invoking control definition procedures.

49-26 Apple IIGs Toolbox Reference, Volume 3

TextEdit data structures

This section defines and discusses the various data structures used by the TextEdit Tool

Set. The TextEdit data structures are divided into high-level and low-level data structures.

High-level TextEdit data structures are ofinterest to all application programmers who use

TextEdit facilities. Low-level TextEdit data structures, by contrast, are not relevant to

most application programmers. However, if your program usesthe low-level features of

TextEdit or must for some other reason access TextEdit data structures directly, you

should familiarize yourself with the information in that section.

In mostcases, it is not necessary for your program to modify fields in these structures

directly. However, if your program manipulates TextEdit structures, note that many of

these data structures refer to or depend on one another. Whenever your application

changes oneofthese structures, you must be careful to update other affected or

dependentstructures.

Chapter 49 TextEdit Tool Set 49-27

High-level TextEdit structures

TextEdit uses a numberofstructures to store information about a TextEdit record and to
pass that information to TextEdit tool calls. The following sections define the format and
content of each of these structures and describe how your program would use them.

TEColorTable

Defines color attributes for a TextEdit record.

The TEParamBlock and TERecordStructures contain references to color tables stored

in TEColorTable format.

Note that all bits in TextEdit color words (such as contentColor)are significant.
TextEdit generates QuickDraw II color patterns by replicating a color word the
appropriate numberof times for the current resolution (8 times for 640 mode, 16 timesfor
320 mode). See Chapter 16, “QuickDraw II,” in Volume 2 of the Toolbox Reference for more
information on QuickDraw II patterns and dithered colors. Figure 49-1 depicts the layout
of the TEColorTablestructure.

= Figure 49-1 TEColorTablelayout

$00 contentColor + Word

$02 outlineColor = Word

$04 Reserved = Word

$06 F Reserved -— Word
$08

—vertColorDescriptor— Word

SOA
— vertColorRef = Long

SOE -horzColorDescriptor— Word

$10 [F _
~ horzColorRef - Long

$14 —growColorDescriptor— Word

$16 +
-— growColorRef — Long

49-28 Apple IIGs Toolbox Reference, Volume 3

contentColor The colorof the entire boundary rectangle (in essence, defining the

background color of the text window).

outlineColor Thecolor of the box that surrounds thetext in the display window.

vertColorDescriptor

The type of reference stored in vertColorRef.

refIsPointer $0000 The vertColorRef field contains a pointer to the
color table for the vertical scroll bar

refIsHandle $0004 The vertColorReffield contains a handle to the

color table for the vertical scroll bar

refIsResource $0008 The vertColorRef field contains the resource ID

of the color table for the vertical scroll bar (resource

type of rct 1ColorTbl, $800D)

vertColorRef

Reference to the color table for the vertical scroll bar. The

vertColorDescriptorfield indicates the type of reference stored

here. This field must refer to a scroll bar color table, as defined in

Chapter 4, “Control Manager,” in Volume 1 of the Toolbox Reference.

horzColorDescriptor

Thetype of reference stored in horzColorRef.

refIsPointer $0000 The horzColorRef field contains a pointerto the
color table for the horizontal scroll bar

refIsHandle $0004 The horzColorRef field contains a handle to the

color table for the horizontal scroll bar

refIsResource $0008 The horzColorRef field contains the resource ID

of the color table for the horizontal scroll bar

(resource type of rct 1ColorTbl, $800D)

horzColorRef Referenceto the colortable for the horizontal scroll bar. The

horzColorDescriptor parameter indicates the type of reference stored

here. This field must refer to a scroll bar color table, as defined in
Chapter 4, “Control Manager,” in Volume 1 of the Toolbox Reference.

Chapter 49 TextEdit Tool Set 49-29

growColorDescriptor

The type of reference stored in growColorRef.

refIsPointer $0000 The growColorRef field contains a pointer to the

color table for the size box

refIsHandle $0004 The growColorRef field contains a handle to the
color table for the size box

refIsResource $0008 The growColorRef field contains the resource ID

of the color table for the size box (resource type of
rCt1ColorTbl, $800D)

growColorRef_ Referenceto the color table for the size box. The

growColorDescriptorfield indicates the type of reference stored

here. This field must refer to a size box colortable, as defined in

Chapter 4, “Control Manager,” in Volume 1 ofthe Toolbox Reference.

49-30 Apple IIGs Toolbox Reference, Volume 3

TEFormat

This structure stores text-formatting control information. From this structure, you can
access the rulers andstyles defined for the text.

ManyTextEdit tool calls use this structure to accept or return format data for a text

record. Figure 49-2 shows the layout of the TEFormatstructure.

ws Figure 49-2 TEFormat layout

$00 version — Word

$02 - -
r rulerListLength — Long

$06 °
: theRulerList : Array of TERuler structures

Sx LL =
rm styleListLength — Long

Sxx !
: theStyleList : Array of TESty1lestructures

$xx 7 —
r- mumberOfStyles — Long

XxX | ;
theStyles : Array of StyleItem structures

| J

version Version numbercorrespondingto the layout of this TEFormat
structure. The numberofthis version of the structure is $0000.

rulerListLength

The length of theRulerListin bytes.

theRulerList Ruler data for the text record. The TERuler Structure is embeddedin

the TEFormatstructure atthis location.

styleListLength

The length of theStyleListin bytes.

Chapter 49 TextEdit Tool Set 49-31

theStyleList List of all uniquestyles for the text record. The TEStyle structures

are embeddedin the TEFormat structureat this location. Each

TESty1e structure must define a unique style—there must be no
duplicate style entries. To apply the samestyle to multiple blocks of

text, you should create additional st yleItems for each block of
text and makeeachitem refer to the samestylein this array.

numberOfStyles

The numberof StyleItems contained in theStyles.

theStyles Array of StyleItems specifying which styles (stored in

theStyleList) apply to which text in the TextEdit record.

49-32 Apple IIcs Toolbox Reference, Volume 3

TEParamBlock

This structure contains the parameters necessary to create a new TextEdit record.In it

your program defines manyof theattributes of the record. The format of this structure

corresponds directly to the format of the TextEdit control template accepted by the
NewCont rol2 Control Managercall when creating TextEdit controls.

The TENewtoolcall requires thatits input parameters be specified ina TEParamBlock
structure. Manyofthefields of the TEParamBlockdirectly establish the values of

TERecordfields.

In Figure 49-3, showing the layout of TEParamBlock,optional fields are marked with an

asterisk(*).

we Figure 49-3 TEParamBlocklayout

$00 pCount =

$02 - =

S06 !
: boundsRect

SOE —
— procRef =

$12 — flags —

$14. moreFlags =

$16 + _
— refCon =

SIAL _
— textFlags =

SIE:
: *indentRect

$26 + _
— *vertBar =

$2A — *vertAmount _

$2C ~
— *horzBar _

$30 — *horzAmount _

$32 + _
— *styleRef =

$36 — ‘*textDescriptor —-

continued

Word

Long

- Rectangle

Long

Word

Word

Long

Long

: Rectangle

Long

Word

Long

Word

Long

Word

Chapter 49 TextEdit Tool Set 49-33

continued
$38 L _

— *textRef = Long

$3CL -
— *textLength _ Long

$40
— *maxChars - Long

$44 -
— *maxLines = Long

S48 |— *maxcharsPerLine —| Word

S4A — *maxHeight + Word

SCT _
— *colorRef = Long

$50 *drawMode 4 Word

$52 [F =
e- *filterProcPtr — Long

pCount Numberof parameterfields to follow. Valid valueslie in the range from
7 to 23. The value ofthis field does not include pcountitself.

ID Unique ID for TextEdit controls. Your application sets this field and
can use it to identify a particular TextEdit record uniquely.

boundsRect Boundary rectangle for the TextEdit record. This rectangle contains

the entire record, includingits scroll bars and outline. If you set the

lower-right comerofthis rectangle to (0,0), TextEdit uses the lower-

right corner of the window that contains the record as a default. Note

that this rectangle must be large enoughto display completely a single
character in the largest allowedfont.

procRef Type of control. Must be set to $85000000.

flags Control flags for the TextEdit record. Defined bits for flags are as
follows:

Reserved bits 15-8 Mustbesetto 0.
fCtlinvis bit 7 0 = Visible, 1 = Invisible.
Reserved bits 6-0 Must be setto 0.

49-34 Apple IIGs Toolbox Reference, Volume 3

moreFlags More control flags for TextEdit record. Defined bits for moreFlags

are as follows:

fCtlTarget bit 15 Indicates whether this TextEdit record is the

currenttarget of user actions; must beset to 0
whena TextEdit record is created.

fCt1CanBeTarget bit 14 Mustbeset to 1; TextEdit sets this bit to 0 if

the £DisableSelection flag in textFlags

is set to 1.

fCtlWantEvents bit 13 Must be set to 1; TextEdit sets this bit to 0 if

the fDisableSelectionflag intextFlags

is set to 1.

fCtlProcRefNotPtr bit 12 Must besetto 1.

fCtlTellAboutSize bit 11 If set to 1, TextEdit creates a size box in the

lower-right corner of the window; wheneverthe
window is resized, the edit text is resized and

redrawn.
fCtlIsMultiPart bit 10 Mustbesetto 1.
Reserved bits 9-4 Mustbeset to 0.
Color table reference bits 3-2. Defines type of reference in colorRef.

00 = Color table reference is by pointer
01 = Color table reference is by handle
10 = Colortable reference is by resource ID
(resource type of rct lcolorTbl, $800D)
11 = Invalid value

Style reference bits 1-0 Defines typeofstyle reference in styleRef.
00 = Style reference is by pointer
01 = Style reference is by handle

10 = Style reference is by resource ID (resource

type of rstyleBlock, $8012)
11 = Invalid value

A, Important Do not set fCt 1Tel1lAboutSizeto 1 unless the TextEdit record
also has a vertical scroll bar. This flag works only for TextEdit records
that are controls. a

Chapter 49 TextEdit Tool Set 49-35

textFlags Specific TextEdit control flags. Valid values for textFlags are as
follows:

fNotControl

£fSingleFormat

fSingleStyle

fNoWordWrap

fNoScroll

fReadOnly

fSmartCutPaste

fTabSwitch

fDrawBounds

fColorHilight

bit 31

bit 30

bit 29

bit 28

bit 27

bit 26

bit 25

bit 24

bit 23

bit 22

Indicates whether the TextEdit record to be
created is a control.

0 = TextEdit record is a control
1 = TextEdit record is not a control
Mustbesetto 1.
Allows youto restrict the style options available
to the user.

0 = Do notrestrict the numberofstyles in the text
1 = Allow only onestyle in the text

Allows you to control TextEdit word wrap
behavior.

0 = Perform word wrapto fit the ruler

1 = Do not use word wrap; break lines only on

CR ($0D) characters
Controls user access to scrolling.
0 = Allow scrolling
1 = Do not allow either manual or automatic
scrolling

Restricts the text in the windowto read-only

operations (copying from the windowisstill
allowed).
0 = Editing permitted
1 = No editing allowed
Controls TextEdit support for smart cut and
paste.

0 = Do notuse smart cut and paste
1 = Use smart cut and paste

Defines behavior of the Tab key.

0 = Tab inserted in TextEdit document

1 = Tab to next control in the window

Tells TextEdit whether to draw a box around

the edit window,just inside boundsRect—
the penfor this box is two pixels wide and one
pixel high.

0 = Do notdraw rectangle
1 = Draw rectangle
Must besetto 0.

49-36 Apple IIGS Toolbox Reference, Volume 3

fGrowRuler bit 21 Tells TextEdit whether to resize the ruler in

responseto the userresizing the edit window;if

_ this bit is set to 1, TextEdit automatically

adjusts the right margin valuefor the ruler.
0 = Do notresizethe ruler
1 = Resize the ruler

fDisableSelection bit 20 Controls whether user canselect text.

0 = User can select text

1 = User cannotselect text

fDrawInactiveSelection

Reserved

indentRect

vertBar

vertAmount

horzBar

horzAmount

styleRef

bit 19 Controls how inactive selected text is

displayed.

0 = TextEdit does nothing special when
displaying inactive selections
1 = TextEdit draws a box aroundinactive
selections

bits 18-0 Must besetto 0.

Each coordinate of this rectangle specifies the amount of white space
to leave between the boundary rectangle for the control and the text

itself, in pixels. Default values are (2,6,2,4) in 640 modeand(2,4,2,2)

in 320 mode. Each indentation coordinate may be specified

individually. To assert the default for any coordinate, specify its value
as $FFFF.

Handle ofthe vertical scroll bar to use for the TextEdit window.If you
do not want a scroll bar atall, then set this field to NIL. If you want

TextEdit to create a scroll bar for you just inside the right edge of the

boundary rectangle for the control, set this field to $FFFFFFFF.

The numberofpixels to scroll whenever the user presses the up or

downarrow onthevertical scroll bar. To use the default value 9

pixels), set this field to $0000.

Must beset to NIL.

Must besetto 0.

Reference to initial style information for the text, specified in a

TEFoxrmatstructure. Bits 1 and 0 of moreFlags define the type of
reference (pointer, handle, resource ID) to the structure. To use the
default style and ruler information,set this field to NIL.

Chapter 49 TextEdit Tool Set 49.347

textDescriptor

textRef

textLength

Input text descriptor that defines the reference type for theinitial

text (which is in textRef) and the format ofthat text.

Referenceto initial text for the edit window.If you are not supplying
any initial text, set this field to NIL.

If textRef is a pointer to the initial text, this field must contain the
length of the initial text. For other reference types, this field is
ignored—TextEdit can extract the length from the referenceitself.

@ Note: You must specify or omit the textDescriptor, textRef, andtextLength

fields as a group.

maxChars Maximum numberof characters allowed in the text. If you do not want
to limit the numberof characters, then set this field to NIL.

maxLines Must beset to NIL.

maxCharsPerLine

Must beset to NIL.

maxHeight Must beset to NIL.

colorRef Reference to the color table for the text, stored ina TEColorTable
structure. Bits 2 and 3 of moreFlagsdefine the type of reference
stored here.

drawMode Text mode QuickDrawII uses to draw text. See Chapter 16,

“QuickDrawII,” in Volume 2 of the Toolbox Reference for details on
valid text modes.

filterProcPtr Pointer to filter routine for the control. For more information about

TextEditfilter procedures, see “Generic Filter Procedure” earlier in this

chapter. If you do not wantto use filter routine for the control, set
this field to NIL.

49-38 Apple IIGS Toolbox Reference, Volume 3

TERuler

Defines the characteristics of a TextEdit ruler.

The TEGetRuler and TESetRulertoolcalls allow you to obtain andsetthe ruler

information for a TextEdit record. Figure 49-4 showsthe layout of the TERuler Structure.

= Figure 49-4 TERulerlayout

$00 - leftMargin 4 Word

$02 - leftIndent 4 Word

$04 - rightMargin + Word

$06 just + Word

$08 extraLs + Word

SOA flags + Word

Soc L 4
— userData — Long

$10 tabType —| Word

$12 theTabs - Array of TabIt emstructures

Sx — tabTerminator —| Word

leftMargin The numberofpixels to indent from the left edge of the text rectangle
(viewRect in TERecord)forall text lines except those that start
paragraphs.

left Indent The numberofpixels to indentfrom the left edge of the text rectangle
for text lines that start paragraphs.

rightMargin Maximumline length, expressed as the numberofpixels from theleft
edge of the text rectangle.

Chapter 49 TextEdit Tool Set 49-39

just

extraLS

flags

userData

tabType

theTabs

tabTerminator

Text justification.

0 Left justification—all text lines start flush with left margin
-1 Rightjustification—all text lines start flush with right margin
1 Center justification—all text lines are centered betweenleft

and right margins

2 Full justification—text is blocked flush with both left and
right margins; TextEdit pads spaces with extra pixels to

justify the text

Line spacing, expressed as the numberofpixels to add betweenlines
of text. Negative values result in text overlap.

Reserved

Application-specific data.

The type of tab data, as follows:

0 Notabs are set—t.abTypeis thelastfield in the structure

1 Regular tabs—tabsare set at regular pixel intervals,
specified by the value of the tabTerminatorfield;

theTabs is omitted from the structure

2 Absolute tabs—tabsare set at absolute, irregular pixel
locations; theTabs defines those locations;

tabTerminator marks the end of theTabs

If tabTypeisset to 2, this is an array of TabIt em Structures defining

the absolute pixel positions for the various tab stops. The
tabTerminatorfield, with a value of $FFFF, marks the endofthis
array. For other values of tabType,this field is omitted from the
structure.

If tabTypeis set to 0, this field is omitted from thestructure.If

tabTypeis set to 1, then theTabsis omitted, and this field contains
the numberof pixels corresponding to the tab interval for the regular

tabs. If tabTypeis set to 2, tabTerminatoris set to $FFFF and
marks the end of theTabsarray.

4940 Apple IIGs Toolbox Reference, Volume 3

TEStyle

This structure defines the font and color characteristics of a style of text in the TextEdit

record.

The TEFormatstructure contains one or more TESt y1e structures, each of which defines

a unique text style used somewherein the record text. Figure 49-5 showsthe layoutof the
TEStyle structure.

a Figure 49-5 TESty1e layout

$00 L
— font ID — Long

$04 — foreColor 4 Word

$06 backColor 4 Word

$08 — —

— userData om Long

font ID Font Managerfont ID record identifying the font of the text. See

Chapter8, “Font Manager,” in Volume 1 of the Toolbox Referencefor
more information about font IDs.

foreColor Foregroundcolorfor the text. Note that all bits in TextEdit color
words are significant. TextEdit generates QuickDraw II color patterns
by replicating a color word the appropriate numberoftimes for the
current resolution (8 times for 640 mode, 16 times for 320 mode). See
Chapter 16, “QuickDraw II,” in Volume 2 of the Toolbox Referencefor
more information on QuickDrawII patterns and dithered colors.

backColor Background colorfor the text.

userData Application-specific data.

Chapter 49 TextEdit Tool Set 49-4]

Low-level TextEdit structures

TextEdit uses several other structures for its internal processing. Typically, your

application should not manipulate these structures. In addition, if your program does
modify data in these structures, you should be careful to maintain the correct
relationships between fields that affect other TextEdit structures.

TERecord

Figure 49-6 showsthe mainstructure for a TextEdit record. The TENewtoolcall creates
this structure partially based on the information specified in the TEParamBlock you

supply to that call. In most cases, your program does not needto access fields in this

structure directly. However, to use such advanced features as custom word wraproutines,

your application will have to modify the TERecord.

Note that this section describes only those TERecordfields that are currently defined
and available to application programs. Your program should assumethat there are more

fields beyond those described here, and it should not try to move or copy a TERecord
directly.

Most TextEdit tool calls require a handle to a TERecordas an entry parameter.

= Figure 49-6 TERecordlayout

$00
— ctrlNext Long

$04 =
— inPort = Long

$08 : boundsRect . Rectangle

or ctrlFlag Byte

ctrlHilite Byte

$12 lastErrorCode 4 Word

$14 =
— etrlProc — Long

$18 | a
— ctrlAction = Long

$1CL _
— filterProc — Long

continued
4942 Apple IIcs Toolbox Reference, Volume 3

$20

$24

$28

$2C

$30!

$3C

$3E

$40 -

$48

$4C

$58

$64

$68

$6C

$6E

$72

$76

$78

S7A

S7E

$80 |

$38

continued

— ctrlRefCon = Long
ml _

— colorRef _ Long

— textFlags — Long

a —

— textLength — Long

blockList - TextList

— ctrlID —; Long
a —_

— ctrlMoreFlags 4 Word

— ctrlVersion 4 Word

viewRect : Rectangle

— totalHeight = Long

: lineSuper ; SuperHandle

| |
| I
. styleSuper - SuperHandle

— styleList — Long

— rulerList a Long

|. JineAtEndPlag — Word

— —

— selectionStart -; Long

- selectionEnd = Long

-- selectionActive —| Word

l- selectionState -— Word

— caretTime = Long

m nullStyleActive — Word

. nullStyle - TEStyle

| |

| continued |

Chapter 49 TextEdit Tool Set 49-43

continued

topTextoffset — Long

$90 topTextVPos — Word

$92 L —
— vertScrollBar -—; Long

$96 | _
— vertScrollPos - Long

S9AL —
 vertScrollMax —1 Long

S9E — vertScrollAmount 4 Word

SAO _
rm horzScrollBar — Long

- horzScrollpos — Long

SA8 |L _
— horzScrol1Max 7 Long

SAC — horzScrollAmount — Word

SAE =
f= growBoxHandle — Long

$SB2 -
— maximumChars = Long

SB6 — —

— maximumLines — Long

SBA — maxCharsPerLine ~— Word

SBC LL maximumHeight — Word

SBE textDrawMode —+ Word

SCO =
-- wordBreakHook 7 Long

$C4 L =
— wordWrapHook _ Long

SC8 LL _
— keyFilter _ Long

sce . theFilterRect - Rectangle

$D4 _ theBufferVPos Word

continued

49-44 AppleIIcs Toolbox Reference, Volume 3

continued

$D6

theBufferHPos =

 sos!
theKeyRecord

SE6
cachedSelcOffset

{
j
i

SEA _— cachedSelcVPos —

SEC cachedSelcHPos —

 SEE!
mouseRect

SF6

T
e

|
j
t

mouseTime

SFA mouseKind =

SFC
lastClick

$100 savedHPos —_

$102 anchorPoint =
ctrlNext

inPort

boundsRect

ctrlFlag

Word

Long

Word

Word

Long

Word

Long

Word

Long

- KeyRecord

: Rectangle

Handle of next control in the system-maintained controllist.

Pointer to the GrafPort for this TextEdit record.

Boundary rectangle for the record, which surrounds the text window as
well as its scroll bars and outline.

Control flags for the TextEdit record. TextEdit obtains this field from
the low-order byte of the flags field in the TEParamBlock passed
to TENew.The following flags are defined:

fCtliInvis bit 7

fRecordDirty bit 6

Reserved

ctrlHilite Reserved

0 = Visible, 1 = Invisible.

Indicates whether text or style information for the
record has changed (TextEdit sets this bit but never

clears it—your application mustset the bit to 0
wheneverit saves the record).

0 = Notext orstyle information has changed
1 = Text or style information has changed

bits 5-0 Must be setto 0.

Chapter 49 TextEdit Tool Set 49-45

lastErrorCode

ctrlProc

ctrlAction

filterProc

ctrlRefCon

colorRef

textFlags

fNotControl

fSingleFormat

£FSingleStyle

fNoWordwrap

fNoScroll

fReadOnly

The last error code generated by TextEdit. Note that this code may
have been returned either from the TextEdit control definition
procedure or from a TextEdit toolcall.

Must be set to $85000000. Identifies this as a TextEdit control to the

system.

Reserved.

Pointer to the genericfilter procedure for the record. If there is no

filter procedure, this field is set to NIL. See “Generic Filter Procedure”
earlier in this chapter for information about generic filter procedures.

Application-defined value.

Reference to the TEColorTableforthe record.Bits 2 and 3 in
ctrlMoreFlagsdefine the type ofreference stored here.

Control flags specific to TextEdit. The system derivesthis field from
the textFlagsfield in the TEParamTablestructure passed to

TENew when a new TextEdit record is created. The followingflags are
defined:

bit 31 Indicates whether the the TextEdit record to be
created is for a control.
0 = TextEdit record is a control
1 = TextEdit record is not a control

bit 30 Must beset to 1.
bit 29 Allows youtorestrict the style options available to

the user.

0 = Do notrestrict the numberofstyles in the text
1 = Allow only onestyle in the text

bit 28 Allows you to control TextEdit word wrap behavior.
0 = Perform word wraptofit the ruler

1 = Do not use word wrap; break lines only on CR
($0D) characters

bit 27 Controls useraccess to scrolling.
0 = Allow scrolling

1 = Do not allow either manual or automatic scrolling
bit 26 _—-Restricts the text in the window to read-only

operations (copying from the windowisstill
allowed).

0 = Editing permitted

1 = No editing allowed

4946 Apple IIGS Toolbox Reference, Volume 3

FSmartCutPaste

fTabSwitch

fDrawBounds

fColorHilight

fGrowRuler

fDisableSelect

fDrawInactiveS

Reserved

textLength

blockList

ctrlID

bit 25

bit 24

bit 23

bit 22

bit 21

ion bit 20

election

bit 19

Controls TextEdit support for smart cut and paste.

0 = Do not use smart cut and paste
1 = Use smart cut and paste
Defines behavior of the Tab key.

0 = Tab inserted in TextEdit document

1 = Tab to next control in the window

Tells TextEdit whether to draw a box aroundtheedit

window,just inside boundsRect;the penforthis

rectangle is two pixels wide and onepixel high.

0 = Do not draw rectangle

1 = Draw rectangle

Mustbesetto 0.
Tells TextEdit whether to resize the ruler in response

to the user resizing the edit window;if this bit is set

to 1, TextEdit automatically adjusts the right margin

value for the ruler.

0 = Do notresize the ruler

1 = Resizethe ruler
Controls whether user canselect text.

0 = User canselect text

1 = User cannotselect text

Controls how inactive selected text is displayed.

0 = TextEdit does nothing special when displaying

inactive selections

1 = TextEdit draws a box aroundinactive selections

bits 18-0 Must besetto 0.

Numberofbytes oftext in the record. Your program must not modify

this field.

Cachedlink to the linkedlist of TextBlock structures, which contain

the actual text for the record. The actual TextList structure resides

here. Your program must not modify thisfield.

Application-assigned ID for the TextEdit control.

Chapter 49 TextEdit Tool Set 49-47

ctrlMoreFlags

fCtlTarget

fCt1lCanBeTarge

fCtlwWantEvents

£CtlProcRefNot

fCtlTellAboutsS

More control flags. TextEdit obtains the data for this field from the
moreFlagsfield of the TEParamBlockstructure passed to TENew

when a new TextEdit record is created. The following flags are
defined:

bit 15 Indicates whether this TextEdit record is the current

target of user actions; this bit must be set to 0 when
a TextEdit record is created.

t bit 14 Must beset to 1.
bit 13. Must beset to 1.

Ptr bit 12 Must be settol.

ize bit 11 If this bit is set to 1, TextEdit creates a size box in

the lower-right corner of the window; wheneverthe

windowis resized, the edit text is resized and

redrawn.

fCtliIsMultiPart bit 10 Must be setto 1.

Reserved bits 9-4 Must besetto 0.

Color table reference bits 3-2 Defines type of reference in colorRef.

Reserved

ctrlVersion

viewRect

totalHeight

lineSuper

styleSuper

styleList

49-48 Apple Ilcs

00 = Colortable reference is by pointer
01 = Color table reference is by handle

10 = Color table reference is by resource ID (resource
type of rct 1ColorTbl, $800D)

11 = Invalid value

bits 1-0 Must be setto 0.

Reserved.

Boundary rectangle for the text, within the rectangle defined in

boundsRect,which surrounds the entire record,includingits
associated scroll bars and outline.

Total height, in pixels, of the text in the TextEdit record.

Cachedlink to the linkedlist of superBlockstructures that define
the text lines in the record.

Cachedlink to thelinked list of superBlock structures that define

the styles for the record.

Handle to array of TEStylestructures, containing the uniquestyles
for the record. The array is terminated with a long word set to
$FFFFFFFF.

Toolbox Reference, Volume 3

rulerList Handle to array of TERuler structures, defining the format rulers for
the record. Note that only thefirst ruler is currently used by TextEdit.
The array is terminated with a long word set to $FFFFFFFF.

lineAtEndFlag Indicates whetherthe last character was a line break. If so, this field is
set to $FFFF.

selectionStart

Starting text offset for the current selection. Must always be less than
or equal to select ionEnd.

selectionEnd Ending text offset for the current selection. Must always be greater
than or equal to selectionStart.

selectionActive °

State information (active or inactive) about the current selection

(defined by selectionStart and select ionEnd).

$0000 Active
$FFFF Inactive

selectionState

State information aboutthe currentselection range.

$0000 Off screen
$FFFF On screen

caretTime Blink interval for caret, expressed in system ticks.

nullStyleActive

State information about the null style for the current selection.

$0000 Donotusenull style wheninserting text
$FFFF Use null style wheninserting text

nullstyle TESty1estructure defining the null style. This may be the default
style for newly inserted text, depending upon thevalue of
nullStyleActive.

topTextOffset Text offset into the record corresponding to the top line displayed on
the screen.

topTextvPos

_

Difference, in pixels, between the topmostvertical scroll position
(correspondingto the top ofthe vertical scroll bar) and the top line
currently displayed on the screen.

vertScrolliBar Handle to the vertical scroll bar control record.

Chapter 49 TextEdit Tool Set 49-49

vertScrollpPos Currentposition of the vertical scroll bar, in units defined by
vertScrollAmount.

@ Note: Although TextEdit supports vert Scro11Pos as a long word, standard Apple

IIGs scroll bars support only the low-order word. This leads to unpredictable scroll bar
behavior in the editing of large documents.

vertScrollMax Maximum allowable vertical scroll, in units defined by

vertScrollAmount.

vertScrollAmount

Number ofpixels to scroll on each vertical arrow click.

horzScrollBar Currently not supported.

horzScrollPos Currently not supported.

horzScrollMax Currently not supported.

horzScrollAmount

Currently not supported.

growBoxHandle Handle of size box control record.

maximumChars Maximum numberof characters allowed in the text.

maximumLines Currently not supported.

maxCharsPerLine

Currently not supported.

maximumHeight Currently not supported.

textDrawMode QuickDraw II drawing mode for the text. See Chapter 16,
“QuickDraw II,” in Volume 2 of the Toolbox Reference for more
information on QuickDraw II drawing modes.

wordBreakHook Pointer to the routine that handles word breaks. See “Word Break
Hook’earlier in this chapter for information about word break
routines. Your program may modify thisfield.

wordWrapHook Pointerto the routine that handles word wrap. See “Word Wrap
Hook’earlier in this chapter for information about word wrap
routines. Your program may modify this field.

49-50 Apple IIcs Toolbox Reference, Volume 3

keyFilter

theFilterRect

theBufferVPos

theBufferHPos

theKeyRecord

Pointer to the keystrokefilter routine. See “Keystroke Filter
Procedure” earlier in this chapter for information about keystroke
filter routines. Your program may modify thisfield.

A rectangle used bythe generic filter procedure for some ofits
routines. See “Generic Filter Procedure”earlier in this chapter for

information about generic filter procedures and their routines. Your
program may modify this field.

Vertical componentof the current position of the buffer within the
port for the TextEdit record, expressed in the local coordinates

appropriate for that port. This value is used by some generic filter

procedure routines. See “Generic Filter Procedure” earlier in this
chapterfor information about generic filter procedures and their
routines. Your program may modify this field.

Horizontal componentofthe current position of the buffer within the
port for the TextEdit record, expressed in the local coordinates
appropriate for that port. This value is used by some generic filter
procedure routines. See “Generic Filter Procedure” earlier in this
chapter for information about generic filter procedures and their

routines. Your program may modify this field.

Parameterblock, in KeyRecord format, for the keystrokefilter

routine. Your program may modify this field.

cachedSelcOffset

Cachedselection text offset. If this field is set to $FFFFFFFF, then the

cacheis invalid and will be recalculated when appropriate.

cachedSelcVPos

Vertical componentof the cached buffer position, expressed in local
coordinates for the output port.

cachedSelcHPos

mouseRect

mouseTime

Horizontal componentof the cached buffer position, expressed in
local coordinates for the output port.

Boundary rectangle for multiclick commands. If the user clicks more
than once in the region defined by this rectangle within the time
period defined for multiclicks, then TextEdit interprets those clicks

as multiclick sequences (double clicks ortriple clicks). The user sets
the time period with the Control Panel.

System tick count whenthe userlast released the mouse button.

Chapter 49 TextEdit Tool Set 49-51

mouseKind Typeoflast click.

0 Single click

1 Doubleclick

2 Triple click

lastClick Location of last userclick.

savedHPos Cached horizontal character position. TextEdit uses this value to

manage whereit shoulddisplay the caret on a line when the user
presses the up or downscroll arrow.

anchorPoint The character from which the user beganto select text for the current
selection. When TextEdit expands the currentselection (as a result of

user keyboard or mouse commands,or at the direction of a custom
keystrokefilter procedure), it always does so from the

anchorPoint, not from selectionStart or selectionEnd.

49-52 Apple IIGs Toolbox Reference, Volume 3

KeyRecord

Defines the entry and exit parameter blocks for the keystrokefilter procedure for a
TextEdit record. On entry to the filter procedure, TextEdit sets up this structure with the

information necessary to process the keystroke. On exit, the filter procedure returns the
processed keystroke and any otherstatus information in this same structure. For
complete information about the TextEdit keystrokefilter procedure and the use ofthese
fields, see “Keystroke Filter Procedure” earlier in this chapter.

The KeyRecordfor a TextEdit record resides in the appropriate TERecord.Figure 49-7

showsthe layout of the KeyRecordstructure.

w Figure 49-7 KeyRecordlayout

$00 + theChar + Word

$02 theModifiers — Word

$04 L _
 theInputHandle — Long

$08 - =
— cursorOffset = Long

SOC theOpCode Word

theChar Character code of the character to translate. The low-order byte of

theChar contains the key code for the character; the high-order byte
is ignored.

theModifiers Oninput, contains the state of the modifier keys when the character

in theChar was generated. This is an Event Manager modifier word,
as described in Chapter 7, “Event Manager,” in Volume1 of the Toolbox
Reference. On output, the keystrokefilter procedure may change the
setting of these flags.

theInputHandle

Oninput, contains a handleto a copy ofthe keystroke in theChar.
On output, the keystrokefilter procedure may modify the size and
content of the data referred to by this handle.

cursorOffset For some operations, the keystrokefilter routine sets this field with a

new cursortext offset.

Chapter 49 TextEdit Tool Set 49-53

theOpCode

opNormal

opNothing

opReplaceText

opMoveCursor

opExtendCursor

opCut

opCopy

opPaste

opClear

Onreturn from thefilter routine, this field contains an operation code
indicating what TextEdit is to do next and howit is to interpret
the KeyRecord.

$0000

$0001

$0002

$0003

$0004

$0005

$0006

$0007

$0008

TextEdit performs its standard processing on the

character stored in the location referred to by

theInputHandle,according to the value

of theModifiers

TextEdit ignores the keystroke

TextEdit inserts the text referred to by

theInput Handlein place of the currentselection in
the record;if there is no current selection, TextEdit

inserts the text at the current insertion point; if the

size of the InputHandleis 0, TextEdit deletes the
current selection and inserts nothing
TextEdit moves the cursor to the location specified
by cursorOffset

TextEdit extends the current selection from its anchor

pointto the location specified by cursoroffset
TextEdit copies the current selection to the
Clipboard and then clears the selection

TextEdit copies the current selection to the
Clipboard

TextEdit inserts the contents of the Clipboard in
place of the current selection
TextEdit clears the current selection

49-54 Apple Ilcs Toolbox Reference, Volume 3

StyleiItem

The TEFormatstructure contains an array of StyleItem substructures, which define the

text characters that use a particular style. Each elementof this array refers to the style
information for a series of characters. Taken consecutively, the array of StyleItem

structures completely defines the styles for the entire record. Figure 49-8 shows thelayout
of the styleItem structure.

ws Figure 49-8 styleiItem layout

$00 + 4
— length = Long

$04 — —

— offset Long

length The total numberof text characters that use this style. These

characters begin where the previous St yleItenmleft off. A value of
$FFFFFFFF indicates an unusedentry.

offset Offset, in bytes, into theStyleList array to the TEStylerecord

defining the characteristics of the style in question. The styleList

array is stored in the TEFormat record.

Chapter 49 TextEdit Tool Set 49-55

SuperBlock

SuperBlockstructures define linked lists of TextEdit control information items. These

control information items mayrelate to styles or to line-start locations, and they are
defined by the SuperItem substructure. A SuperHandle substructure provides address

information into a chain of SuperBlockstructures. The TERecord contains a number

of SuperHand1es. Figure 49-9 showsthe layout of the SuperBlockstructure.

=» Figure 49-9 SuperBlock layout

$00
— nextHandle = Long

$04 - “
— prevHandle — Long

$08 - =
— textLength = Long

SOC -
— Reserved —| Long
a —

$10 . theItems - Array of SuperItems structures
1 J

nextHandle Handle to the next SuperBlockin this chain of blocks. A value of

NIL indicates the end of the chain.

prevHandle Handle to the previous SuperBlockin this chain of blocks. A value
of NIL indicates the beginning of the chain.

textLength The numberof characters of text referred to by theItems.

theItems Array of SuperItems for this SuperBlock. The text Lengthfield

contains the total length of the characters defined by these items.

49-56 Apple lIGs Toolbox Reference, Volume 3

SuperHandle

Identifies the current position within a chain of SuperBlocks. This substructure
contains both byte offset and index information. The cachedof fsetfield contains the
offset to the text identified by the cached SuperItem. The cachedIndexfield
contains the byteoffset to the SuperItem within its SuperBlock. The TERecord

contains several Supe rHandles. Figure 49-10 showsthe layout of the SuperHandle

SuperHandlelayout

Structure.

a Figure 49-10

$00 |_ _
— cachedHandle = Long

$04 L _
- cachedOffset — Long

$08 L cachedIndex + Word

SOA — itemsPerBlock Word

cachedHandle

cachedOffset

cached SuperIten.

cachedIndex

Handle to the SuperBlock containing the current SuperItem.

Byte offset to the current character within the text identified by the

Byte offset to the start of the current SuperItem within the array of
SuperItensstored in the SuperBlockreferred to by

cachedHandle.

itemsPerBlock The number of SuperItemsstored in each SuperBlock.

Chapter 49 TextEdit Tool Set 49-57

SuperiItem

Defines an individual item within a SuperBlock.Figure 49-11 showsthe layout ofthe
SuperItemStructure.

a Figure 49-11 SuperItem layout

$00 L
— length — Long
= —

$04 4
data — Long

length The numberof text characters in the TextEdit record that are affected

by this SuperiItem.A value of $FFFFFFFF indicates that this item is
not currently used.

data The actual data for the item.

49-58 Apple IIGs Toolbox Reference, Volume 3

TabItem

Contains information defining an absolute tab position, expressed as a pixel offset from

the left margin of the text rectangle (viewRect of the TERecord). The TERuler
structure contains an array of TabItems wheneverthe user has defined absolutetabs.
Figure 49-12 showsthe layout of the TabIt emstructure.

= Figure 49-12 TabItem layout

$00 — tabKind + Word

$02 tabData Word

tabKind Mustbeset to $0000.

tabData Location of the absolute tab, expressed as the numberofpixels to
indent from the left edge ofthe text rectangle (viewRect of
TERecord).

Chapter 49 TextEdit Tool Set 49-59

TextBlock

Contains the actual text for the record. The TextBlock substructure defines a linkedlist

that stores the text. A TextList substructure within the TERecord contains access

information into the chain of TextBlocksfor the TextEdit record. The TextBlock

chain stores the text for the TextEdit record in sequential order. Thatis, thefirst

TextBlock contains the first block of text, the second TextBlock contains the next

block of text, and so on. The size of each of these TextBlock handles must be a multiple

of 256 ($100), plus 16 ($10) (for example, 272 [$110], 528 [$210], and so on). Figure 49-13

showsthe layout of the TextBlock structure.

a Figure 49-13 TextBlock layout

$00 -
— nextHandle = Long

$04 =
— prevHandle = Long

$08 _ _
— textLength = Long
— —_

$OC = flags _ Word

SOE — Reserved —_| Word

$10 - theText - Array of bytes
{ J

nextHandle Handle to the next TextBlock in the chain of blocks for this text
record. A value of NIL indicates the end of the chain.

prevHandle Handle to the previous TextBlock in the chain of blocksforthis
text record. A value of NIL indicates the beginning of the chain.

textLength The numberof text bytes stored at theText.

flags Reserved.

theText Text for the record. The text Lengthfield specifies the length of
this array.

49-60 Apple Ics Toolbox Reference, Volume 3

TextList

Identifies the current position within the text for the record, which is stored in
TextBlocks. The TERecordcontains a TextList substructure. Figure 49-14 showsthe
TextList Structure.

= Figure 49-14 TextList layout

$00 4
cachedHandle = Long

$04 —
Ts cachedoffset — Long

cachedHandle Handle to the TextBlockcontaining the text corresponding to the

current location.

cachedOffset Byte offset from thestart of the file to the start of the TextBlock

described by this TextList entry.

Chapter 49 TextEdit Tool Set 49-61

TextEdit housekeeping routines

The following sections describe the standard housekeepingcalls in the TextEdit ToolSet.

TEBootInit $0122

Initializes TextEdit; called only by the Tool Locator.

A Warning An application must never makethis call. a

Parameters None

Errors None

C Call must not be made by an application.

49-62 Apple IIGS Toolbox Reference, Volume 3

TEStartUp $0222

Starts up the TextEdit Tool Set and prepares TextEdit for application use by allocating

memory and formatting direct-page space. Applications must issue this call before any

other TextEdit tool calls. Before exiting, applications that issue the TEStartUpcall must

call TEShutDownto shut down TextEdit.

Parameters

Stack before call

Previous contents

userID Word—Application’s user ID (obtained at program start time)

directPage Word—Address of one page ofdirect-page memory

<—SP
Stack after call

| Previous contents |

| | <—SP

Errors $2201 teAlreadyStarted TextEdit has already been

started.

$220D teNeedsTools The Font Manager was not
started.

Memory Managererrors Returned unchanged.

C extern pascal void TEStartUp(userID, directPage);

Word userID, directPage;

Chapter 49 TextEdit Tool Set 49-63

TEShutDown $0322

Frees memory used by TextEdit, not including memory used by individual TextEdit

records. It is the programmer’s responsibility to issue the TEKi11 toolcall at the end of
processing for each TextEdit record. Every application that uses TextEdit mustissue this
call before exiting. During applicationinitialization, applications that use TextEdit must

issue the TEStartUptool call before any other TextEdit calls.

Parameters

Stack before call

| Previous contents |

} cs
Stack after call

| Previous contents |

| | <—SP

Errors $2202 teNotStarted TextEdit has not been started.

C extern pascal void TEShutDown();

49-64 Apple IIGs Toolbox Reference, Volume 3

TEVersion $0422

Retrieves the TextEdit version number. This call returns valid information if TextEdit has
been loaded; the tool set need not be active. The versionInfo result contains the
information in the standard format defined in Appendix A, “Writing Your Own ToolSet,”
in Volume2 of the Toolbox Reference.

Parameters

Stack before call

Previous contents

Space Word—Spacefor result

<—SP

Stack after call

Previous contents

versionInfo Word—TextEdit version number

<—SP

Errors None

Cc extern pascal Word TEVersion();

Chapter 49 TextEdit Tool Set 49-65

TEReset $0522

Resets TextEdit; called only whenthe system isreset.

A Warning An application must never makethis call. a

Parameters None

Errors None

C Call must not be made by an application.

49-66 Apple IIcs Toolbox Reference, Volume 3

TEStatus $0622

Returns a flag indicating whether TextEdit is active. If TextEdit has not been loaded, your
program receives a Tool Locator error (toolNotFoundErr).

@ Note: If your program issuesthis call in assembly language,initialize the result space on
the stack to NIL. Upon retum from TEStatus,your program need only check the value
of the returned flag. If TextEdit is not active, the returned value will be FALSE (NIL).

Parameters

Stack before call

Previous contents

Space Word—Spacefor result

<—SP

Stack after call

Previous contents

activeFlag Word—Boolean; TRUE if TextEdit is active

<—SP

Errors $0001 toolNotFoundErr TextEdit not loaded.

C extern pascal Word TEStatus();

Chapter 49 TextEdit Tool Set 49-67

TextEdit tool calls

The following sections describe the TextEdit tool calls in order by call name.

TEActivate S0QF22

Makes the specified TextEdit record active—that is, makes that record the target of user

keystrokes. TextEdit highlights the current selection or displays the caret, as appropriate.
User editing activity now applies to this TextEdit record.

Your application needissue this call onlyif it is managing its own TextEdit records. If your
program uses TextEdit controls with TaskMaster, it should notissue this call; TaskMaster
manages the control automatically.

Parameters

Stack before call

Previous contents

- teH - Long—Handle of TERecord in memory

<—SP

Stack after call

| Previous contents |

| <—SP

Errors $2202 teNotStarted TextEdit has not beenstarted.
$2203 teInvalidHandle The teH parameter does notrefer

to a valid TERecord.

Cc extern pascal void TEActivate (teH);

Long teH;

| The TextEdit record for the operation. If your program specifies a
NIL value, TextEdit works with the target TextEdit record.If there is

no target record, then TextEdit does nothing and returns immediately
to your program.

49-68 Apple IIcs Toolbox Reference, Volume 3

TEClear $1922

Clears the current selection in the active TextEdit record and redrawsthe screen.If there is
no current selection, then this call does nothing and returns immediately. This call does not
affect the Clipboard.

Note that this call does not generate any update events; it directly redraws the active

record.

Your application need issuethis call only if it is managing its own TextEdit records. If your
program uses TextEdit controls and TaskMaster, it should notissue this call; TaskMaster

manages the control automatically.

Parameters

Stack before call

Previous contents

- teH - Long—Handle of TERecord in memory;NIL for active record

<—SP

Stack after call

| Previous contents |

| | <—SP

Errors $2202 teNotStarted TextEdit has not been started.
$2203 teInvalidHandle The teH parameter does not refer

to a valid TERecord.

C extern pascal void TEClear(teH);

Long teH;

teH The TextEdit record for the operation. If your program specifies a
NIL value, TextEdit works with the target TextEdit record. If there is
no target record, then TextEdit does nothing and returns immediately
to your program.

Chapter 49 TextEdit Tool Set 49-69

TEClick $1122

Tracks the pointer within a TextEdit record, selecting all text that it passes over until the
user releases the mouse button.If the user holds downtheShift key, this call extends the

current selection to include the new text. TextEdit automatically causes the text to scroll

in the properdirection if the user drags outside the view rectangle.

This call handles double andtriple clicks as follows: double clicks select a word, and
dragging thereafter lengthens or shortens the selection in word increments;triple clicks
select a line, and dragging thereafter lengthensor shortens the selection in line increments.

If your program issues this call for a TextEdit record that is not currently active, TextEdit
first makes that record active, and then proceeds to track the pointer.

Your application need issue this call only if it is managing its own TextEdit records. If your

program uses TextEdit controls with TaskMaster, it should notissue this call; TaskMaster
manages the control automatically.

Parameters

Stack before call

Previous contents

— eventRecordPtr - Long—Pointer to event record for the mouseclick

- teH - Long—Handle of TERecord in memory

<—SP
Stack after call

Previous contents

<—SP

Errors $2202 teNotStarted TextEdit has not been started.
$2203 teInvalidHandle The teH parameter does notrefer

to a valid TERecord.
Memory Managererrors Returned unchanged.

extern pascal void TEClick(eventRecordPtr, teH);

Pointer eventRecordPtr;

Long teH;

49-70 Apple IIGs Toolbox Reference, Volume 3

eventRecordPtr Pointer to the event record describing the mouseclick. The what,

when, where, and modifiersfields of the event record mustbe set.
TextEdit ignores the messagefield. For information on the format
and content of event records, see Chapter 7, “Event Manager,” in
Volume1 of the Toolbox Reference.

teH The TextEdit record for the operation.

Chapter 49 TextEdit Tool Set 49-71

TECompactRecord $2822

Compressesall the TextEdit data structures in a specified TextEdit record.
TECompactRecordreclaims space used for deleted lines andstyle items andforstyles

that are no longer referenced from thetext. Althoughthis call may be issued by any
application that uses TextEdit, it is intended to be used from within an out-of-memory
routine (see Chapter 36, “Memory Manager Update,” in this book for information about

out-of-memory routines and the out-of-memory queue).

Note that your program may not pass a NIL TextEdit record handle to this tool call.

Parameters

Stack beforecall

Previous contents

- teH - Long—Handle of TERecord to compact

<—SP

Stack after call

| Previous contents |

| | <—SP

Errors $2202 teNotStarted TextEdit has not beenstarted.
$2203 teInvalidHandle The teH parameter does notrefer

to a valid TERecora.

Memory Managererrors Returned unchanged.

C extern pascal void TECompactRecord (teH);

Long teH;

teH The TextEdit record for the operation.

49-72 Apple Ics Toolbox Reference, Volume 3

TECopy $1722

Copies the current selection from the active TextEdit record to the Clipboard, destroying

the previous Clipboard contents. This call copies both the text and style information to
the Clipboard. Note, however, that if there is no current selection, this call does nothing
and does notaffect the Clipboard.

This call does not automatically cause scrolling to the current selection.

Your application needs to issuethis call only if it is managing its own TextEdit records.If
your program uses TextEdit controls, it should not issue this call; TaskMaster manages the

control automatically.

Parameters

Stack before call

Previous contents

- teH = Long—Handle of TERecord in memory; NIL for active record

<—SP
Stack after call

| Previous contents |

|| <—SP

Errors $2202 teNotStarted TextEdit has not been started.
$2203 teInvalidHandle The teH parameter does not refer

to a valid TERecord.

Memory Managererrors Returned unchanged.

C extern pascal void TECopy (teH);

Long teH;

teH The TextEdit record for the operation. If your program specifies a
NIL value, TextEdit works with the target TextEdit record. If there is
no target record, then TextEdit does nothing and returns immediately
to your program.

Chapter 49 TextEdit Tool Set 49-73

TECut $1622

Copies the current selection from the active TextEdit record to the Clipboard, destroying

the previous Clipboard contents. TECut thenscrolls to the beginning of the selection,
deletes it, and redraws the screen. This call copies both the text andstyle information to
the Clipboard. Note, however, that if there is no current selection, this call does nothing

and does not affect the Clipboard.

Your application need issue this call only if it is managing its own TextEdit records. If your

program uses TextEdit controls, it should notissuethis call; TaskMaster manages the

control automatically.

Parameters

Stack before call

Previous contents

- teH - Long—Handle of TERecord in memory; NIL for active record
esp

Stack after call

| Previous contents |

| | <—SP

Errors $2202 teNotStarted TextEdit has not been started.
$2203 teInvalidHandle The teH parameter does notrefer

to a valid TERecord.
Memory Managererrors Returned unchanged.

C extern pascal void TECut (teH);

Long teH;

teH The TextEdit record for the operation. If your program specifies a
NIL value, TextEdit works with the target TextEdit record.If thereis

no target record, then TextEdit does nothing and returns immediately

to your program.

49-74 Apple Ics Toolbox Reference, Volume 3

TEDeactivate $1022

Deactivates a TextEdit record. Your program specifies the TERecordforthe record in

question. TEDeact ivate changesthe highlighting of the current selection in that record
to show thatit is inactive. Any user editing actions (keystrokes, cut and paste) have no

effect on the deactivated record.

Your application needissuethis call only if it is managing its own TextEdit records. If your
program uses TextEdit controls, it should not issue this call; TaskMaster manages the

control automatically. :

Parameters

Stack before call

Previous contents

- teH - Long—Handle of TERecord in memory

<—SP

Stack after call

| Previous contents |

| | <—SP

Errors $2202 teNotStarted TextEdit has not beenstarted.

$2203 teInvalidHandle The teH parameter does notrefer
to a valid TERecord.

C extern pascal void TEDeactivate (teH) ;

Long teH;

teH Specifies the TextEdit record for the operation.

Chapter 49 TextEdit Tool Set 49-75

TEGetDefProc $2222

Returns the address of the TextEdit control definition procedure. When the Control

Managerstarts up, the system issues this call to obtain the address of the TextEdit control
definition procedure. This call is not intended for application use.

Parameters

Stack before call

Previous contents

- Space - Long—Spaceforresult

<—SP

Stack after call

Previous contents

- defProcPtr - Long—Pointer to control definition procedure

<—SP

Errors None

C extern pascal Pointer TEGetDefProc();

49-76 Apple IIGs Toolbox Reference, Volume 3

TEGetInternalProc $2622

Returns a pointer to the low-level procedure routine for TextEdit.

This call is reserved for future use by applications needing to access certain low-level
TextEdit routines.

Parameters

Stack before call

Previous contents

- Space -

Stack after call

Previous contents

Long—Spacefor result

<—SP

Long—Pointerto internal low-level procedure routine

— internalProcPtr —

<—SP

Errors None

C extern pascal Pointer TEGetInternalProc();

Chapter 49 TextEdit Tool Set 49-77

TEGetLastError $2722

Returns the last error code generated for a TextEdit record. Your program specifies the
TERecordfor the appropriate record and flag indicating whetherto clear the last error

code after the call. TextEdit then returns the last error code for that record and,if

requested, clears the last errorfield.

Parameters

Stack before call

Previous contents

Space

clearFlag

- teH -

Stack after call

Previous contents

Word—Spacefor result

Word—Flag controlling disposition oflast error field for record

Long—Handle of TERecord in memory; NIL for active record

<—SP

lastError Word—Last error code generated for the record

<—SP

Errors $2202 teNotStarted TextEdit has not been started.

$2203 teInvalidHandle The teH parameter does notrefer
to a valid TERecord.

C extern pascal Word TEGetLastError(clearFlag, teH);

Word clearFlag;

Long teH;

clearFlag Flag controlling what TextEdit does with thelast errorfield after
servicing thecall.

$0000 Leave the last error codeintact
$FFFF Clear the last error code to $0000

teH Specifies the TextEdit record for the operation.

49-78 Apple IIcs Toolbox Reference, Volume 3

TEGetRuler $2322

Returns the ruler definition for a TextEdit record. Your program specifies the destination

for the ruler information and the TERecord corresponding to the appropriate record. The

TEGetRulercall retums the TERulerrecord defining the ruler for the record in
question.

Parameters

Stack before call

Previous contents

rulerDescriptor Word—Typeofreference in rulerRef

- rulerRef - Long—Referenceto buffer to receive TERuler record

- teH ~ Long—Handle of TERecord in memory;NIL for active record

<—SP
Stack after call

| Previous contents |

| | <—SP

Errors $2202 teNotStarted TextEdit has not been started.

$2203 teInvalidHandle The teH parameter does notrefer
to a valid TERecord.

Resource Managererrors Returned unchanged.

Cc extern pascal void TEGetRuler(rulerDescriptor,

rulerRef, teH);

Word rulerDescriptor;

Long rulerRef, teH;

Chapter 49 TextEdit Tool Set 49-79

rulerDescriptor The typeofreference stored in rulerRef.

refIsPointer $0000 rulerRefcontains a pointer to a buffer to receive the
TERuler structure

refIsHandle $0001 rulerRefcontains a handle to a buffer to receive the

TERuler Structure

refIsResource $0002 rulerRefcontains a resource ID that can be used to
access a buffer to receive the TERulerstructure
(resource type of rTERuler, $8025)

refIsNewHandle $0003 rulerRef contains a pointer to a 4-byte buffer to
receive a handle to the TERuler structure;

TEGetRulerallocates the new handle and returnsit
in the specified buffer

teH The TextEdit record for the operation. If your program specifies a

NIL value, TextEdit works with the target TextEdit record. If there is

no target record, TextEdit does nothing and returns immediately to
your program.

49-80 Apple IIcs Toolbox Reference, Volume 3

TEGetSelection $1C22

Returns information defining the current selection for a TextEdit record. Your program
specifies the TERecordfor the record in question. TEGetSelection then determines
the starting and ending byte offsets for the current selection and returnsthose valuesinto
locations specified by your program.

Both offset values are stored as 4-byte long values. If there is no currentselection for the
specified record, both the starting and ending offsets contain the current caret position.

Parameters

Stack before call

Previous contents

selectionStart - Long—Pointer to buffer to receive starting offset value

selectionEnd - Long—Pointer to buffer to receive ending offset value

teH - Long—Handle of TERecord in memory; NIL for active record

Stack after call

Previous contents

Errors

teH

<—SP

<—SP

$2202 teNotStarted TextEdit has not been started.
$2203 teInvalidHandle The teH parameter does notrefer

to a valid TERecord.

extern pascal void TEGetSelection(selectionStart,

selectionEnd, teH);

Pointer selectionStart, selectionEnd;

Long teH;

The TextEdit record for the operation. If your program specifies a
NIL value, TextEdit works with the target TextEdit record. If there is

no target record, then TextEdit does nothing and returns immediately
to your program.

Chapter 49 TextEdit Tool Set 49-81

TEGetSelectionStyle $1E22

Returns all style information for the text in the current selection in a TextEdit record. Your
program specifies the TERecordfor the record in question and the addresses of buffers
to receive the style data. TEGet SelectionStylethen loads the main output buffer
with TEStyle structures describingall styles affecting text in the current selection. The

first word in the buffer contains a counter indicating the number of TESt yle structures

returned.

TEGet Select ionStylealso builds a commonstyle record containingall style elements
that are commontoall text in the selection. A flag word directs your program to the
relevant portions of the commonstyle record, which is also in TEStyle format.

If there is no currentselection, TEGet Select ionStylereturnsthenull style record,
which defines the style in which any text inserted at the current caret position will appear.

Parameters

Stack before call

Previous contents

Space Word—Spacefor result

— commonStylePtr — Long—Pointer to TESty1ebuffer for commonstyle record

- StyleHandle - Long—Handle to buffer for style information

- teH - Long—Handle of TERecordin memory;NIL for active record

<—SP
Stack after call

Previous contents

commonFlag Word—Bit flag describing commonstyle record contents

" <—SP

Errors $2202 teNotStarted TextEdit has not been started.
$2203 teInvalidHandle The teH parameterdoes notrefer

to a valid TERecord.

49-82 Apple IIGs Toolbox Reference, Volume 3

commonsStylePtr

styleHandle

extern pascal Word

TEGetSelectionStyle (commonStylePtr,

styleHandle, teH);

Pointer commonStylePtr;

Long styleHandle, teH;

Pointer to a buffer to receive a formatted TEStyle structure

containing the style elements that are commontoall text in the current

selection. The commonFlag parameter indicates which portions of

this TEStylestructure contain valid data.

Handle to a buffer to receive the style information for the current

selection. TEGet SelectionStyle retums as many TEStyle

structures as are required to specify all the styles in the selection.If

the buffer referenced by styleHandle cannot accommodate enough

TEStylestructures, TEGet Select ionStyle automatically resizes

the handle memory.

Onreturn from TEGet Select ionStyle,the buffer referenced by

styleHandle is formatted as follows:

$00

count _| Word

 $02

count

style

leH

style : Array of TESty1estructures
j

The number of TESty1estructures in the styles array.

Array of count TESty1lestructures.

The TextEdit record for the operation. If your program specifies a
NIL value, TextEdit works with the target TextEdit record. If there is

no target record, then TextEdit does nothing and returns immediately

to your program.

Chapter 49 TextEdit Tool Set 49-83

commonFlag Flag indicating which portions of the commonstyle record pointed to

by commonsStylePtrare relevant.

Reserved bits 15-6 Will be set to 0.
fUseFont bit 5 Indicates whether the font family defined by the

font ID field of the commonstylerecordis valid.
0 = Font family not valid
1 = Font family valid

fUseSize bit 4 Indicates whether the font size defined by the

font ID field of the commonstyle recordis valid.

0 = Font size notvalid

1 = Fontsize valid
fUseForeColor bit 3 Indicates whether the foreColorfield of the

commonstyle record is valid.

0 = Foregroundcolornotvalid

1 = Foregroundcolorvalid
fUseBackColor bit 2 Indicates whether the backColorfield of the

commonstyle record is valid.
0 = Backgroundcolor not valid

1 = Background colorvalid

fUseUserData bit 1 Indicates whether the userData field of the

commonstyle recordis valid.

0 = User data notvalid
1 = Userdata valid

fUseAttributes bit 0 Indicates whetherthe attributes defined by the

font ID field of the commonstyle record arevalid.
0 = Fontattributes not valid

1 = Fontattributes valid

49-84 Apple IIcs Toolbox Reference, Volume 3

TEGetText $0C22

Returns the text from a TextEdit record, including the style information associated with

that text. Your program specifies the TERecordfor the record in question, the format of
the returned text, and buffers to receive the text and style data. TEGetText places the

text in the return buffer in the format requested by your program;style information is

retumed in a TEFormatstructure.

In addition, TEGetText retums a value indicating the total length of the text in the
TextEdit record. This value represents the numberof bytesof text in the record, not the
numberof bytes loadedinto the return buffer. If the return buffer is too small to receive
all the record text, TEGetText retums a teBufferOverflowerror. This erroris also

returned if the text is too large to be returned in the specified format (for example, the

record contains 300 text characters and your program requested an outputPascalstring).

Parameters

Stack before call

Previous contents

- Space - Long—Spaceforresult

bufferDescriptor Word—Formatoftext returned at bufferRef

- bufferRef - Long—Reference to the output text buffer

- bufferlength - Long—Lengthofthe buffer referred to by bufferRef

styleDescriptor Word—Type ofreference stored in styleRef

- StyleRef - Long—Reference to buffer for TEFormatstructure defining style

- teH - Long—Handle of TERecord in memory;NIL for active record

<—SP

Stack after call

Previous contents

- textLength - Long—Totallength of all text in record

<—SP

Chapter 49 TextEdit Tool Set 49-85

Errors $2202 teNotStarted TextEdit has not been started.
$2203 teInvalidHandle The teH parameter does notrefer

to a valid TERecord.

$2204 teInvalidDescriptor Invalid descriptor value
specified.

$2208 teBufferOverflow The output buffer was too small
to accept all data.

Memory Managererrors Returned unchanged.
Resource Managererrors Returned unchanged.

C extern pascal Long TEGetText (bufferDescriptor,

Long

Word

bufferRef, bufferLength, styleDescriptor,

styleRef, teH);

bufferRef, bufferLength, styleRef,

teH;

bufferDescriptor, styleDescriptor;

bufferDescriptor Defines the format in which TEGetText should return the record text
and the type of reference stored in bufferRef.

Reserved bits 15-5 Must besetto 0.

refFormat bits 4-3 Defines the type of reference stored in bufferRef.
00 = bufferRef is a pointer to the output buffer;
bufferLength contains the length of the buffer (in
bytes)

01 = bufferRef is a handle to the output buffer;
bufferLength is ignored

10 = bufferRefis a resource ID for the output buffer
(TextEdit will create the resourceif it does not
already exist); bufferLength is ignored

11 = bufferRefis a pointer to a 4-byte buffer to

receive a handleto the output text; TEGetText

allocates the handle; bufferLength is ignored

49-86 Apple IIGs Toolbox Reference, Volume 3

dataFormat

bufferLength

styleDescriptor

refIsPointer

refIsHandle

refIsResource

bits 2-0 Defines the format of the outputtext.
000 = Pascalstring (resource type of rPSt ring,

$8006)
001 = C string (resource type of rcst ring, $801D)
010 = Class 1 GS/OSinputstring (resource type of
rCliInput String, $8005)

011 = Class 1 GS/OS outputstring (resource type of
rClOutputString, $8023); application need not

set the buffer size field
100 = Formatted for input to LineEdit LETextBox2
toolcall (resource type of rTfextForLETextBox2,
$800B)—see Chapter 10, “LineEdit ToolSet,” in

Volume1 of the Toolbox Reference fordetails

101 = Unformatted text block (resource type
of rText, $8016)

110 = Invalid value

111 = Invalid value

The length of the output buffer referenced by bu/ferRef, if
refFormat indicates that bufferRefcontains a pointer. For other
types of references,this field is ignored.

The type of reference stored in styleRef.

$0000 styleRefcontains a pointer to a buffer to receive the
TEFormatStructure

$0001 styleRefcontains a handle to a buffer to receive the
TEFormat structure

$0002 styleRefcontains a resource ID that can be usedto
access a buffer to receive the TEFormat structure
(resource type of rSt yleBlock,$8012)

refIsNewHandle $0003 styleRefcontains a pointer to a 4-byte buffer to

styleRef

leH

receive a handle to the TEFormatstructure;
TEGetText allocates the new handle andreturnsit in

the specified buffer

Reference to buffer to receive style information, in TEFormat

structure form.If this field is set to NIL, TEGet Text returns nostyle
information and ignores styleDescriptor.

The TextEdit record for the operation. If your program specifies a
NIL value, TextEdit works with the target TextEdit record. If there is
no target record, then TextEdit does nothing and returns immediately

to your program.

Chapter 49 TextEdit Tool Set 49-87

textLength The numberof bytes oftext in the record. Note that this value may

exceed the numberof bytes returned at bufferRef, if the referenced
buffer is too small to receive all the text. In this case, TEGetText also
retums a teBufferOverflow error code.

49-88 Apple IGS Toolbox Reference, Volume3

TEGetTextInfo $0D22

Returms an information record, of variable size, describing a TextEdit record. Your

program specifies the TERecordfor the TextEdit record in question, the address ofa
buffer to receive the information record, and a value indicating how much data

TEGetText Infoshould return. The system returns the appropriate data at the specified

location.

Parameters

Stack before call

Previous contents

infoRecPtr —

parameterCount

leH -

Stack after call

| Previous contents

Errors

$2202

$2203

$2206

Long—Pointer to buffer for information record

Word—Numberoffields to return

Long—Handle of TERecord in memory; NIL for active record

<—SP

<—SP

teNotStarted

teInvalidHandle

teInvalidPCount

TextEdit has not been started.
The teH parameter does notrefer
to a valid TERecord.
Invalid parameter count value
specified.

extern pascal void TEGetTextInfo(infoRecPtr,

Pointer

Long

Word

parameterCount,

infoRecPtr;

teH;

parameterCount;

teH) ;

Chapter 49 TextEdit Tool Set 49-89

infoRecPtr Pointer to a buffer to receive a partial or complete information
record, depending on the value of parameterCount. The information
record is formatted as follows (future versions of TextEdit may add

fields to the end ofthis record):

$00

Co charCount = Long

S04 - =
lineCount = Long

= —

$08 | 4
— formatMemory = Long

SOC — —_

— totalMemory — Long

$10 _
— styleCount = Long

— rulerCount = Long

charCount The numberoftext characters in the record.

lineCount The numberoflines in the record. A line is defined asall the text
displayed on a single line of the screen, based on the current
display options.

formatMemory The amountof memory (in bytes) requiredto store the style
information for the record.

totalMemory The amount of memory (in bytes) required for the record,

including both text and style data.

styleCount The numberof unique styles defined for the record.

rulerCount The numberof rulers defined for the record.

parameterCount The numberof information recordfields to be returned by

TEGetText Info.Valid valueslie in the range from 1 to 6. Values
outside this range yield a teInvalidPCount error code. The
retumed data always begins with the charCountfield and continues
until the specified numberoffields have been formatted.

49-90 AppleIIGs Toolbox Reference, Volume 3

teH The TextEdit record for the operation. If your program specifies a
NIL value, TextEdit works with the target TextEdit record. If there is

no target record, TextEdit does nothing and returns immediately to
your program.

Chapter 49 TextEdit Tool Set 49-91

TEIdle SQE22

Provides processor time so that TextEdit can cause the cursor to blink and can perform
other background tasks. Your program specifies the TERecordfor the record. TextEdit

then determines whether enoughtime has elapsed to require a cursor blink and,if so,
causes the cursorto blink. In addition, TextEdit performs any necessary background

processing for the record.

Your application needissue this call only if it is managing its own TextEdit records. If your
program uses TextEdit controls, it should not issue this call; TaskMaster manages the
control automatically.

Your program should call TEId1e often—usually every time through the main eventloop,
and periodically during time-consuming operations. If your program does notcall TEIdle
often enough,the cursor will blink irregularly. TextEdit ensures that the cursor blink rate

does not exceed that specified by the user’s Control Panelsetting.

Parameters

Stack before call

Previous contents

- teH - Long—Handle of TERecordin memory

<—SP

Stack after call

Previous contents

<—S§P

Errors $2202 teNotStarted TextEdit has not beenstarted.

$2203 teInvalidHandle The teH parameter doesnot refer
to a valid TERecord.

C extern pascal void TEIdle(teH);

Long teH;

teH The TextEdit record for the operation.

49-92 Apple IIGs Toolbox Reference, Volume 3

TEInsert $1A22

Inserts a block of text before the current selection in a TextEdit record and redrawsthe
text screen. Your program specifies the text and style data to be inserted and the

TERecordfor the record. TEInsert theninserts the text andstyle data at the current

selection.

This call does not affect the Clipboard.

Parameters

Stack before call

Previous contents

textDescriptor Word—The format for text stored at textRef

- textRef — Long—Reference to the input text buffer

- textlength - Long—Length of the buffer referred to by textRef

styleDescriptor Word—tThetype of reference stored in styleRef

- styleRef - Long—Reference to TEFormat structure defining style for text

- teH - Long—Handle of TERecord in memory;NILfor active record

<—SP

Stack after call

| Previous contents |

<—SP

Errors $2202 teNotStarted TextEdit has not beenstarted.
$2203 teInvalidHandle

$220C teInvalidTextBox2

Memory Managererrors

The teH parameter does notrefer

to a valid TERecord.

The LETextBox2 format codes
were inconsistent.

Returned unchanged.

Chapter 49 TextEdit Tool Set 49-93

textDescriptor

Reserved

refFormat

dataFormat

textLength

extern pascal void TEInsert (textDescriptor, textRef,

Long

Word

textLength, styleDescriptor, styleRef,

teH) ;

textRef, textLength, styleRef, teH;

textDescriptor, styleDescriptor;

The format of the text to be inserted, and the type of reference
stored in textRef

bits 15-5

bits 4-3

bits 2-0

Mustbesetto 0.

Definesthe type of reference stored in textRef.
00 = textRef is a pointer to the text buffer; textLength
contains the length of the buffer (in bytes)
01 = textRef is a handle to the text buffer, textLength is

ignored
10 = textRef is a resource ID forthe text buffer,
textLength is ignored
11 = Invalid value

Defines the format of the text.
000 = Pascal string (resource type of rPSt ring,
$8006)
001 = string (resource type of rcst ring, $801D)
010 = Class 1 GS/OSinputstring (resource type of
rCliInput String, $8005)

011 = Class 1 GS/OS outputstring (resource type of
rCloOutput String, $8023)

100 = Text formatted for input to LineEdit
LETextBox2tool call (resource type of
rTextForLETextBox2, $800B)—see Chapter 10,
“LineEdit Tool Set,” in Volume 1 of the Toolbox
Reference for details; style data in the text overrides
that specified by styleRef

101 = Unformatted text block (resource type of
rText, $8016)

110 = Invalid value
111 = Invalid value

Length of the buffer referenced by textRef. This field is valid only for
reference types that do not contain length data (see textDescriptor).
For other types of references,this field is ignored.

49-94 Apple IIGs Toolbox Reference, Volume 3

styleDescriptor Thetypeofreference storedin styleRef.

refIsPointer $0000 styleRefcontains a pointer to a TEFormatStructure
refIsHandle $0001 styleRefcontains a handle to a TEFormatstructure
refIsResource $0002 styleRefcontains a resource ID that can be used to

access a buffer containing the TEFormat structure
(resource type of rStyleBlock, $8012)

styleRef Reference to buffer containing style information, in TEFormat
structure form.If this field is set to NIL, TEInsert uses the style of

the first character in the current selection and ignores styleDescriptor.

teH The TextEdit record for the operation. If your program specifies a
NIL value, TextEdit works with the target TextEdit record. If there is

no target record, TextEdit does nothing and returns immediately to
your program.

Chapter 49 TextEdit Tool Set 49-95

TEKey $1422

Processes a keystroke for a TextEdit record. Your program specifies the TERecordfor

the record and the event record for the keystroke; TEKey then processes the key. If the
keystroke is a control key (one that requires special processing, as outlined in “Standard

TextEdit Key Sequences” earlier in this chapter), TEKey performs the appropriate
TextEdit action. If the keystroke is not a control key, TEKey inserts the corresponding
characterinto the text of the target TextEdit record at the currentselection.

Your application need issue this call only if it is managing its own TextEdit records. If your
program uses TextEdit controls, it should not issue this call; TaskMaster manages the
control automatically.

Your program should issuethis call in response to KeyDown or AutoKeyevents.

Parameters

Stack before call

Previous contents

— eventRecordPtr - Long—Pointer to event record for the key

- teH - Long—Handle of TERecordin memory

<—SP
Stack after call

| Previous contents |

| <—SP

Errors $2202 teNotStarted TextEdit has not been started.
$2203 teInvalidHandle The teH parameter does notrefer

to a valid TERecord.

Memory Managererrors Returned unchanged.

C extern pascal void TEKey(eventRecordPtr, teH);

Pointer eventRecordPtr;

Long teH;

49-96 Apple IIGs Toolbox Reference, Volume 3

eventRecordPtr Pointer to the event record describing the keystroke. For information

on the format and content of event records, see Chapter 7, “Event

Manager,” in Volume 1 of the Toolbox Reference. Note that TextEdit
uses only the message and modifiers fields in the event record.

teH The TextEdit record for the operation.

Chapter 49 TextEdit Tool Set 49-97

TEKil1l $0A22

Deallocates a TERecordandall associated memory. Your program specifies the
TERecordto be freed. TEKi11 then releases the record and any memory supportingit.
TEKil1 does not erase or invalidate the screen, nor does it make another record the

target if the target record is killed. Your program must take care of these duties.

Your program shouldissue this call only whenit is completely through with the TERecord
and its TextEdit record—all text associated with the record is lost after this call.

If your program uses TextEdit controls it may issue the KillControls or
DisposeControl Control Managertool calls instead of TEKi11.

Parameters

Stack before call

Previous contents

- teH - Long—Handle of TERecord in memory

<—SP
Stack after call

Previous contents

 <—SP

Errors $2202 teNotStarted TextEdit has not been started.

$2203 teInvalidHandle teH does notrefer to a valid

TERecord.

C extern pascal void TEKill (teH);

Long teH;

teH The TextEdit record for the operation.

49-98 Apple Ics Toolbox Reference, Volume 3

TENew $0922

Allocates a new TextEdit record in the current port and retums the TERecorddefining

that record. Your program specifies the parametersfor that record ina TEParamBlock
structure (see “TextEdit Data Structures” earlier in this chapter for information on the
format and content of the TEParamBlock). TextEdit then allocates and formats the
TERecordforthe record.

The boundary rectangle specified in the TEParamBlock mustbe large enoughto
completely enclose a single character in the largest allowable font for the record.

Your program shouldissue this call only if it is not using TextEdit controls. To create a
TextEdit control, use the NewCont rol2 Control Managertoolcall (see Chapter28,
“Control Manager Update,” in this book). Note that NewCont ro12 maybe used to create
several controls at once.

Parameters

Stack before call

Previous contents

- Space - Long—Spaceforresult

~ parameterBlock - Long—Pointer to formatted TEParamBlock

<—SP
Stack after call

Previous contents

- teH - Long—Handle to new TERecord

<—SP

Errors $2202 teNotStarted TextEdit has not been started.
$2204 teInvalidDescriptor Invalid descriptor value

specified.
$2205 teInvalidFlag Specified flag wordis invalid.
$2206 teInvalidPCount Invalid parameter count value

specified.
Memory Managererrors Returned unchanged.

Chapter 49 TextEdit Tool Set 49-99

C extern pascal Long TENew (parameterBlock);

Pointer parameterBlock;

49-100 Apple IIGs Toolbox Reference, Volume 3

TEOffsetToPoint $2022

Converts a text byte offset into a pixel position expressed in the local coordinates of the
GrafPort containing the TextEdit record. Your program specifies the byte offset to the
character in question, the addresses of buffers to receive the pixel position information,

and the TERecordfor the record. TEOffsetToPoint then determines the pixel
position of the character.

The returned pixel position is expressed as two signed long integers. If the specified
offset is beyond the end ofthe text for the record, TEOffsetToPoint retums the
position of the last character. Note thatif the specified character lies above the display
rectangle, the vertical position componentwill be a negative value. The pixel position is
not expressed as a QuickDraw II point, because the TextEdit drawing spaceis larger than

the QuickDraw II drawing space.

The TEPointToOffset call performs the inverse operation, converting a pixel position
into a text offset.

Parameters

Stack before call

Previous contents

~ textOffset - Long—Byte offset to text

- vertPosPtr - Long—Pointer to 4-byte buffer to receive vertical position

- horzPosPtr - Long—Pointer to 4-byte buffer to receive horizontal position

- teH - Long—Handle of TERecord in memory;NIL for active record

<—SP

Stack after call

| Previous contents |

| <—SP

Errors $2202 teNotStarted TextEdit has not been started.
$2203 teInvalidHandle The teH parameter does notrefer

toa valid TERecord.

Chapter 49 TextEdit Tool Set 49-101

teH

extern pascal void TEOffsetToPoint (textOffset,

vertPosPtr, horzPosPtr, teH);

Long textOffset, teH;

Pointer vertPosPtr, horzPosPtr;

The TextEdit record for the operation. If your program specifies a
NIL value, TextEdit works with the target TextEdit record. If there is
no target record, TextEdit does nothing and returns immediately to
your program.

49-102 Apple IIGs Toolbox Reference, Volume 3

TEPaintText $1322

Prints the text from a TextEdit record. Your program specifies the destination rectangle
and GrafPort, print control information, and the TextEdit record from which

TEPaintTextis to print. TextEdit then draws the appropriate record text into the

specified rectangle and GrafPort. TEPaintText begins printing at a line number you

specify and continues until the destination rectangle has beenfilled. The routine then

returns the next line numberto be printed so that your program canissue the nextcall
correctly.

Your program issues this tool call within a Print Manager job, which youstart bycalling

PrOpenDoc.The Print Manager returns the GrafPort pointer when youinitiate the job.
Refer to Chapter 15, “Print Manager,” in Volume1 of the Toolbox Reference for complete
information onstarting, managing, and ending a print job.

Note that this call is not limited to printing; your application can usethis toolcall to paint
into any GrafPort.

Parameters

Stack before call

Previous contents

- Space - Long—Spaceforresult

- grafPort - Long—Pointer to destination GrafPort

- Startingline - Long—Starting line numberfor print operation (0 relative)

- rectPtr - Long—Pointer to the destination rectangle in GrafPort

flags Word—Control flags for the print operation

- teH - Long—Handle of TERecord in memory;NIL foractive record

<—SP

Stack after call

Previous contents

- nextLine - Long—Nextline numberto print ($FFFFFFFat endoffile)

<—SP

Chapter 49 TextEdit Tool Set 49-103

Errors

grafPort

startingLine

rectPtr

$2202 teNotStarted TextEdit has not been started.

$2203 teInvalidHandle The teH parameterdoes notrefer
to a valid TERecord.

$2209 teInvalidLine Starting line value is greater than
the numberoflines in the text
(end-of-file).

extern pascal Long TEPaintText (grafPort,

startingLine, rectPtr, flags, teH);

Pointer grafPort, rectPtr;

Long startingLine, teH;

Word flags;

Pointer to a QuickDraw II GrafPort definition that describes the
destination for the print operation. For more information on the
format, content, and use of the GrafPort structure, see Chapter16,

“QuickDrawII,” in Volume 2 of the Toolbox Reference.

Thefirst line to be printed. A line is defined as the text that is
displayed on a single line of the screen, based on the current display
options. TextEdit numberslines starting from 0.

Pointer to a structure defining the destination rectangle for the print

operation. This rectangle essentially defines the output page size and
must lie in the output GrafPort specified by grafPort. Each print
operation initiated by TEPaintText ends whenthe rectangle

described by the structure pointed to by rectPtris filled. Refer to the
description of the PrOpenPagetool call in Chapter 15, “Print

Manager,” in Volume 1 of the Toolbox Reference for more information
on this frame rectangle.

49-104 Apple lcs Toolbox Reference, Volume 3

flags Flags controlling the print operation.

fPartialLines bit 15 Reserved; must be setto 0.

fDontDraw bit 14 Controls printing.
0 = Print data

1 = Calculate the numberoflines that will fit in
rectPtr, but do not print—nextLinestill contains next
line to print just as if text had been printed (supports

page skip)
Reserved bits 13-0 Must besetto 0.

teH The TextEdit record for the operation. If your program specifies a

NIL value, TextEdit works with the target TextEdit record. If there is

no target record, TextEdit does nothing and returns immediately to

your program.

Chapter 49 TextEdit Tool Set 49-105

TEPaste $1822

Replaces the current selection with the contents of the Clipboard, including both text and
style information. Your program specifies the TERecordfor the TextEdit record in which
the operation is to take place. TEPastethen pastes the data from the Clipboard into the

record text. If the Clipboard is empty, the current selection is untouched.

Your application need issuethis call only if it is managing its own TextEdit records. If your

program uses TextEdit controls, it should notissue this call; TaskMaster manages the
control automatically.

Parameters

Stack before call

Previous contents

- teH - Long—Handle of TERecord in memory;NILfor active record

<—SP
Stack after call

| Previous contents |

—

Errors $2202 teNotStarted TextEdit has not beenstarted.

$2203 teInvalidHandle The teH parameter does notrefer

to a valid TERecord.

Memory Managererrors Returned unchanged.

C extern pascal void TEPaste (teH);

Long teH;

teH The TextEdit record for the operation. If your program specifies a
NIL value, TextEdit works with the target TextEdit record. If there is

no target record, TextEdit does nothing and returns immediately to
your program.

49-106 Apple Ilcs Toolbox Reference, Volume 3

TEPointToOffset $2122

Converts a pixel position, expressed in the local coordinates of the GrafPort containing
the TextEdit record, into a text byte offset to the text for the record. Your program
specifies the pixel position in terms ofits relative horizontal and vertical location in the
GrafPort, but not as a QuickDraw II point. rEPointToOffset then generates the
appropriate text offset within the record.

The vertical and horizontal components ofthe pixel position are represented as signed
long integers. If the specified position lies before the first text character in the record,
then the returned offset will be $00000000. If the position is after the last text character,
the call returns the offset of the last character in the record. If your program specifies a
horizontal position beyondthe last character in a line, TEPointToOffset returnsthe
offset of the last characterin theline.

The TEOffsetToPointcall performs the inverse operation, converting a text offset
into a pixel position.

Parameters

Stack before call

Previous contents

- Space - Long—Spacefor result

- vertPos - Long—Vertical position component

- horzPos - Long—Horizontal position component

- teH - Long—Handle of TERecord in memory;NIL foractive record

<—SP

Stack after call

Previous contents

- textOffset — Long—Byte offset to text corresponding to pixel position

<—SP

Errors $2202 teNotStarted TextEdit has not been started.
$2203 teInvalidHandle The teH parameter doesnotrefer

to a valid TERecord.

Chapter 49 TextEdit Tool Set 49-107

C extern pascal Long TEPointToOffset (vertPos, horzPos,

teH);

Long vertPos, horzPos, teH;

teH The TextEdit record for the operation. If your program specifies a
NIL value, TextEdit works with the target TextEdit record. If there is

no target record, TextEdit does nothing and returns immediately to

your program.

49-108 Apple IlGs Toolbox Reference, Volume 3

TEReplace $1B22

Replaces the current selection in a TextEdit record with a specified block of text and
redraws the text screen. Your program specifies the text andstyle data to be replaced and
the TERecordfor the record. TEReplacethenreplacesthe current selection with the
new text and style data.

This call does not affect the Clipboard.

Parameters

Stack before call

Previous contents

textDescriptor Word—Formatoftext stored at textRef

- textRef — Long—Reference to the input text buffer

- textLength - Long—Length of the buffer referred to by textRef

styleDescriptor Word—Type of reference stored in styleRef

- styleRef - Long—Reference to TEFormatstructure defining style for text

- teH - Long—Handle of TERecord in memory; NIL for active record

<—SP

Stack after call

| Previous contents |

—
Errors $2202 teNotStarted TextEdit has not been started.

$2203 teInvalidHandle

$220C teInvalidTextBox2

Memory Managererrors

The teH parameter does notrefer

to a valid TERecord.
The LETextBox2 format codes
were inconsistent.

Returned unchanged.

Chapter 49 TextEdit Tool Set 49-109

textDescriptor

Reserved

refFormat

dataFormat

textLength

extern pascal void TEReplace (textDescriptor,

Long

Word

textRef, textLength, styleDescriptor,

styleRef, teH);

textRef, textLength, styleRef, teH;

textDescriptor, styleDescriptor;

The format of the text to be inserted and the type ofreference stored
in textRef.

bits 15-5

bits 4-3

bits 2-0

Mustbesetto 0.

Defines the type of reference stored in textRef.
00 = textRef is a pointer to the text buffer; textLength
contains the length of the buffer (in bytes)
01 = textRefis a handleto the text buffer; textLength is
ignored

10 = textRef is a resource ID for the text buffer;

textLength is ignored
11 = Invalid value

Defines the format of the text.
000 = Pascalstring (resource type of rPSt ring,
$8006)
001 = C string (resource type of rcSt ring, $801D)
010 = Class 1 GS/OSinputstring (resource type of
rClinput String, $8005)

011 = Class 1 GS/OS outputstring (resource type of
rClOutput String, $8023)

100 = Text formatted for input to LineEdit
LETextBox2 toolcall (resource type of
rTextForLETextBox2, $800B)—see Chapter 10,
“LineEdit Tool Set,” in Volume 1 of the Toolbox

Reference for details; style data in the text overrides
that specified by styleRef

101 = Unformatted text block (resource type of
rText, $8016)

110 = Invalid value
111 = Invalid value

The length ofthe buffer referenced by textRef. This field is valid only
for reference types that do not contain length data (see

textDescriptor). For other types of references,this field is ignored.

49-110 Apple IIGs Toolbox Reference, Volume3

styleDescriptor

refIsPointer

refIsHandle

refIsResource

styleRef

teH

The type of reference stored in styleRef.

$0000 styleRefcontains a pointer to a TEFormat structure

$0001 styleRefcontains a handle to a TEFormatstructure
$0002 styleRefcontains a resource ID that can be used to

access a buffer containing the TEFormatstructure

(resource type of rStyleBlock, $8012)

Reference to buffer containing style information, in TEFormat

structure form.If this field is set to NIL, TEReplaceusesthefirst

defined style in the current selection for the record and ignores
styleDescriptor.

The TextEdit record for the operation. If your program specifies a
NIL value, TextEdit works with the target TextEdit record.If there is

no target record, TextEdit does nothing and returns immediately to
your program.

Chapter 49 TextEdit Tool Set 49-111

TEScroll $2522

Causes the text in a TextEdit record to scroll. Your program specifies control information

for the scroll operation and the TERecordforthe record. TEScro11 then updates the
current position for the record accordingly.

Parameters

Stack before call

Previous contents

scrollDescriptor Word—Control information for the scroll operation

- vertAmount - Long—Vertical amountto scroll (this is a signed value)

— horzAmount - Long—Horizontal amounttoscroll (must be set to 0)

- teH - Long—Handle of TERecordin memory; NILfor active record

<—SP

Stack after call

| Previous contents |

| | <—SP

Errors "$2202 teNotStarted TextEdit has not beenstarted.
$2203 teInvalidHandle The teH parameter does notrefer

to a valid TERecord.

C extern pascal void TEScroll(scrollDescriptor,

vertAmount, horzAmount, teH);

Word scrollDescriptor;

Long vertAmount, horzAmount, teH;

49-112 Apple Ics Toolbox Reference, Volume 3

scrollDescriptor The nature ofthe scroll operation, and the use of and units for
vertAmount and horzAmount.

$0000 Scroll to absolute text position, place at top of window. The
vertAmount parameter contains the byte offset value for the
text character to place at the top of the TextEdit display
window.The horzAmount parameteris ignored.

$0001 Scroll to absolute text position, center in window. The
vertAmountparametercontains the byte offset value for the
text character to place in the center of the TextEdit display
window. The horzAmountparameteris ignored.

$0002 Scroll to line, place at top of window. The vertAmount parameter

contains a line numberspecifying which text line to place at the
top of the TextEdit display window. The horzAmount
parameteris ignored.

$0003 Scroll to line, center in window. The vertAmount parameter
contains a line numberspecifying which text line to center in the
TextEdit display window. The horzAmountparameteris
ignored.

$0004 Scroll to absolute unit position, place at top of window. The
vertAmount parametercontains a value defining how far the top
of the TextEdit window shouldscroll, in units defined by the

value of the vertScrollAmountfield of the TERecordfor the
record. The horzAmount parameter mustbesetto 0.

$0005 Scroll to relative unit position, place at top of window. The
vertAmountparameter contains a value to add to contents of

the vertScrollPosfield of the TERecordforthe record, in units

defined by the value of the vertScrollAmountfield of that

TERecord. The horzAmount parameter mustbesetto 0.

teH The TextEdit record for the operation. If your program specifies a

NIL value, TextEdit works with the target TextEdit record. If there is

no target record, TextEdit does nothing and returns immediately to
your program.

Chapter 49 TextEdit Tool Set 49-113

TESetRuler $2422

Sets the ruler for a TextEdit record. Your program specifies the new ruler definition in

TERuler format and the TERecordfor the record. TESetRulerthen sets the ruleras

specified and reformats all text in the record. For TextEdit controls, TESetRuler

invalidates the entire display rectangle (the screen will be redrawn on the next update
event). For TextEdit records that are not controls, TESetRuler redraws the screen.

Parameters

Stack before call

Previous contents

rulerDescriptor Word—Typeofreference in rulerRef

- rulerRef— - Long—Reference to buffer containing new TERuler structure

- teH - Long—Handle of TERecord in memory;NIL foractive record

<—SP
Stack after call

| Previous contents |

|<

Errors $2202 teNotStarted TextEdit has not beenstarted.
$2203 teInvalidHandle The teH parameter does notrefer

to a valid TERecord.

C extern pascal void TESetRuler(rulerDescriptor,

rulerRef, teH);

Word rulerDescriptor;

Long rulerRef, teH;

49-114 Apple IlGs Toolbox Reference, Volume3

rulerDescriptor The typeofreference stored in rulerRef.

refIsPointer $0000 rulerRefcontains a pointer to a buffer containing the

TERuler structure

refIsHandle $0001 rulerRefcontains a handle to a buffer containing the
TERuler Structure

refIsResource $0002 rulerRefcontains a resource ID that can be used to
access a buffer containing the TERuler structure

(resource type of rTERuler, $8025)

teH The TextEdit record for the operation. If your program specifies a
NIL value, TextEdit works with the target TextEdit record. If there is
no target record, TextEdit does nothing and returns immediately to

your program.

Chapter 49 TextEdit Tool Set 49-115

TESetSelection $1D22

Sets the current selection for a TextEdit record. Your program specifies the starting and
ending text byte offsets for the selection and the TERecordfor the record.
TESetSelection then updates the record accordingly.

If the ending offset value is less than the starting value, TESet Selection automatically

swaps them.If either offset is beyond the end ofthe text for the record,it is reset to the
offset for the last character.

Parameters

Stack before call

Previous contents

— selectionStart - Long—Starting offset value

— selectionEnd - Long—Endingoffset value

- teH ~ Long—Handle of TERecord in memory;NIL for active record

<—SP
Stack after call

Previous contents |

<—SP

Errors $2202 teNotStarted TextEdit has not been started.

$2203 teInvalidHandle The teH parameter does notrefer
to a valid TERecord.

C extern pascal void TESetSelection(selectionStart,

selectionEnd, teH);

Pointer selectionStart, selectionEnd;

Long teH;

teH The TextEdit record for the operation. If your program specifies a

NIL value, TextEdit works with the target TextEdit record.If there is
no target record, TextEdit does nothing and returns immediately to

your program.

49-116 Apple IIGs Toolbox Reference, Volume 3

TESetText $0B22

Replaces the text in a TextEdit record, including style information, with supplied text and
style data. Your program supplies the text and style information, along with the
TERecordfor the TextEdit record. TESetText then replaces any existing text and style

information in the record with the supplied data. For TextEdit controls, TESetText then
invalidates the entire display rectangle (the screen will be redrawn on the next update
event). For TextEdit records that are not controls, TESetText redraws the screen

immediately.

Supplied style information must be formatted in a TEFormatstructure.

Parameters

Stack before call

Previous contents

textDescriptor Word—Formatoftext stored at textRef

- textRef - Long—Reference to the input text

- textlength - Long—Length of the buffer referred to by textRef

styleDescriptor Word—Typeof reference stored in styleRef

~ StyleRef - Long—Reference to TEFormatstructure defining style

- teH - Long—Handle of TERecord in memory; NILfor active record

<—SP

Stack after call

| Previous contents |

| | <—SP

Errors $2202 teNotStarted TextEdit has not been started.
$2203 teInvalidHandle The teH parameter doesnotrefer

to a valid TERecord.
$2204 teInvalidDescriptor Invalid descriptor value specified.

Memory Managererrors Returned unchanged.

Chapter 49 TextEdit Tool Set 49-117

textDescriptor

Reserved

refFormat

dataFormat

textLength

extern pascal void TESetText (textDescriptor,

Long

Word

textRef, textLength, styleDescriptor,

styleRef, teH);

textRef, textLength, styleRef, teH;

textDescriptor, styleDescriptor;

The format of the new text for the record, and the type of reference
stored in textRef

bits 15-5

bits 4-3

bits 2-0

Mustbesetto 0.

Defines the type of reference stored in textRef
00 = textRef is a pointerto the text; textLength

contains the length of the buffer (in bytes)
01 = textRefis a handle to thetext; textLength is
ignored
10 = textRefis a resource ID forthe text; textLength is

ignored
11 = Invalid value
Defines the format of the text.
000 = Pascalstring (resource type of rPSt ring,

$8006)
001 = C string (resource type of rcSt ring, $801D)

010 = Class 1 GS/OSinputstring (resource type of

rClinput String, $8005)

011 = Class 1 GS/OS outputstring (resource type of
rC1lOutput St ring, $8023)

100 = Text formatted for input to LineEdit
LETextBox2toolcall (resource type of

rTextForLETextBox2, $800B)—see Chapter10,

“LineEdit Tool Set,” in Volume 1 of the Toolbox

Reference for details; style data in the text overrides
that specified by styleRef
101 = Unformatted text block (resource type of
rText, $8016)

110 = Invalid value

111 = Invalid value

Length of the text referenced by textRef This field is valid only for
reference types that do not contain length data (see textDescriptor).
For other types of references, this field is ignored.

49-118 Apple IIGs Toolbox Reference, Volume 3

styleDescriptor The type ofreference stored in styleRef.

refIsPointer $0000 styleRefcontains a pointer to the TEFormat structure

refIsHandle $0001 styleRefcontains a handle to the TEFormat structure
refIsResource $0002 styleRefcontains a resource ID that can be used to

access the TEFormatstructure (resource type of
rStyleBlock, $8012)

styleRef Referenceto style information for the new text, in TEFormat
structure form.If this field is set to NIL, TESetText usesthefirst

style encountered in the existing text for the record.

teH The TextEdit record for the operation. If your program specifies a

NIL value, TextEdit works with the target TextEdit record. If there is

no target record, TextEdit does nothing and returns immediately to
your program.

Chapter 49 TextEdit Tool Set 49-119

TEStyleChange $1F22

Changesthestyle information for the currentselection in a TextEdit record. Your program
specifies the style information and the TERecordfor the record. TESt yleChangethen

applies that new informationtoall the styles in the current selection. If there is no current
selection, then the new style applies to the null style record, which definesstyle

information for newly inserted text.

Parameters

Stack before call

Previous contents

flags Word—Controlflag for applying style data from TEStyle

- StylePtr - Long—Pointer to TEStylestructure

- teH - Long—Handle of TERecord in memory;NIL for active record

<—SP
Stack after call

Previous contents

 <—SP

Errors $2202 teNotStarted TextEdit has not been started.

$2203 teInvalidHandle The teH parameter doesnotrefer
to a valid TERecord.

$2205 teInvalidFlag Specified flag wordis invalid.

C extern pascal void TEStyleChange(flags, stylePtr,

teH);

Word flags;

Pointer stylePtr;

Long teH;

49-120 Apple IIGs Toolbox Reference, Volume 3

flags Flags indicating which portions of the TESt y1estructure pointed to
by stylePtr are relevant.

Reserved bits 15-7 Must beset to 0.

fReplaceFont bit 6

fReplaceSize bit 5

fReplaceForeColor

bit 4

fReplaceBackColor

bit 3

fReplaceUserData bit 2

fReplaceAttributes

bit 1

Controls use of font family defined by font ID field
of TESty1e structure.

0 = Do not change font family
1 = Replace the fontfamily forall styles in the current
selection

Controls use of font size defined by font ID field of
TEStylestructure.
0 = Do not changefont size
1 = Replace the fontsize forall styles in the current

selection

Controls use of foreColorfield of TEStyle

structure.
0 = Do not changethe foreground color

1 = Replace the foregroundcolorforall styles in the

current selection

Controls use of backColorfield of TEStyle

structure.

0 = Do not change the backgroundcolor
1 = Replace the backgroundcolorforall styles in the

current selection

Controls the use of the userDatafeld of the

TEStylestructure.

0 = Do not change userDatafield
1 = Replace the userData field forall styles in the
current selection with that in the supplied TEStyle

structure

Controls use of font attributes defined by the

font ID field of TESt yle structure.

0 = Do not changefontattributes
1 = Replace the font attributes forall styles in the
current selection

Chapter 49 TextEdit Tool Set 49-121

fSwitchAttributes

bit 0 Controls attribute switching.
0 = Perform no attribute switching
1 = If the entire selection contains the font attributes
specified by the TEStyle structure font ID field,

these attributes are removed from the selection;

otherwise, the specified attributes are added to

those already defined for the selection (note that the

attributes are considered together, not individually)

@ Note: The fReplaceaAttributes and fSwitchAttributesflags are mutually

exclusive. If both flags are set to 1, TEStyleChangereturns a teInvalidFlag

error code.

stylePtr Pointer to a formatted TESt y1le structure containing thestyle

elements that are to be applied to the current selection. The flags

parameterindicates which portions of this TEStyle structure

contain valid data.

teH The TextEdit record for the operation. If your program specifies a
NIL value, TextEdit works with the target TextEdit record. If there is
no target record, TextEdit does nothing and returns immediately to
your program.

49-122 Apple IIGs Toolbox Reference, Volume 3

TEUpdate $1222

Redrawsthe screen for a TextEdit record. Your program specifies the TERecordfor the
record. TEUpdatethen redrawsthetext for the record. Only that portion of the screen

that must be redrawnis affected.

Your program shouldissuethis call after the Window Manager BeginUpdatecall and

before an EndUpdate call. Issue this call separately for each TextEdit record in the
window.TextEdit returns very quickly if no redraw is required.

If your program uses TextEdit controls, use the ControlManager DrawCont rols toolcall
rather than TEUpdate.

Parameters

Stack before call

Previous contents

- teH - Long—Handle of TERecord in memory

<—SP
Stack after call

| Previous contents |

| | <—SP

Errors $2202 teNotStarted TextEdit has not been started.

$2203 teInvalidHandle The teH arameter does not refer

to a valid TERecord.

C extern pascal void TEUpdate (teH);

Long teH;

teH The TextEdit record for the operation.

Chapter 49 TextEdit Tool Set 49-123

TextEdit summary

Tables 49-1, 49-2, and 49-3 summarize the constants, data structures, and error codes
(respectively) used by TextEdit.

= Table 49-1 TextEdit constants

Name Value

Justification values

leftJust $0000

rightJust $FFFF

centerJust $0001

fullJust $0002

TERuler tabTypefield values

noTabs $0000

stdTabs $0001

absTabs $0002

TEParamBlock flags field values

fCtlinvis $0080

fRecordDirty $0040

49-124 Apple IIGs Toolbox Reference, Volume 3

Description

Left-justify all text
Right-justify all text

Centerall text
Fully justify all text (both left and right
margins)

No tabs defined—t abTypeis last

field in TERuler structure
Tabs every tabTerminator pixels—
tabTerminatoris lastfield in the

TERuler structure; theTabsis

omitted
Tabs at absolute locations specified

by theTabsarray

Controls visibility of the record

Indicates whether text or style data

have changedsince the last save

[continued]

= Table 49-1 TextEdit constants [continued]

Name Value

TEParamBlock moreFlagsfield values

fCtlTarget

fCtlcanBeTarget

fCtlwWantEvents

f£CtlProcRefNotPtr

fCtlTellAboutSize

£CtlisMultiPart

Color table reference

Style reference

TEParamBlock textFlags field values

fNotControl

f£SingleFormat

fSingleStyle

fNoWordwWrap

fNoScroll

fReadOnly

fSmartCutPaste

fTabSwitch

£FDrawBounds

fColorHilight

L£GrowRuler

fDisableSelection

fDrawInactiveSelection

$8000

$4000

$2000

$1000

$0800

$0400

$000C

$0003

$80000000

$40000000

$20000000

$10000000

$08000000

$04000000

$02000000

$01000000

$00800000

$00400000
$00200000

$00100000
$00080000

Description

Record is target of user keystrokes

Record can betarget of user

keystrokes—must be set to 1

Mustbeset to 1
Mustbeset to 1

Record should have a size box

Mustbeset to 1

Indicates type of reference
in colorRef

Indicates type of reference
in styleRef

TextEdit record is not a control

Only oneruleris allowed for record—

must be set to 1
Only onestyleis allowed for record
No word wrap is performed
The text cannotscroll
Text cannot be edited
Record supports intelligent cut and

paste
Tab key switches user to next TextEdit

record on the screen

TextEdit draws a box around text,

inside the boundary rectangle

Use color table for highlighting
Adjust right margin wheneverthe user
changes the windowsize
User cannotselect or edit text
TextEdit displays a box around an
inactive selection

Chapter 49 TextEdit Tool Set 49-125

a Table 49-2 TextEdit data structures

Name Offset/Value Type Description

TEColorTable

contentColor $0000 Word Color used for inside of boundary
rectangle

outlineColor $0002 Word Color used for outline drawn around
text

vertColorDescriptor

$0008 Word Type of reference in vertColorRef
vertColorRef $000A Long Reference to color table for vertical

scroll bar

horzColorDescriptor

$000E Word Type of reference in horzColorRef
horzColorRef $0010 Long Referenceto color table for horizontal

scroll bar

growColorDescriptor

$0014 Word Type of reference in growColorRef
growColorRef $0016 Long Reference to color table for size box

@ Note: All of the bits in each TEColorTab1ecolor word are significant. TextEdit
forms color patterns by replicating the appropriate color word the appropriate

numberof times to form a QuickDraw II pattern.

TEFormat (format structure)

version $0000

rulerListLength

$0002

theRulerList $0006
styleListLength

theStyleList

numberOfStyles

theStyles

49-126 Apple Ics Toolbox Reference, Volume 3

Word

Long

TERuler

Long

TEStyle

Long

StyleItem

Version numberof format structure—

value must be $0000

Size in bytes of theRulerListarray

Array of TERuler structures

Size in bytes of theStyleList array
Array of TESty1estructures

Numberof entries in theStyles array

Array of St yleItemstructures

(continued)

= Table 49-2 TextEdit data structures [continued]

Name Offset/Value Type Description

TEParamBlock (parameter block for creating TextEdit structures)

pCount

ID

boundsRect

procRef

flags

moreFlags

refCon

textFlags

indentRect

vertBar

vertAmount

horzBar

horzAmount

styleRef

textDescriptor

textRef

textLength

maxChars

maxLines

$0000

$0002

$0006

$000E
$0012
$0014
$0016
$001A
$001E

$0026
$002A

$002C
$0030
$0032

$0036

$0038

$003C

$0040

$0044

maxCharsPerLine

maxHeight

colorRef

drawMode

$0048

$004A
$004C

$0050
filterProcPtr $0052

Word

Long

Rect

Long

Word

Word

Long

Long

Rect

Handle

Word

Handle

Word

Long

Word

Long

Long

Long

Long

Word

Word

Long

Word

Pointer

Numberof parameters to follow—
values range from 7 through 23

Application-assigned ID for record

Boundary rectangle for entire TextEdit

record,including scroll bars and
outlines

Mustbeset to $85000000
Control flags
Morecontrol flags
Reserved for application use
TextEdit control flags
Numberofpixels to indent the text
from each edge of the boundary

rectangle

Handleto vertical scroll bar

Numberofpixels to scroll per click on
vertical scroll arrows
Reserved—must be set to NIL
Reserved—must be set to $0000
Referenceto initial style information

for record

Defines format of textRef
Referenceto initial text for record
Length of text referred to by text Ref
Maximum numberofcharacters

allowed in record
Must beset to NIL

Must be set to NIL

Must beset to NIL

Reference to the TEColorTabiefor

the record

QuickDraw II text mode
Pointer tofilter routine for the record

[continued]

Chapter 49 TextEdit Tool Set 49-127

a Table 49-2 TextEdit data structures [continued]

Name Offset/Value Type Description

TERecord (control structure for TextEdit records)

ctrlNext

inPort

boundsRect

ctriFlag

ctrlHilite

lastErrorCode

ctrlProc

ctrlAction

filterProc

ctrlRefCon

colorRef

textFlags

textLength

blockList

ctrlID

ctrlMoreFlags

ctrlVersion

viewRect

totalHeight

lineSuper

styleSuper

styleList

rulerList

lineAtEndFlag

$0000

$0004

$0008

$0010

$0011
$0012
$0014
$0018
$001C

$0020
$0024

$0028

$002C

$0030

$0038
$003C
$003E
$0040

$0048

$004C
$0058
$0064
$0068
$006C

selectionStart $006E

selectionEnd

49-128 Apple IIs Toolbox Reference, Volume 3

$0072

Handle

Pointer

Rect

Byte

Byte

Word

Long

Long

Pointer

Long

Long

Long

Long

TextList

Long
Word

Word

Rect

Long

SuperHandle

SuperHandle

Handle
Handle

Word

Long

Long

Handle to next control in controllist

Pointer to GrafPort for TextEdit
record
Boundary rectangle for record
Low-order byte from TEParamBlock

flagsfield

Reserved
Last error generated by TextEdit

Always set to $85000000
Reserved

Pointerto filter procedure for the
record
Reserved for application
Reference to TEColorTablefor
record
The textFlagsfield from the

TEParamBlock used to create the

record
Length in bytes of text in record
TextList structure describing text
for the record
Application-assigned ID for the record

TEParamBlock moreFlagsfield

Reserved

Boundary rectangle for text on screen

Total height of the text for the record,

in pixels
Root reference for text in record

Root reference for styles in record
Handle to list of unique styles
Handle tolist of rulers
Indicates whether last character was a

line break
Starting text offset for current
selection
Ending text offset for current selection

[continued]

= Table 49-2 TextEdit data structures [continued]

Name Offset/Value Type Description

selectionActive

$0076 Word Indicates whether selection is active
selectionState $0078 Word Indicates whetherselection is on

screen
caretTime $007A Long Tick count for insertion point blink

nullStyleActive

$007E Word Indicates whethernullstyle is to be used
nullstyle $0080 TEStyle Style definition for null style

topTextOffset $008C Long Offset into record text corresponding
to top of screen

topTextVPos $0090 Word Difference between top of text and
topmost scroll position

vertScrollBar $0092 Handle Handle ofvertical scroll bar
vertScrollPos $0096 Long Current vertical scroll position
vertScrollMax $009A Long Maximum allowablevertical scroll from

top of text

vertScrollAmount

$009E Word Numberofpixels to scroll on each
vertical arrow click

horzScrollBar $00A0 Handle Not supported
horzScrollPpos $00A4 Long Not supported
horzScrollMax $00A8 Long Not supported

horzScrollAmount

$00AC Word Not supported
growBoxHandle $00AE Handle Handle to the size box control
maximumChars $00B2 Long Maximum numberof characters

allowed in the text
maximumLines $00B6 Long Not supported

maxCharsPerLine

$OOBA Word Not supported

maximumHeight $00BC Word Not supported
textDrawMode $00BE Word QuickDraw II drawing mode for the text
wordBreakHook $00C0 Pointer Pointer to routine to handle word breaks
wordWrapHook $00C4 Pointer Pointer to routine to handle word wrap
keyFilter $00C8 Pointer Pointer to keystroke filter routine
theFilterRect $00CC Rect Rectangle for generic filter procedure

[continued]

Chapter 49 TextEdit Tool Set 49-129

= Table 49-2 TextEdit data structures [continued]

Name Offset/Value Type Description

theBuffervPos $00D4 Word Vertical component of current position
for generic filter procedure

theBufferHPos $00D6 Word Horizontal componentof current
position for generic filter procedure

theKeyRecorda $00D8 KeyRecord Parameters for keystrokefilter routine

cachedSelcOffset

$00E6 Long Text offset for cached insertion point
position

cachedSelcvPos $00EA Word Vertical component of cached
insertion point position

cachedSelcHPos $00EC Word Horizontal componentof cached
insertion point position

mouseRect $00EE Rect Boundary rectangle for mouse events

mouseTime $00F6 Long Tick count value when mouse button
was last released

mouseKind $00FA Word Type oflast click
lastClick $00FC Point Location oflast click
savedHPos $0100 Word Saved horizontal position for up and

downscroll arrows

anchorPoint $0102 Long Anchorpointfor current selection

@ Note: TextEdit maintains fields beyond anchorPoint. Applications should never

access these fields or attempt to save the state of a TextEdit record by writing and
reading the public fields documentedhere.

49-130 Apple IIs Toolbox Reference, Volume 3

[continued]

a Table 49-2 TextEdit data structures [continued]

Name Offset/Value Type

TERuler (ruler structure)

leftMargin $0000 Word

leftIndent $0002 Word

rightMargin $0004 Word

just $0006 Word

extraLS $0008 Word

flags $000A Word

userData $000C Long
tabType $0010 Word

theTabs $0012 TabItem

tabTerminator $xxxx Word

TEStyle (style description structure)

fontID $0000 Long

foreColor $0004 Word

backColor $0006 Word

userData $0008 Long

KeyRecord

theChar $0000 Word

theModifiers $0002 Word

theInputHandle $0004 Handle

cursorOffset $0008 Long

theOpCode $000C Word

Description

Left indent pixel countforall lines

except those that start paragraphs

Left indent pixel countfor lines that
start paragraphs

Right text boundary, measured from
left edge of text rectangle
Text justification flag
Spacing betweenlines (in pixels)
Controlflags for the ruler
Reserved for application use
Type of tabs used

Array of TabItems,onefor each

absolute tab stop
Either the spacing for standard tabs or

a flag terminating theTabsarray

Font ID for text using this style

Foregroundcolorfor thestyle
Background color for thestyle
Reserved for application use

Character value to translate

Modifier key state bit flag (see
Chapter 7, “Event Manager,”in

Volume1 of the Toolbox Reference for

information on key modifiers)

Handle to characterto insert

New cursorlocation
Operation code for keyfilter routine

{continued]

Chapter 49 TextEdit Tool Set 49-131

= Table 49-2 TextEdit data structures [continued]

Name Offset/Value Type Description

StyleItem (style reference structure)

length $0000 Long

offset $0004 Long

SuperBlock

nextHandle $0000 Handle

prevHandle $0004 Handle

textLength $0008 Long

$000C Long
theItems $0010 SuperItem

SuperHandle

cachedHandle $0000 Handle

cachedOffset $0004 Long

cachedIndex $0008 Word

itemsPerBlock $000A Word

SuperiItem

length $0000 Long

data $0004 Long

Tabitem (tab stop descriptor)

tabKind

tabData

$0000

$0002

Word

Word

49-132 Apple IIcs Toolbox Reference, Volume3

Numberof text characters using the
style

Byte offset into theStyleListto

entry that defines the style for this text

Handle to next SuperBlockin list

Handle to previous SuperBlockinlist

Numberof bytes of text for

this SuperBlock
Reserved

Array of SuperItensforthis block

Handle to the current SuperBlock

Text offset of the start of the

current SuperBlock

Index value for current SuperBlock

Number of SuperItems

per SuperBlock

Numberof bytes of text for
this SuperItem

Data for the SuperItem

Must beset to $0000
Pixel offset to the tab stop from left
boundary of text rectangle

[continued]

= Table 49-2 TextEdit data structures [continued]

Name Offset/Value Type Description

TextBlock

nextHandle $0000 Handle Handle to next TextBlockinlist
prevHandle $0004 Handle Handle to previous Text Blockinlist
textLength $0008 Long Numberof bytes of text in theText
flags $000C Word Reserved

$000E Word Reserved
theText $0010 Byte textLength bytes oftext

TextList

cachedHandle $0000 Handle Handle to the current TextBlock

cachedOffset $0004 Long Text offset of the start of the
current TextBlock

Chapter 49 TextEdit Tool Set 49-133

w Table 49-3 TextEdit error codes

Code Name Description

$2201 teAlreadyStarted TextEdit has already been started.

$2202 teNotStarted TextEdit has not been started.

$2203 teInvalidHandle The teH parameter does notrefer to a

valid TERecord.

$2204 teInvalidDescriptor Invalid descriptor value specified.

$2205 teInvalidFlag Specified flag word is invalid.

$2206 teInvalidPCount Invalid parameter count value
specified.

$2207 Reserved Reserved.

$2208 teBufferOverflow The output buffer was too small to
acceptall data.

$2209 teInvalidLine Starting line value is greater than the

numberoflines in the text (can be

interpreted as end-of-file in some
circumstances).

$220A Reserved Reserved.

$220B teInvalidParameter A passed parameter wasinvalid.

$220C teInvalidTextBox2 The LETextBox2 format codes were

inconsistent.

$220D teNeedsTools The Font Manager wasnotstarted.

49-134 Apple IIcs Toolbox Reference, Volume 3

Chapter 50 Text Tool Set Update

This chapter documents new features of the Text Tool Set. The complete
reference to the Text ToolSet is in Volume 2, Chapter 23 ofthe
Apple lics Toolbox Reference.

50-1

New features of the Text Tool Set

The Text Tool Set now supports the Slot Arbiter. All set device calls (such as

SetOutputDevice, Set InputDevice,and so forth) accept slot numbers 1 through 7

or 9 through 15. Previously, the external slots, slots 9 through 15, were not valid for these
calls. If your application specifies an external slot, the Text Tool Set routes the calls as
appropriate. If your application specifies a slot from 1 through 7, the Text ToolSet

determines whether theslot is internal or external and routes the calls to the appropriate
firmware.

Note that, to maintain compatibility with existing code, all get device calls still return slot
numbersin the range from 1 through7.

50-2 Apple Ics Toolbox Reference, Volume 3

Chapter 51 Tool Locator Update

This chapter documents new features of the Tool Locator. The complete
reference to the Tool Locatoris in Volume 2, Chapter 24 of the
Apple IIGsS Toolbox Reference.

51-1

Error correction

Contrary to thecall descriptions in Chapter 24 of the Toolbox Reference, both the
MessageCenterand SaveTextStatetoolcalls can return Memory Managererrors.

Clarification

Applications that explicitly start up Apple IIGS tool sets should start the Desk Managerlast.

New features of the Tool Locator

This section explains new features of the Tool Locator.

The Tool Locator uses a new algorithm to load tools from disk. It loads tools from disk

only if it cannot find a tool in ROM with a version numberashighas thatof the
requested version. The Tool Locator makes no assumptions about whichtools are in
ROM and whichare on the system disk.

For every tool that is to be loaded, the Tool Locator makes a versioncall. If the version
call returns an error because the tool is not present or because the resulting version
numberis too low,then the tool is loaded from the system disk.

The Tool Locator no longer unloads all RAM-basedtools every time TLShutDownis
called. Instead, it returns the system to a default state, set by a new call in the Tool

Locator, SetDefault TPT. This call can make anycollection of RAM and ROMtools

the default state. The system returns to the default state when TLShut downis called.

51-2 Apple IIGs Toolbox Reference, Volume 3

Tool set startup and shutdown

The Tool Locator now provides calls that automatically start and stop specified tool sets
in the correct order. These calls, startUpTools and ShutDownTool1s,are documented

in “New ToolLocatorCalls” later in this chapter.

The StartUpToolscall performs the following steps during startup processing:

1.

5.

It starts the Resource Manager.

2. It opens the resource fork for the current application in read-only mode.

3.

4 . It starts the tools specified in the input st art Stop record; then it updates the

It obtains memory for the application’s direct page.

StartStop record as appropriate.

It returns the StartStop record reference tothe calling program.

Your application mustpass this returned Start Stop record reference to

ShutDownTool1sat tool shutdowntime.

The StartUpTool1s call sets some tool set default values for you.If these values are not
appropriate for your application, you should change them byissuing the appropriate tool

calls after Start UpToolshasreturned:

QuickDrawII Started with the video mode from the input

StartStop record—the QopDStartUp maxWidth

parameteris set to 160 bytes.

QuickDraw II Auxiliary System calls WaitCursor; your application must

change the cursor to an arrow before accepting user

input.

Event Manager Queuesize set to 20, maximum mouseclampsetto

either 320 or 640, depending on the video mode
specified in the Start Stop record.

Note Sequencer Update rate set to 0 (use default Note Synthesizerrate),

incrementset to 20, and interrupts have been disabled
(the system calls stopInts). Your program must use
StartInts to enable interrupts. The Note Sequencer
automatically starts the Sound Tool Set and the Note
Synthesizer if you have not included them in your
StartStop record.

Chapter 51 Tool Locator Update 51-3

The ShutDownTool1s call performs the following steps during tool set shutdown:

1. It shuts downtools specified in input start Stop record.

2. It disposes of the handle to the direct page.

3. It disposes of the handle to start Stop record (unless pointer was passed).

4. It shuts down the Resource Manager.

Both these calls require that your application format a tool Start Stop record. That
record is defined as shownin Figure 51-1.

s Figure 51-1 Tool set start Stop record

S00 / flags —| Word—Flag word—mustbe set to 0

$02 - videoMode + Word—Video mode for QuickDrawII

$04 resFileID + Word—Set by StartUpTools

$06 [C _
-- dPageHandle — Long—Setby StartUpTools

SOA numTools —{ Word—Numberofentries in toolArray

Soc toolArray - Afray—numTools ToolSpecrecords
l J

videoMode The video mode for QuickDraw II. See Chapter 16, “QuickDrawII,” in
Volume2 of the Toolbox Referencefor valid values.

resFileID The StartUpToo1s Call sets this field, which ShutDownTools

requires as input.

dPageHandle The StartUpToolscall sets this field, which ShutDownTools
requires as input.

514

=

Apple Ils Toolbox Reference, Volume 3

toolArray Each entry defines a tool set to be started. The numTool1s field

specifies the numberof entries in this array. Each entry is formatted as

follows:

$00 toolNumber —| Word—Toolsetidentifier

$02|/- minversion —| Word—Minimum acceptabletoolset version

toolNumber The tool set to be loaded. Valid tools set numbers are listed in

Table 51-1.

minVersion The minimum acceptable version for the tool set. See
Chapter 24, “Tool Locator,” in Volume 2 of the Toolbox Reference

for the format ofthis field.

Chapter 51 Tool Locator Update 51-5

Tool set numbers

Table 51-1 lists the tool set numbers forall tool sets supported by the StartUpTools
and ShutDownToolscalls.

= Table 51-1 Tool set numbers

Tool set number Tool set name

$01 (#01) Tool Locator

$02 (#02) Memory Manager

$03 (#03) Miscellaneous Tool Set

$04 (#04) QuickDraw II

$05 (#05) Desk Manager
$06 (#06) Event Manager

$07 (#07) Scheduler

$08 (#08) Sound ToolSet

$09 (#09) Apple Desktop Bus ToolSet

$0A (#10) SANE ToolSet

$0B (#11) Integer Math ToolSet

$0C (#12) Text Tool Set

$0D (#13) Reservedfor internal use
$OE (#14) Window Manager

$OF (#15) Menu Manager
$10 (#16) Control Manager

$11 (#17) System Loader

$12 (#18) QuickDrawII Auxiliary

$13 (#19) Print Manager
$14 (#20) LineEdit Tool Set

$15 (#21) Dialog Manager
$16 (#22) Scrap Manager

$17 (#23) Standard File Operations Tool Set
$18 (#24) Notavailable
$19 (#25) Note Synthesizer
SIA (#26) Note Sequencer
$1B (#27) Font Manager
$1C (#28) List Manager

$1D (#29) Audio Compression and Expansion (ACE)

[continued]

514 Apple Ics Toolbox Reference, Volume 3

= Table 51-1 Tool set numbers [continued]

Tool set number

$1E (#30)

$20 (#32)

$22 (#34)

Tool set name

Resource Manager

MIDI ToolSet

TextEdit Tool Set

Chapter 51 Tool Locator Update 51-7

Tool set dependencies

Although startUpToo1s handlesthe orderof tool startup for you, it does not manage

tool set dependencies.It is your responsibility to specify all tool sets required to ensure

correct system operation. Table 51-2 documents current tool set dependencies.

= Table 51-2 Tool set dependencies

Tool set and number Dependencies

Tool Locator (#01) No dependencies; alwaysstartedfirst

Memory Manager(#02) Tool Locator (#01)

Miscellaneous ToolSet (#03) Tool Locator (#01)

Memory Manager(#02)

QuickDraw II (#04) Tool Locator (#01)
Memory Manager(#02)
Miscellaneous Tool Set (#03)

Desk Manager (#05) Tool Locator (#01)

Memory Manager(#02)
Miscellaneous Tool Set (#03)
QuickDraw II (#04)

Event Manager (#06)
Window Manager(#14)

Menu Manager(#15)
Control Manager (#16)
LineEdit Tool Set (#20)

Dialog Manager (#21)
Scrap Manager (#22)

Event Manager (#06) Tool Locator (#01)

Memory Manager(#02)
Miscellaneous Tool Set (#03)

Scheduler (#07) Tool Locator (#01)
Memory Manager(#02)
Miscellaneous Tool Set (#03)

Sound Tool Set (#08) Tool Locator (#01)

Memory Manager(#02)

Miscellaneous Tool Set (#03)

Apple Desktop Bus ToolSet (#09)

Tool Locator (#01)

SANE Tool Set (#10) Tool Locator (#01)
Memory Manager(#02)

Integer Math Tool Set (#11) Tool Locator (#01)
[continued]

51-8 Apple IIGs Toolbox Reference, Volume 3

= Table 51-2 Tool set dependencies [continued]

Tool set and number

Text Tool Set (#12)

Window Manager (#14)

Menu Manager(#15)

Control Manager (#16)

Dependencies

Tool Locator (#01)

Tool Locator (#01)
Memory Manager (#02)

Miscellaneous ToolSet (#03)
QuickDraw II (#04)

Event Manager (#06)
Menu Manager(#15)
Control Manager (#16)
LineEdit Tool Set (#20)

Font Manager (#27)
Resource Manager(#30)

Tool Locator (#01)
Memory Manager(#02)
Miscellaneous Tool Set (#03)
QuickDraw II (#04)

Event Manager(#06)
Window Manager (#14)
Control Manager (#16)
Resource Manager(#30)

Tool Locator (#01)

Memory Manager(#02)
Miscellaneous Tool Set (#03)
QuickDrawII (#04)

Event Manager(#06)
Window Manager (#14)

Menu Manager(#15)

Resource Manager (#30)

(for AlertWindow Call)

(for AlertWindowcall)

(only if you use resources)

(only if you use resources)

(only if you use resources
or icon buttons)

@ Note: You should consider the Window,Control, and Menu managersas one unit, and

always start them together and in that order.

System Loader (#17)

QuickDraw II Auxiliary (#18)

Tool Locator (#01)

Memory Manager(#02)
Miscellaneous Tool Set (#03)

Tool Locator (#01)
Memory Manager(#02)
Miscellaneous Tool Set (#03)

QuickDraw II (#04)

Font Manager (#27)

[continued]

Chapter 51 Tool Locator Update 51-9

a Table 51-2 Tool set dependencies [continued]

Tool set and number Dependencies

@ Note: QuickDraw II Auxiliary uses the Font Managerinits picture-drawing routines.

For proper operation, you should start the Font Managerbefore using the

QuickDrawII Auxiliary picture routines; however, the picture routines will not fail if

the Font Manageris not present.

Print Manager (#19) Tool Locator (#01)
Memory Manager(#02)
Miscellaneous ToolSet (#03)
QuickDraw II (#04)

Event Manager(#06)
Window Manager(#14)
Menu Manager(#15)
Control Manager (#16)
QuickDraw II Auxiliary (#18)
LineEdit Tool Set (#20)

Dialog Manager (#21)

Font Manager(#27)

List Manager (#28)

LineEdit Tool Set (#20) Tool Locator (#01)

Memory Manager(#02)
Miscellaneous Tool Set (#03)
QuickDraw II (#04)

Event Manager (#06)
QuickDraw II Auxiliary (#18) (for Text 2 items only)
Scrap Manager (#22)

Font Manager(#27) (for Text 2 items only)
Dialog Manager (#21) Tool Locator (#01)

Memory Manager (#02)
Miscellaneous Tool Set (#03)
QuickDrawII (#04)
Event Manager(#06)
Window Manager(#14)
Menu Manager(#15)
Control Manager(#16)
QuickDraw II Auxiliary (#18) (for Text2 items only)
LineEdit Tool Set (#20)

Font Manager(#27) (for Text 2 items only)

[continued]

51-10 Apple IIGs Toolbox Reference, Volume 3

= Table 51-2 Tool set dependencies[continued]

Tool set and number Dependencies

@ Note: The LineEdit Tool Set and the Dialog Manager require the Font Manager and

QuickDrawII Auxiliary if you use LETextBox2 Or LongStatText 2, which

sometimes require font styling (for example, outline, boldface, and so on).

Scrap Manager (#22) Tool Locator (#01)

Memory Manager(#02)

Standard File Operations Tool Set (#23)

Note Synthesizer (#25)

Note Sequencer (#26)

Tool Locator (#01)
Memory Manager(#02)

Miscellaneous ToolSet (#03)

QuickDraw II (#04)
Event Manager (#06)
Window Manager(#14)
Menu Manager(#15)
Control Manager (#16)
LineEdit Tool Set (#20)
Dialog Manager (#21)

Tool Locator (#01)

Memory Manager(#02)
Sound ToolSet (#08)

Tool Locator (#01)
Memory Manager (#02)

Sound ToolSet (#08)
Note Synthesizer (#25)

@ Note: The Note Sequencer automatically handles the startup and shutdown ofthe

Sound Tool Set (#08) and the Note Synthesizer (#25).

Font Manager (#27) Tool Locator (#01)
Memory Manager(#02)
Miscellaneous Tool Set (#03) (for CchooseFontonly)
QuickDraw II (#04)

Integer Math Tool Set (#11) (for CchooseFontonly)

Window Manager(#14) (for ChooseFontonly)
Menu Manager(#15) (for FixFontMenu only)

Control Manager(#16) (for ChooseFontonly)
List Manager (#28) (for FixFontMenu and

ChooseFontonly)
LineEdit Tool Set (#20) (for ChooseFont only)

Dialog Manager (#21) (for ChooseFontonly)

[continued]

Chapter 51 Tool Locator Update 51-11

a Table 51-2 Tool set dependencies[continued]

Tool set and number Dependencies

List Manager (#28) Tool Locator (#01)
Memory Manager(#02)
Miscellaneous ToolSet (#03)
QuickDraw II (#04)

Event Manager (#06)
Window Manager(#14)

Menu Manager(#15)

Control Manager (#16)
Audio Compression and Expansion (ACE) (#29)

Tool Locator (#01)
Memory Manager(#02)

Resource Manager(#30) Tool Locator (#01)

MIDI Tool Set (#32) Tool Locator (#01)
Memory Manager(#02)

Miscellaneous ToolSet (#03)

Sound Tool Set (#08)

Note Synthesizer (#25) (For time-stamping only)

@ Note: The MIDI Tool Set requires the Note Synthesizer to support the MIDI clock

feature. If you are not using the MIDI clock, the Note Synthesizer is not required.

TextEdit Tool Set (#34) Tool Locator (#01) Version $0300
Miscellaneous Tool Set (#03) Version $0300

QuickDraw II (#04) Version $0300
Event Manager (#06) Version $0300
Window Manager (#14) Version $0300
Menu Manager(#15) Version $0300
Control Manager (#16) Version $0300
QuickDraw II Auxiliary (#18) Version $0206
Scrap Manager (#22) Version $0104
Font Manager(#27) Version $0204
Resource Manager (#30) Version $0100

51-12 Apple IIGS Toolbox Reference, Volume 3

New Tool Locator calls

The SetDefaultTPT call has been addedto the Tool Locatorto facilitate permanent
tool patches. The StartUpTools and ShutDownTools calls provide automatic

services for bringing up or removingtool sets. The MessageByNametoolcall provides
facilities allowing your application to use the message center.

MessageByName $1701

Creates and associates a name with a new message, providing a convenient and extensible

mechanism for creating, tracking, and passing messages between programs. Your

application can then use the other message center Tool Locatorcalls to manipulate or

delete the message.

Parameters

Stack before call

Previous contents

- Space - Long—Spacefor result

createltFlag Word—Boolean; indicates whether or not to create message

~- recordPointer - Long—Pointer to input record

<—SP
Stack after call

Previous contents

— responseRecord —- Long—Responserecord from call

<—SP

Chapter 51 Tool Locator Update 51-13

Errors $0111 messageNotFound No message found with specified
name.

$0112 messageOvfl No message numbers available.
$0113 nameTooLong Message nametoo long.
Memory Managererrors Errors from NewHand1lereturned

unchanged.

C extern pascal responseRecord

MessageByName (createItFlag,

recordPointer);

Boolean createItFlag;

Pointer recordPointer;

createltFlag Parameter determining whether to create a message containing the

information from the inputrecord.If there is no existing message with
the specified name, thenthesetting of createltFlag governs whetherto
create a message. If there is already a message with the specified

name, then the setting of createltFlag determines whetherto replace
that existing message with a new one based onthe input record.

recordPointer Pointer to an input record defining the content and characteristics of
the new message:

$00 blockLen — Word—Length of record (including blockLen)

$02 : nameString : nBytes—Identifier string for the message
J

l

$02+ ni I
; dataBlock :_ mBytes—Optional data for message

J

blockLen The length, in bytes, of the input record. Note that the value for

this field includes the length of blockLen.

nameString The identifier for the new message. This is a standard Pascal
string (length byte followed by ASCII data) with a maximum

length of 64 bytes (not including the length byte). To prevent
message nameconflict, this name string should contain the
manufacturer’s name, followed by the product nameor code,
followed by a unique identifying string. You mayset the high-
order bits of each byte; note, however, that the system does not

include these bits in name comparisons.

51-14 Apple IlGs Toolbox Reference, Volume 3

dataBlock Application-defined data copied into a created message. Use of
this field is optional.

responseRecord The responseinformation from thecall.

$00 - messageID Word—ID numberfor created message
$02 |- createFlag Word—Boolean;indicates whether message wascreated

messageID Message ID for new message, if MessageByNameCreated one.

createFlag Flag indicating whether MessageByName created a message.

Note that if you set createltFlag to TRUE oninputto

MessageByNameand a message with the specified

nameSt ringalready exists in the message center, then this flag

is FALSE. In this case, messageIDidentifies the message into

which your dataBlock was copied.

Chapter 51 Tool Locator Update 51-15

SetDefaultTPT $1601

Sets the default Tool Pointer Table (TPT) to the current TPT. Usedtoinstall a tool patch

permanently.

A Warning An application should not makethis call. a

Parameters This call has no input or output parameters. The stack is unaffected.

C extern pascal void SetDefaultTPT();

51-16 Apple IIGs Toolbox Reference, Volume 3

ShutDownTools $1901

Shuts downthetools specified in the input Start Stop record.

Your program must pass the Start Stoprecord reference that was retumed by

StartUpTools.

Parameters

Stack before call

Previous contents

startStopRefDesc Word—Typeof reference stored in startStopRef

- StartStopRef - Long—Reference to the start Stop record

<—SP
Stack after call

Previous contents

 <—SP

Errors None

C extern pascal void ShutDownTools (startStopRefDesc,

startStopRef);

Word startStopRefDesc;

Long startStopRef;

startStopRefDesc Type ofreference stored in startStopRef.

0 Reference is by pointer

1 ‘Reference is by handle

startStopRef Reference to the updated st art Stop record returned by

StartUpTools.

Chapter 51 Tool Locator Update 51-17

StartUpTools $1801

Starts and loads the tools specified in the input start Stop record. Upon successful
retum from StartUpTools,the specified tools are started, and the cursor is represented

by the watch image (if QuickDraw II Auxiliary was loaded). Your program should change
the cursor image before accepting user input.

Your program must pass the Start Stop record reference that was returned by

StartUpToolsto the ShutDownToolscall at tool shutdown time.

Parameters

Stack before call

Previous contents

- Space -

userID

startStopRefDesc

- startStopRef -

Stack after call

Long—Spaceforresult

Word—Application user ID for system calls

Word—Typeofreference stored in startStopRef

Long—Reference to the Start Stop record

<—SP

Previous contents

— StartStopRefRet - Long—Referenceto resulting startStop record

<—SP

Errors $0103 TLBadRecFlag StartStoprecord invalid.

$0104 TLCantLoad A tool cannot be loaded—check
input Start Stoprecordfor
valid tool numbers andversions,

and for correct numToolsvalue.
system Loader errors Returned unchanged.

Memory Managererrors Returned unchanged.

GS/OSerrors Retumed unchanged.

51-18 Apple IIGs Toolbox Reference, Volume 3

startStopRefDesc

startStopRef

startStopRefRet

extern pascal long StartUpTools(userID,

StartStopRefDesc, startStopRef);

Word userID, startStopRefDesc;

Long SstartStopRef;

Defines the type of reference stored in startStopRef.

0 Reference is by pointer
1 Referenceis by handle

2 Reference is by resource ID

Reference to the input Start Stop record.

Reference to the updated Start Stop record. Your application must

pass this record to the ShutDownToolstoolcall. If the input record
reference to StartUpTools was a pointer, then this referenceis also
a pointer. If the input reference was either a handle or a resource ID,
StartUpToolsretums a handle.

Chapter 51 Tool Locator Update 51-19

Chapter 52 Window Manager Update

This chapter documents new features of the Window Manager. The
complete reference to the Window Manageris in Volume 2, Chapter 25 of
the Apple Iics Toolbox Reference.

52-1

Error corrections

This section corrects someerrors in the documentation of the Window Managerin
Volume2 of the Toolbox Reference.

The description of Set ZoomRectis incorrect. The correct description is as follows:

Sets the £Zoomedbit of the window's wFramerecord to 0. The rectangle passedto
Set ZoomRectthen becomes the window's zoom rectangle. The window’s size and
position when Set ZoomRectis called become the window's unzoomedsize and
position, regardless of what the unzoomedcharacteristics were before Set ZoomRect
was Called.

“If wmTaskMask bit tmInfo (bit 15) = 1,” on page 25-126, shouldread, “If

wmTaskMaskbit tmInfo (bit 15) = 0.”

When used with a window that does not havescroll bars, the WindNewRes call invokes

the window’s defProc to recompute window regions. A call to SizeWindowis not
necessary underthese circumstances.

The input region for the InvalRgntoolcall is defined in local coordinates; however,
the call returns the region expressed in global coordinates.

There are twoerrors in the series of equations given with the PinRecttoolcall. In the

last two equations the greater-than sign (>) should be replaced with a greater-than-or-
equal sign (>=).

Note that the CloseWindowtool call does not change the GrafPort setting. Your
application should ensure that a valid GrafPort is set before performing any other
actions.

52-2 Apple IIGS Toolbox Reference,Volume 3

Clarifications

This section elaborates on topics addressed in Volume 2 of the Toolbox Reference.

Windowtitle strings should always contain leading andtrailing space characters. This
spacing is especially important for windows with a lined window bar because, without
the spaces, the line pattern runsintothe title text. Also, because window editor desk

accessories may allow the userto changethetitle bar pattern without making the
change knownto your application, you should pad your windowtitles with spaces

even if you use blacktitle bars.

Table 25-6 on page 25-43 of the Toolbox Reference contains misleading labels. Note that
in this table byte 1 refers to the high-order byte of the long that defines the desktop
pattern, and byte 4 refers to the low-order byte.

New features of the Window Manager

This section explains new features of the Window Managerandclarifies points that were
not madeexplicit before.

TaskMaster now brings application windowsto the front after dragging is complete.
TaskMaster previously brought windowsto the front before dragging.

Using the SetOriginMaskcall, a programmercan control the horizontal scrolling

characteristics of windows whosescrolling is handled by TaskMaster. A commonuse of
SetOriginMaskis to ensure that the window origin is aligned on an even pixel so
that colors do not changeif the display mode is changed from 320 to 640 or vice versa.
Whenusingthe call, be sure that the horizontal scroll value is a whole multiple ofthe

mask value. Otherwise, strange behavior can occur. As an extreme example, consider
an origin value of 32 and scroll amountof1. In this case, using the right scroll arrow

causes noscrolling atall, and using theleft one causes scrolling by a value of 32. The

new controlvalue for the scrolling is calculated by adding or subtracting the scroll value

and the current value and applying the mask. In this case adding 1 and maskingresults
in the original value. Subtracting 1 and maskingresults in a new valuethatis 32 less than
the old value.

The titles of standard windows can now be drawnin 16 colors regardless of mode.

The grid parameter of the DragWindowcall has been renamed dragFlag.Bits 0

through 7 specify the grid value. Bits 8 through 14 are reserved bits; they must besetto

0. Bit 15 is a selection flag; if its value is 1, then the window is broughtto the topafter

dragging.

It is no longer possible to specify grid values of 256 or 512.

Chapter 52 Window Manager Update 52-3

= The Window Manager now uses the same default desktop drawing schemeas the
Finder. When the Window Managerstarts up,it looks for a DeskMessageCall in the

message center. This DeskMessageis formatted as follows:

$00 - 4
— Reserved — Long—Used by message center

S04; messageType —| Word—Messagetype; mustbe setto $0002

$06 drawType —| Word—Indicates content of drawData

$08 : drawData : Array—Data for desktop; type specified in drawType
l J

drawType The type of data stored in drawData.

0 Pattern information
1 Picture information

drawData The pattern or picture data for the desktop image.If
drawTypeis set to 0, then drawData contains 32 bytes of

pattern data. The pattern defines 64 pixels arranged in an 8-by-8

array. In 320 mode, 4 bits are needed for each pixel; in 640

mode, the system requires 2 bits per pixel. The system usesthis

pattern to seed the desktop image.

If drawTypeis set to 1, then drawData contains 32,000 bytes

of picture data; the system copies this data directly to screen
memory. See Chapter 16, “QuickDraw II,” in Volume 2 of the
Toolbox Reference for details on pattern or picture images.

By loading a correctly formatted DeskMessageinto the message center, your
program can set a custom desktop image.

a The Window Manager now supports a new entry point, TaskMasterDA,thatallows

desk accessories to use TaskMaster. Previously, desk accessories could not rely on
TaskMaster, because they had to work with applications that do not use TaskMaster.
Desk accessories obtain the data for their task record from the Desk Manager.

TaskMaster processes task records for desk accessories in the same waythatit

processes application task records.

524 Apple IIGS Toolbox Reference,Volume 3

w The SizeWindow and ResizeWindowtoolcalls now invoke the NotifyCtls

Control Managertoolcall whenever the user changes the windowsize. This allows

applications to show a control in a constant position with respect to the lower or right

border of a window. For example, now the growCont rol control definition
procedure can automatically move controls in response to the dragging of the size box

by the user.

ws The SetWTitle and GetWTit1etool calls now allow you to store windowtitles in

handles. Set bit 31 (the high-order bit) of the titlePtr parameter to the SetWTit1ecall
to 1 to indicate that the parameter contains a handle to thetitle string. Similarly, the
high-order bit in the value returned from GetWTit1eis set to 1 if it contains a handle
rather than a pointer. You mustset that bit to 0 before using the handle.

Note that once you havecalled SetwTitle, the Window Manager ownsthe handle

and disposesof it when youcloseorretitle the window. Your program must not

dispose of the handle or modify the data it contains.

Chapter 52 Window Manager Update 52-5

Alert windows

The new AlertWindow Call (described in “New Window ManagerCalls” later in this

chapter) can be usedto create alert windowsthat display important messages for the
user. An alert windowis similar to a modal dialog box.It requires the userto click a button
in the window before doing anything else, and so provides a useful way to communicate

vital messages such as warnings or error reports. The call does all the work of creating and

displaying the window and contents ofthe alert window,andit returns the ID of the

button that the userclicks.

The AlertWindowcall accepts a reference to an ASCIIstring that contains its message,
andit also accepts a reference to an array of substitution strings. The substitution strings
can be any of seven standard strings (such as “OK,” “Continue,” and so on) or can be
specified by the application and stored in the buffer to which the substitution-string

pointerrefers. The format of the AlertWindow input string is shownin Figure 52-1.

a Figure 52-1 AlertWindowinputstring layout

1 1
$00 : size : Block

{ J
i |

Sx: iconSpec . Block

Sxx separator Byte

Sx.
. messageText - Characterarray

Sxx sep Byte
SXX. |

. buttonStrings - Character array
j

Sxx | terminator _| Byte

526 Apple IIGs Toolbox Reference,Volume 3

size

A variable-length block that specifies the size of the alert window to

be displayed. Valid ASCII values for the first byte lie in the range from

0 through 9 ($30 through $39) and havethe following meanings:

0 ($30) Custom size and position, specified by rectangle
definition (as shown below)

1 ($31) 30-character display window
2 ($32) 60-character display window
3 ($33) 110-character display window
4 ($34) 175-character display window
5 ($35) 110-character display window
6 ($36) 150-character display window
7 ($37) 200-character display window
8 ($38) 250-character display window
9 ($39) 300-character display window

If the value ofthe first byte of size is not 0 ($30), then the block
consists only of that byte. If size is set to 0 ($30), then you must
specify the custom rectangle immediately after the size field.

Word—ycoordinate of upper-left comer

Word—x coordinate of upper-left comer

Word—y coordinate of lower-right comer

Word—x coordinate of lower-right comer

Because AlertWindow provides a limited numberof standardsizes,
it is possible to create alert windowsthat are displayed properly

whether the Apple IIGS computeris in 320 or 640 mode.It is necessary,

however, to design the text and buttonscarefully so that the display is

correct regardless of the mode.

Table 52-1 shows the dimensionsofthe standard alert windows. This
table gives only an approximate idea of the size of each window.
Application code should not rely on the exact widths, heights, or

position of standard windows.

Chapter 52 Window Manager Update §2-7

= Table 52-1 Standard alert window sizes

size value Height 320 Width 320 Height 640 Width 640

1 ($31) 46 152 46 200

2 ($32) 62 176 54 228

3 ($33) 62 252 62 300

4 ($34) 90 252 72 352

5 ($35) 54 252 46 400

6 ($36) 62 300 54 452

7 ($37) 80 300 62 500

8 ($38) 108 300 72 552

9 ($39) 134 300 80 600

iconSpec A variable-length block that specifies the type of icon to be displayed
in the alert window.Valid valuesfor the first byte lie in the range from
0 through 9 ($30 through $39) and havethe following meanings:

0 ($30) Noicon
1 ($31) Custom icon; followed by an icon specification, as

shown below

2 ($32) Stop icon
3 ($33) Note icon
4 ($34) Caution icon
5 ($35) Disk icon
6 ($36) Disk swap icon
7-9 ($37-$39) Reserved

If the first byte of iconSpec has value other than 1 ($31), then the
field consists only of that byte. If the first byte is set to 1 ($31), then
it must be followed by an icon specification.

+ imagePtr - Long—Pointerto image data

— dmageWidth —4 Word—Widkth in bytes of the image data

imageHeight — Word—Heightin scanlines of the image data

52-8 Apple IIGS Toolbox Reference,Volume 3

separator

messageText

sep

buttonStrings

terminator

A character that divides substrings in the remainder of the
AlertWindowinputstring. The separatorfield can contain any
character, but the character cannot appear in the messagetext or
button strings. The separator character differentiates the text of

the message from the title of the first button, and the buttontitles
from each other. For purposes of standardization, the slash (/)

character is recommended, unless you will be substituting pathnames.

Do not include a separator character in any substitution strings. The
Window Manager performs substitutions before scanning thealert
string for separators. For example,if the separator character is a slash
and a pathnamecontaining several slashes is substituted for thestring,

the resulting alert window will contain several more buttons than you
intended.

The messageto be displayed in the alert window. Any characters
allowed by LETextBox2are allowed in the message text. See “Special
Characters” later in this chapter for additional characteristics of
AlertWindow message text. The total size of message text, after
substitution of strings, is limited to 1000 characters.

A separatorcharacter.

Titles for up to three buttons to be displayed in the alert window.If
there is more than onetitle, then thetitles must be demarcated by a

separator character. These buttons will be evenly spaced and

centered at the bottom of the alert window. The width ofall buttons

is the same and is determined bythe longest buttontitle. The
maximum length of button text after substitution ofstrings is 80
characters.

The end of the alert string. Must be set to 0 ($00).

Chapter 52 Window Manager Update 52-9

Special characters

The following special characters can be embedded in the message text and buttonstrings
of an AlertWindow inputstring. If a special character is to appearin the text of a
button or message, you mustenterit twice in the string. For example, if you want ~ to
appearin an alert message, you mustenterit in the messagestring as ~~.

a Designates the default button. The default button is the button selected

if the user presses the Return key on the keyboard. This button appears
outlined in bold on the screen. Only one button can be the default

button. Like all buttons, the default button must havea title, which in

this case follows the caret. Other special characters may also appear after

the caret. A single caret in the body of message text has noeffect andis
deleted from the message.

Substitute standard string. The number sign (#) must be followed by an
ASCII numbercharacter from 0 through 6. Numbers 7 through 9 are

reserved and should not be used. The standard substitution strings are

#0 OK
#1 Cancel

#2 Yes

#3 No

#4 Try again
#5 Quit

#6 Continue

* Substitute given string. The asterisk (*) character followed by an ASCII
number character from 0 through 9 denotes a substitution string to be

inserted at that point. The asterisk and the numberfollowingit are

replaced by the correspondingstring in the specified substitution array.
A pointer to the substitution array is passed as a parameter to the
AlertWindowcall. The substitution array is defined as an array of
pointers. Table 52-2 showsthe formatof a substitution string array.

52-10 Apple IIGs Toolbox Reference,Volume 3

» Table 52-2 Substitution string array

LONG[O]
LONG[1]
LONG[2]
LONG{3]
LONG[4]
LONG[5]
LONG[6]
LONG[7]
LONG[8]
LONG[9]

Pointer to string that will substitute for * 0

Pointer to string that will substitute for *1

Pointer to string that will substitute for * 2

Pointer to string that will substitute for *3
Pointer to string that will substitute for * 4
Pointer to string that will substitute for *5

Pointer to string that will substitute for * 6
Pointer to string that will substitute for *7
Pointer to string that will substitute for * 8
Pointerto string that will substitute for * 9

Substitution strings can beC strings or Pascal strings. A parameter to the AlertWindow

tool call allows you to specify the type ofstrings in the substitution array.

Alert window example

This section includes some examples ofalert strings that can be passed to AlertWindow
in 65816 assembly-language syntax.

Figure 52-2 showsa simple alert string.

m Figure 52-2 An alert string

dc c'13/Text of Message/Button 1',i1'O'

Size 50 high
by 200 wide

Icon Message Buttontitle Zero terminatesalert

a

Tentaf Message

[Button)<

Chapter 52 Window Manager Update §2-11

Figure 52-3 shows a more complexalert string that defines a custom rectangle.

dc c'0',1i2'35,100, 81,500'

dc c'l/This is the *0 of *3 alert *2*1 and standard'

dc c'text called "#4."/'

dc c'*#0,Really/*4/Yo!',i1'0O'

a Figure 52-3 An alert string defining a custom rectangle

This is the message tent of an alert window and standard

text called “Try Again.”

Door #2 | [vo! |

This is the substitution array in this case:

dc i4'sub0,subl, sub2, sub3,sub4'

sub0O dc c'message text',il1'0o'

subl dc c'dow',il1'0O'

sub2 dc c'win',i1'13'

sub3 dc c'an',il'0o'

sub4 dc c'Door #2',i1'0O'

52-12 Apple IIGs Toolbox Reference,Volume 3

TaskMaster result codes

Table 52-3 lists all the possible TaskMaster result codes.

« Table 52-3 TaskMaster result codes

Name Value Description

NULL $0000 Successful

mouseDownEvt $0001 Event code

mouseUpEvt $0002 Event code

keyDownEvt $0003 Event code

autoKeyEvt $0005 Event code

updateEvt $0006 Event code

activateEvt $0008 Event code

switchEvt $0009 Event code

deskAccEvt $000A Event code

driverEvt $000B Event code

applEvt $000C Event code

app2Evt $000D Event code

app3Evt $000E Event code

app4Evt $000F Event code

wNoHit $0000 Alias for no event

inNull $0000 Alias for no event

inkKey $0003 Alias for keystroke

inButtDwn $0001 Alias for button-down event

inUpdate $0006 Alias for update event

wInDesk $0010 On desktop

wInMenuBar $0011 On system menu bar

wClickCalled $0012 SystemClick called (returned only as action)

wInContent $0013 In content region

wInDrag $0014 In drag region

wInGrow $0015 In grow region, active window only
wInGoAway $0016 In go-away region, active window only

[continued]

Chapter 52 Window Manager Update 52-13

a Table 52-3 TaskMaster result codes [continued]

Name Value Description

winZoom $0017 In zoom region, active window only

wInInfo $0018 In information bar

wiInSpecial $0019 Item ID selected was 250-255

wInDeskItem $001A Item ID selected was 1-249

winFrame $001B __In frame, but not on anythingelse

wInactMenu $001C Inactive menu item selected

wClosedNDA $001D Desk accessory closed (returned only as action)

wCalledSysEdit $001E SystemEditcalled (returned only asaction)

wTrackZoom $001F Zoom box clicked, but not selected (action only)

wHitFrame $0020 Button down on frame, madeactive (action only)

wiInControl $0021 Button or keystroke in control (can be returned as

event code and as action)

wInControlMenu $0022 Control-handled menu item

winSysWindow $8000 Highbit set for system windows

52-14 Apple Ics Toolbox Reference,Volume 3

Window Manager data structures

This section discusses the format and content of changed Window Managerdata
structures.

Window record

The window record data structure has been redefined. Figure 52-4 illustrates the new
definition.

= Figure 52-4 Window record definition

$00

$04

SAE

SB2

SBG6

SBA

SBE

SC2

SC6

SCA

SCE

$D2 7

SD4

wNext

|
1
4

wDefProc

|
|

wRe fCon

1
1
4

wContDraw

L
J
)

r
y
]

wReserved

|
j
d

r
f

|

wStructRgn

|
j
t

i
|

wContRgn

|
i
J

I
t wUpdateRgn

n
e

i
t
t

wCtls

j
i
j

wFrameCtls

|
J

 wFrame
wCustom

Long—Pointerto next window;NIL at end oflist

: Array—Window’s GrafPort (170 bytes)

Long—Pointerto control definition procedure

Long—Reserved for application use

Long—Pointerto routine to draw window contents

Long—Reserved for use by Window Manager; do not use

Long—Handle to window'sstructure region

Long—Handle to window's content region

Long—Handle to window's update region

Long—Handletofirst control in window's control chain

Long—Handletofirst control in window's frame

Word—Flags for window

Array—Additional data for window definition procedure

Chapter 52 Window Manager Update 52-15

wReserved A new data field reserved by Apple Computer,Inc., for future

expansion.

wFrame A bit flag containing flags specifying the window frame.All of thebits
in this flag are described in Chapter 25, “Window Manager,” in
Volume2 of the Toolbox Reference. Some ofthese bits may be used by

window definition procedures. The following bits may be used by
window defProcs.

fTitle bit 15
fClose bit 14

fAlert bit 13

fRScroll bit 12

fBScroll bit 11
fGrow bit 10

fFlex bit 9

f£Zoom bit 8

fMove bit 7

fInfo bit 4

fZoomed bit 1

52-16 Apple IIcs Toolbox Reference,Volume 3

Task record

Figure 52-5 defines the new formatfor the task record. This new record layout includes
several new fields, each of which is set by TaskMaster every time your program calls

TaskMaster. For information on the old fields, see Chapter 25, “Window Manager,”in
Volume2 of the Toolbox Reference.

TaskMasterstill accepts task records in the old format; however, if your program uses any

of the new TaskMasterfeatures (see description of wmTaskMask On next page), it must

use the new record layout.

Figure 52-5 Task record definition

$00

$02

$06

SOA

SOE

$10

$14

$18

$1C

SIE

$22

$26

$2A

wmWhat —

wmMessage

wmWhen

wmWhere

wmModifiers

wmTaskData

i
t
]

wmTaskMask

r
t
d

wmLastClickTick

wmClickCount

I
T
]

wmTaskData2

wmTaskData3

wmTaskData4

wmLastClickPt

Word—Sameas before

Long—Sameas before

Long—Sameasbefore

Long—Sameas before

Word—Sameas before

Long—Sameas before

Long—Flags controlling TaskMasterfunction

Long—System tick valueatlast mouseclick

Word—Typeoflast click (single, double, triple)

Long—Additional TaskMaster retum data

Long—aAdditional TaskMaster retum data

Long—Additional TaskMaster return data

Point—Location of last mouseclick

Chapter 52 Window Manager Update 52-17

wmtAskMask Flags controlling TaskMaster functions.

Reserved bits 31-21 Must besetto 0.

tmIdleEvents bit 20

tmMultiClick bit 19

tmControlMenu bit 18

tmControlKey bit 17

tmContentControls

bit 16

tmiInfo bit 15

tmInactive bit 14

tmCRedraw bit 13

tmSpecial bit 12

Controls whether TaskMaster sends idle events to the

target control in the active window.
0 = Do not sendidle events

1 = Send idle events

Controls whether TaskMaster returns multiclick

information in the task record.

0 = Do not return multiclick information

1 = Return multiclick information

Controls whether TaskMaster passes menu events to
controls in the active window.

0 = Do not pass menuevents

] = Pass menu events

Controls whether TaskMaster passes key events to

controls in the active window.

0 = Do not pass key events
1 = Pass key events

Controls whether TaskMaster calls FindControl

and TrackCont rol when FindWindow retums

wInContent and the windowis already selected.

0 = Do nottrack the control

1 = Track the control

Controls whether TaskMaster activates the window
whenthe userclicks in the information bar.

0 = Activate the window

1 = Do notactivate the window

Controls whether TaskMaster returns wInactMenu

whenthe userselects an inactive menu item.

0 = Never return wInactMenu

1 = Return wInactMenu

Controls whether TaskMaster redrawscontrols

whenever an activate event occurs.

0 = Do not redraw controls

1 = Redraw controls

Controls whether TaskMaster handles special menu

items (those with IDs < 256).

0 = Do not handle special menu items
1 = Handle special menu items

52-18 Apple IIGS Toolbox Reference,Volume 3

tmScroll

tmGrow

tmZoom

tmClose

tmContent

tmDragw

tmSysClick

tmOpenNDA

tmMenuSel

tmFindw

bit 11

bit 10

bit 9

bit 8

bit 7

bit 6

bit 5

bit 4

bit 3

bit 2

Controls whether TaskMaster enablesscrolling and

activates inactive windows whentheuserclicks on

the scroll bar.
0 = Do not enablescrolling
1 = Enable scrolling
Controls whether TaskMastercalls GcowWwindow

whenthe userdragsthe size box.
0 = Do not call GrowWindow

1 = Call GrowWindow

Controls whether TaskMaster calls Track Zoom when

the user clicks in the zoom box.

0 = Do not call TrackZoom

1 = Call Trackzoom

Controls whether TaskMaster calls TrackGoAway

whenthe userclicks in the close box.

0 = Do not call TrackGoAway

1 = Call TrackGoAway

Controls whether TaskMaster activates the window

whenthe userclicks in the content region.

0 = Do not activate window

1 = Activate window
Controls whether TaskMaster calls DragWindow
whenthe user drags in the drag region.

0 = Do not call DragWindow

1 = Call DragWindow

Controls whether TaskMaster calls SsystemClick

whentheuserclicks in the system window.

0 = Do notcall SystemClick

1 = Call systemClick

Controls whether TaskMaster calls OpenNDA whenthe

user selects a desk accessory.

0 = Do not call openNDA

1 = Call OpenNDA

Controls whether TaskMaster calls MenuSelect

whenthe userclicks in the menubar.

0 = Do not call MenuSelect

1 = Call MenuSelect

Controls whether TaskMastercalls FindWindowfor
mouse-down events.
0 = Do not call FindWindow

1 = Call FindWindow

Chapter 52 Window Manager Update 52-19

tmUpdate bit 1 Controls whether TaskMaster handles update events.

0 = Do not handle update events

1 = Handle update events

tmMenukey bit 0 Controls whether TaskMaster calls MenuKeyto

handle key equivalents for menu commands.

0 = Do not call Menukey

1 = Call Menukey

52-20 Apple IIGs Toolbox Reference,Volume 3

New Window Managercalls

The following tool calls have been added to the Window Managersince the publication of

the first two volumes of the Toolbox Reference.

AlertWindow $590E

Creates an alert window that displays a message referred to by alertStrRef. The subStrPtr

parameter points to an array of substitution strings for use with substitution characters.

The substitution strings can be either C or Pascal strings, as specified by alertFlags. For
more detailed information, see “Alert Windows” earlier in this chapter.

Parameters

Stack before call

Previous contents

Space

alertFlags

—- subStrPtr —-

- alertStrRef -

Stack after call

Previous contents

Result

Errors None

Word—Spacefor result

Word—Flag word forcall

Long—Pointer to substitution array

Long—Referenceto alert string; alertFlags indicates type

<—SP

Word—Button numberselected (0 relative, in order created)

<—SP

Chapter 52 Window Manager Update 52-21

C extern pascal Word AlertWindow(alertFlags,

subStrPtr, alertStrRef) ;

Word alertFlags;

Pointer subStrPtr;

Long alertStrRef;

alertFlags Flags that indicate the type of strings referenced by subStrRef, as well
as the type of reference contained alertStrRef:

Reserved bits 15-3 Must besetto 0.

referenceType bits 2-1 Indicate the type of reference stored in alertStrRef.

00 = alertStrRef is a pointer

01 = alertStrRefis a handle

10 = alertStrRefis a resource ID

11 = Invalid value

stringType bit 0 Indicates type of string referred to by subStrPtr.

0 = C string (null-terminated)

1 = Pascal string

52-22 Apple IIGs Toolbox Reference,Volume 3

CompileText $600E

Combinessource text provided by your program with either custom or standard strings to

compile a result text string. For successful calls, this call allocates and correctly sizes a
handle to theresult text string. That result string is a simple character array. Your program

must extract length information for the string from the handle. Note that your program
must dispose of this handle.

Control sequences in the source text direct the system to embedeither custom or
standardstrings into the result text string. These control sequences consist of two ASCII
characters: a flag character followed by a digit. The flag character indicates whether the
desired substitution string is custom or standard.

For standard strings, the flag character is #. The digit following the flag character
designates one ofthe followingstrings:

#0 OK

#1 Cancel

#2 Yes

#3 No

#4 Try again

#5 Quit

#6 Continue

For custom strings, the flag character is *. The CompileText call obtains custom strings

from a substitution array built by your program and provided to the system in the
parameters for this call. The ASCII character following the flag character specifies which

string to extract. Valid values for this ASCII characterlie in the range 0 through 9. Thus, a

control sequence of *0 would causethefirst string in your custom substitution array to be
accessed.

To includeeither of the flag characters as text in your compiledtext, follow theflag
character with a secondflag character (for example, ** causes * to be displayed in the
compiled text string).

Chapter 52 Window Manager Update §2-23

Parameters

Stack before call

Previous contents

- Space - Long—Spaceforresult

subType Word—Type of custom substitution strings

— subStringsPtr - Long—Pointer to substitution array

— SrcStringPtr —- Long—Pointer to source string

srcSize Word—Length of source string pointed to by srcStringPtr

<—SP

Stack after call

Previous contents

- SstringHandle - Long—Handleto result string

<—SP

Errors $0E04 compileTooLarge Compiled text is larger than 64 KB.

C extern pascal Handle CompileText (subType,

subStringsPtr, srcStringPtr, srcSize);

Word subType, srcSize;

Pointer subStringsPtr, srcStringPtr;

subType Indicates the type of strings stored in the substitution array pointed

to by subStringsPtr.

0 C strings

1 Pascal strings

Notethatthis field is ignored if your program uses no custom
substitution strings.

52-24 Apple IIcs Toolbox Reference,Volume 3

subStringsPtr A pointer to your custom text substitution array. This array contains

from 1 to 10 long pointers to either C or Pascal strings (use subType to
indicate which type ofstring you have used). Embeddedcontrol

sequences in your source text direct the system to extract a specific
string from this array. Note that the system does notverify string

specifications against the size of this array; be careful to define the
correct numberofstring pointers in this array.

Note thatthis field is ignored if your program uses no custom

substitution strings.

Chapter 52 Window Manager Update 52-25

DrawInfoBar $550E

Redrawsthe information bar of the window specified by grafPortPtr. The routine that

redrawstheinterior of the information baris specified by the winfoDefProcfield of the
paramList passed to NewWindow whenthe windowis created. The Window Manager
automatically clips the drawing in the information bar to the dimensions of the

information bar and tothe visible region of the window.

Parameters

Stack before call

Previous contents

- grafPortPtr - Long—Pointer to GrafPort for window

 <—SP

Stack after call

| Previous contents |

| | <—SP

Errors None

C extern pascal void DrawInfoBar(grafPortPtr);

Pointer grafPortPtr;

52-26 Apple IIGs Toolbox Reference,Volume3

EndFrameDrawing S$5BO0E

Restores Window Managervariables after a call to startFrameDrawing.

Parameters This call has no input or output parameters. The stack is unaffected.

Errors None

C extern pascal void EndFrameDrawing();

Chapter 52 Window Manager Update 52-27

ErrorWindow $620E

Creates a dialog box displaying an error message for a specified error code. GS/OSerror

codes are listed along with standard messagetext in “Error Messages” later in this chapter.

Each error messageis in alert string format and may require a substitution string (see “Alert

Windows’earlier in this chapter for message format and text substitution information).
The system retrieves the error messages from a resourcefile containing resources of type
rErrorString ($8020). The resource ID for each messageis formed as follows:

high-order word $07FF
low-order word error number

The default error messagesare stored in the system resourcefile. You may assert custom
error message text by defining and opening another resource file containing

rErrorString resources with appropriate resource IDs assigned to each error message.
Makesure that your resourcefile precedes the system resourcefile in the Resource
Manager’s search sequence. A custom error messageresourcefile need not define
substitute messages forall possible GS/OSerrors; if the Resource Manager doesnotfind a

message in yourfile, it continues through the standard resource search sequence.

If EcrorWindow receives an undefined error code,it displays a dialog box with the
Unknown error message ($72).

Parameters

Stack before call

Previous contents

Space Word—Spacefor result

subType Word—Type of custom substitution string

— subStringPir - Long—Pointer to substitution string

errNum Word—GS/OSerror number

<—SP
Stack after call

Previous contents

buttonNumber Word—Numberofthe button clicked by the user

<—SP

52-28 Apple IIGS Toolbox Reference,Volume 3

Errors

subType

subStringPtr

Resource Managererrors Returned unchanged.

extern pascal Word ErrorWindow(subType,

subStringPtr, errNum) ;

Word subType, errNum;

Pointer subStringPtr;

The type ofstring pointed to by subStringPtr.

0 C string

1 Pascal string

Note that this field is ignored if the specified error message contains
no substitution strings.

A pointer to your custom text substitution string. Note that this field

is ignored if the specified error message contains no substitution
strings.

Chapter 52 Window Manager Update 52-29

GetWindowMgrGlobals $580E

Retumsa pointer to the Window Managerglobal data area.

A Warning An application should never makethis call. a

Parameters

Stack before call

Previous contents

- Space - Long—Spacefor result

<—SP
Stack after call

Previous contents

- globalDataPtr - Long—Pointer to the global data area

<—SP

Errors None

C extern pascal Pointer GetWindowMgrGlobals();

52-30 Apple IIGs Toolbox Reference,Volume 3

NewWindow2 S$610E

Performs the same function as NewWindowbutallows you to specify the input window
template as a resource (type rWindParam1,$800E, or rWindParam2, $800F). See

Appendix E, “Resource Types,” later in this book for complete descriptions ofall resource
types.

@ Note: If you have specified the window template as a resource, then the references
within that templatetotitle, color table, and controllist must also be resources (or NIL).

If you use NewWindow2 specifying the window template as a resource,to create an
information bar you must specify a NIL infoDraw procedurein the input template and

create an invisible window.After issuing the NewWindowz2call, set the infoDrawroutine

by calling Set InfoDraw, then use the ShowWindowtoolcall to make the window
visible.

Parameters

Stack before call

Previous contents

- Space - Long—Spaceforresult

- titlePtr - Long—Pointer to replacementtitle

- refCon - Long—RefConto replace value in template

— contentDrawPtr - Long—Pointer to replacement content-draw routine

- defProcPtr - Long—Pointer to replacement window definition procedure

paramTableDesc Word—Type ofreference in paramTableRef

— paramTableRef - Long—Reference to window template

resourceType Word—Resource type of template referred to by paramTableRef

<—SP
Chapter 52 Window Manager Update 52-31

Stack after call

Previous contents

- grafPortPtr - Long—Pointer to window GrafPort; NIL if unsuccessful

<—SP

Errors Resource Managererrors Returned unchanged.

Memory Managererrors Returned unchanged.
Window Managererrors Returned unchangedfrom

NewWindow.

Control Managererrors Returned unchangedfrom
NewControl2.

C extern pascal Pointer NewWindow2 (titlePtr, refCon,

contentDrawPtr, defProcPtr,

paramTableDesc, paramTableRef,

resourceType);

Word paramTableDesc, resourceType;

Pointer titlePtr, contentDrawPtr, defProcPtr;

Long refCon, paramTableRef;

titlePtr, refCon, contentDrawPtr, defProcPtr

The NewWindowz2call replaces the values supplied in the template

referred to by paramTableRefwith the contents from thesefields,

allowing you to use a standard template andtailor it to create

different windows. To prevent NewWindow2 from replacing the
template values, supply NIL pointers in titlePtr, contentDrawPtr, and
defProcPtr.

paramTableDesc Thetypeofreference stored in paramTableRef.

$0000 paramTableRefcontains a pointer to a window template

$0001 paramTableRefcontains a handle to a window template
$0002 paramTableRefcontains the resource ID of a window

template

52-32 Apple IIGS Toolbox Reference,Volume 3

paramTableRef

resourceType

Reference to a window template. The paramTableDescfield defines

the type ofreference stored here. The resourceTypefield defines the

resource type for the template. The template must comply with the
format specification of resource type rWindParam1 or
rWindParam2(evenif the templateis not stored as a resource). See

Appendix E, “Resource Types,” in this book for information on the
format and content of these resources.

The type of window template referred to by paramTableRef. This value

should beset correctly even if paramTableRefdoes not contain a
resource ID. Valid values are

$800E rWindParaml

$800F rWindParam2

Chapter 52 Window Manager Update 52-33

ResizeWindow S5CO0E

Moves, resizes, and draws the window specified by gra/PortPtr. The rectPtr parameteris a
pointer to the window's content region. The hiddenFlag parameter is a Boolean value. A
TRUE value specifies that those portions of the window that are covered should not be

drawn.If the value is FALSE,all parts of the window,covered or not, are drawn.

Parameters

Stack before call

Previous contents

hiddenFlag Word—Boolean; whetherto hide covered area

- rectPtr - Long—Pointer to new contentrectangle

- grafPortPtr —- Long—Pointer to window’s GrafPort

<—SP
Stack after call

| Previous contents |

| | <—SP

Errors None

C extern pascal void ResizeWindow(hiddenFlag, rectPtr,

grafPortPtr);

Word hiddenFlag;

Pointer rectPtr, grafPortPtr;

52-34 Apple IIcs Toolbox Reference,Volume 3

StartFrameDrawing S$5A0E

Sets up Window Managerdata to draw a windowframe. This shouldbecalled only by
window definition procedures and must be balancedbya call to EndFrameDrawing
when drawing is completed.

Parameters

Stack before call

Previous contents

- windowPtr - Long—Pointer to the window to be drawn

<—SP
Stack after call

|Previous contents |

| | <—SP

Errors None

C extern pascal void StartFrameDrawing (windowPtr) ;

Pointer windowPtr;

Chapter 52 Window Manager Update 52-35

TaskMaster SI1DOE

This section presents revised pseudocode for TaskMaster.

Pseudocode

Call SystemTask.

Call GetNextEvent using TaskMask user passed.

The wmMessage field of TaskRec is duplicated into the wmTaskData field

of TaskRec.

If any of the reserved bits in the TaskMask field are not 0:

{

Low word of wmTaskData = 0.

Returns nullEvt ($0000).

Error returned: wmTaskMaskErr ($0E03).

If wmWhat of TaskRec = nullEvt ($0000):

{

If TaskMask bit tmIdleEvents (bit 20) = 1:

{

If there is a front window:

{

Calls the BeginUpdate routine.

Send idle event by calling SendEventToCtl with

targetOnlyFlag = True.

If result from SendEventToCtl = True

(i1.e., a control accepted the idle event):

wmTaskData2 contains handle to control that took

event.

wmTaskData3 contains the result returned from

Gefproc.

wmTaskData4 contains the control's ID.

}

Calls the EndUpdate routine.

}

Low word of wmTaskData = 0.

Returns nullEvt ($0000).

52-36 Apple IIGS Toolbox Reference,Volume 3

If wmWhat field of TaskRec = mouseDownEvt ($0001):

{

If TaskMask bit tmMultiClick (bit 19) = 1:

{

If wmClickCount field of TaskRec <> 0

(then not single click):

Calculate time between mouse clicks.

Call GetDbl1Time.

If time between clicks is less than

double-click speed:

If mouse position of new click is

near last click:

Increment wmClickCount field of

TaskRec by one.

Set wmLastClickTick field of

TaskRec = wmWhen.

Set wmLastClickPt field of

TaskRec = wmWhere.

}

Set wmClickCount field of TaskRec = l.

Set wmLastClickTick field of TaskRec = wmWhen.

Set wmLastClickPt field of TaskRec = wmWhere.

If TaskMask bit tmFindW (bit 2) = 0:

{

wmTaskData = message field from GetNextEvent.

Returns mouseDownEvt ($0001).

Calls FindWindow.

If FindWindow returns wiInMenuBar ($0011):

{

If TaskMask tmMenuSel (bit 3) = 0:

Chapter 52 Window Manager Update 52-37

Low word of wmTaskData = 0.

Returns winMenuBar ($0011).

}

MenuSelect is called with TaskRec passed to TaskMaster.

Menu Selection:

If low word of wmTaskData = 0, then no selection made:

{

If TaskMask bit tmInactive (bit 14) = 0:

{

Low word of wmTaskData = wInMenuBar ($0011).

Returns nullEvt ($0000).

If high word of wmTaskData = nonzero:

{

Low word of wmTaskData = 0.

High word of wmTaskData = ID of selected

inactive menu item.

Returns wiInActMenu ($001C).

If low word of wmTaskData (menu item ID) > 255:

{

If wmTaskMask bit tmControlMenu (bit 18) =1:

{

Call SendEventToctl with TargetOnlyFlag = True.

If result from SendEventToCtl = nonzero:

{

wmTaskData2 = handle of control that took

keystroke.

wmTaskData3 = result passed back from

defproc.

wmTaskData4 = ID of control that took

keystroke.

Unhilite menu title for menu item that was

just selected.

Low word wmTaskData = wInControlMenu

($0022).

Returns nullEvt ($0000).

52-38 Apple IIGS Toolbox Reference,Volume 3

Low word of wmTaskData = ID of selected menu item.

High word of wmTaskData = ID of menu from which

selection was made.

Returns winMenuBar ($0011).

}

If low word of wmTaskData (menu item ID) < 250:

{

If TaskMask bit tmOpenNDA (bit 4) = 0:

{

Low word of wmTaskData = ID of selected menu

item.

High word of wmTaskData = ID of menu from which

selection was made.

Returns winDeskItem ($0O01A).

}

Calls OpenNDA with item ID in low word of wmTaskData.

Unhilite menu title for menu item that was just

selected.

Low word of wmTaskData = wInDeskItem (SOO1A).

Returns nullEvt ($0000).

If TaskMask bit tmSpecial (bit 12) = 0:

{

Low word of wmTaskData = ID of selected menu item.

High word of wmTaskData = ID of menu from which

selection was made.

Returns wiInSpecial ($0019).

If top window is an application (nonsystem) window:

{

If TaskMask bit tmControlMenu (bit 18) = 1:

{

Calls SendEventToctl with TargetOnlyFlag = True.

If result from SendEventToCtl = nonzero:

{

wmTaskData2 = handle of control that took

keystroke.

wmTaskData3 = result passed back from

defproc.

Chapter 52 Window Manager Update 52-39

wmTaskData4 = ID of control that took

keystroke.

Unhilite menu title for menu item that was

just selected.

Low word of wmTaskData = wInControlMenu

($0022).

Returns nullEvt ($0000).

}

Low word of wmTaskData = ID of selected menu item.

High word of wmTaskData = ID of menu from which

selection was made.

Returns winSpecial ($0019).

If low word of wmTaskData = 250, 251, 252, 253, 254

(edit items):

Calls SystemEdit with ID of special menu item.

If SystemEdit returns False:

{

Low word of wmTaskData = ID of menu item

selected.

High word of wmTaskData = ID of menu from which

selection was made.

Returns wiInSpecial ($0019).

}

(Top system window handled the special menu item

selection.)

Unhilite menu title for menu item that was just

selected.

Low word of wmTaskData = wCalledSysEdit ($001E).

Returns nullEvt ($0000).

If low word of wmTaskData = 255 (close item):

{

Calls CloseNDAbyWinPtr for top window (system window).

Unhilite menu title for menu item that was selected.

Low word of wmTaskData = wCloseNDA ($001D).

Returns nullEvt ($0000).

} (end menu selection)

5240 Apple IIGs Toolbox Reference,Volume 3

} (end FindWindow wInMenuBar)

If FindWindow returns a negative value:

{
If TaskMask bit tmSysClick (bit 5) = 0:

{

wmTaskData = window pointer returned from FindWindow.

Returns result from FindWindow.

}
Calls Desk Manager routine SystemClick with result from

FindWindow.

wmTaskData low word = wClickCalled ($0012).

Returns nullEvt ($0000).

If FindWindow returns wInDrag ($0014):

{
If TaskMask bit tmDragW (bit 6) = 0:

{

wmTaskData = window pointer returned from FindWindow.

Returns wiInDrag ($0014).

}
If bit 8 in the modifier field of TaskRec (Apple key up) and

the window is not active:

Calls SelectWindow to make window active.

}

Calls DragWindow.

wmTaskData = wiInDrag ($0014).

Returns nullEvt ($0000).

If FindWindow returns wInContent ($0013):

Calls TaskMasterContent.

If FindWindow returns wInGoAway ($0016):

If TaskMask bit tmClose (bit 8) = 0:

{

Chapter 52 Window Manager Update 52-41

wmTaskData = window pointer returned from FindWindow.

Returns winGoAway ($0016).

}

Calls TrackGoAway.

If TrackGoAway returns True:

{
wmTaskData = window pointer returned from FindWindow.

Returns wiInGoAway ($0016).

}

Low word of wmTaskData = wInGoAway ($0016).

Returns nullEvt ($0000).

If FindWindow returns wInZoom ($0017):

{

If TaskMask bit tmZoom (bit 9) = 0:

{

wmTaskData = window pointer returned from FindWindow.

Returns wiInZoom ($0017).

}

Calls TrackZoom.

If TrackZoom returns True:

{

Calls ZoomWindow.

Low word of wmTaskData = wInZoom ($0017).

Returns nullEvt ($0000).

}

Low word of wmTaskData = wTrackZoom (S$OO1F).

Returns nullEvt ($0000).

If FindWindow returns wiInGrow ($0015):

{

If TaskMask bit tmGrow (bit 10) = 0:

{

wmTaskData = window pointer returned from FindWindow.

Returns wiInGrow ($0015).

}

Calls GrowWindow.

Calls SizeWindow with results from GrowWindow.

Low word of wmTaskData = wInGrow ($0015).

Returns nullEvt ($0000).

5242 Apple IIcs Toolbox Reference,Volume 3

If FindWindow returns wiInInfo ($0018):

{

If TaskMask bit tmInfo (bit 15) = 0:

{

If window not active:

{

Calls SelectWindow.

Low word of wmTaskData = wiInInfo ($0018).

Returns nullEvt ($0000).

}
wmTaskData = window pointer returned from FindWindow.

Returns winInfo ($0018).

If FindWindow returns wiInFrame ($001B):

{

If TaskMask bit tmScroll (bit 11) = 0:

{
wmTaskData = window pointer returned from FindWindow.

Returns wiInFrame ($001B).

}

If window is not active:

{
Calls SelectWindow to make active.

Low word of wmTaskData = wHitFrame ($0020).

Returns nullEvt ($0000).

}

If button was on a window frame control (not scroll bar

control):

Low word of wmTaskData = wHitFrame ($0020).

Returns nullEvt ($0000).

)
Calls TrackControl with an action procedure within

TaskMaster.

The action procedure in TaskMaster performs scrolling and

updates.

Low word of wmTaskData = wiInFrame ($001B).

Returns nullEvt ($0000).

Chapter 52 Window Manager Update 52-43

Else (something returned from FindWindow other than those handled

above) :

wmTaskData = returned value from FindWindow.

Returns result from FindWindow.

}

} (end wmWhat field of TaskRec = mouseDownEvt)

If wmWhat field of TaskRec = keyDownEvt ($0003) OR autoKeyEvt ($0005):

{

Calls TaskMasterKey.

If wmWhat field of TaskRec = activateEvt ($0008):

{

If TaskMask bit tmCRedraw (bit 13) = 1:

{

If wframe bit fCtlTie (bit 3) = 0:

{

Invalidate the bounds rect of all normal controls in

the window.

For all extended controls in the window send the

defproc message ctlWinStateChange.

}

wmTaskData = pointer to window that was activated or deactivated

(check modifier field).

Returns activateEvt ($0008).

If wmWhat field of TaskRec = updateEvt ($0006):

{

If TaskMask bit tmUpdate (bit 1) = 0:

{

wmTaskData = pointer to window to be updated.

Returns updateEvt ($0006).

52-44 Apple liGs Toolbox Reference,Volume 3

If window's wContDefProc field = 0:

{
wmTaskData = pointer to window to be updated.

Returns updateEvt ($0006).

}

Calls BeginUpdate routine.

The window's draw routine in window's wContDefProc field is called

(routine in application).

Calls EndUpdate routine.

wmTaskData low word = updateEvt ($0006).

Returns nullEvt ($0000).

Chapter 52 Window Manager Update 52-45

TaskMasterContent S5DO0E

Internal routine that handles events inside the content region of a window. TaskMaster

invokes this routine if the tmcontentCont rols bit of the taskMask field of the task

recordis set to 1. Your program should neverissue thiscall.

Pseudocode

If tmContentControls in wmTaskMask = 1:

If mousedown in content region of frontmost window:

Set wmTaskData2, wmTaskData3, and wmTaskData4 to $00000000.

Call FindControl.

Put resulting partCode into low-order word of wmTaskData3.

Put controlHandle into wmTaskData2.

If partCode <> 0:

Call GetCtlID.

Put resulting control ID into wmTaskData4.

Call TrackControl with actionProcPtr set to SFFFFFFFF.

If result <> 0 or part code corresponds to scroll bar:

Put resulting partCode into high-order word of

wmTaskData3.

If the control is a check box or radio button:

Set or clear the value, as appropriate.

Endif.

Return (wInControl).

Endif.

Set low word of wmTaskData = wInControl.

Return (nullEvt).

Endif.

Else:

Set wmTaskData = pointer to window.

Return (wInContent) .

Endif.

Endif.

TaskMasterContentcalls FindCont rol.If the user did not press the button in a
control, then the routine returns a result code of wIncontent, indicating that the mouse
is in the content region of the window.

If the user did press the mouse buttonin a control, TaskMasterContentCalls
TrackCont rol, directing the Control Managerto use the appropriate action procedure
for the control.

52-46 Apple lIGs Toolbox Reference,Volume 3

When TrackControlreturms, TaskMasterContent examines the part code.If the
part code is set to 0, then the user decided not to use the control (released the mouse

button outside the control). faskMasterControlretumsa result code of nullEvt

($0000).

If the part code is nonzero,then the user released the mouse button within a control.
TaskMasterContentretumsa result code of wInCont rol, wmTaskDataz2contains

the control handle, wmTaskData3 (low-order word) contains the part code identifying
the control in which the user pressed the mouse button, wmTaskData3 (high-order word)
contains the part code identifying the control in which the user released the mouse

button, and wmTaskData4 contains the control ID Cif there is one defined).

Chapter 52 Window Manager Update 52-47

TaskMasterDA S5FOE

This call is the TaskMaster entry point for desk accessories. Your program passes event

information obtained from the Desk Manager.

Parameters

Stack before call

Previous contents

Space

eventMask

—- taskRecPtr -

Stack after call

Previous contents

Word—Spacefor result

Word—Not used

Long—Pointer to extended task record

<—SP

taskCode Word—TaskMaster result code

<—S§P

Errors None

C extern pascal Word TaskMasterDA (eventMask,

taskRecPtr);

Pointer taskRecPtr;

Word eventMask;

5248 Apple Ics Toolbox Reference,Volume 3

TaskMasterKey S5E0E

Internal routine that handles keystroke events inside the content region of a window.

Your program should neverissuethiscall.

Pseudocode

If tmMenuKey in wmTaskMask = 1:

If wmTaskData = 0: (menu did not take keystroke):

If tmInactive in wmTaskMask = 1:

If high word of wmTaskData <> 0:

Set low word of wmTaskData = Q.

Set high word of wmTaskData = ID of selected

inactive menu item.

Return (wInActMenu).

Endif.

Goto CheckControls.

Endif.

Else: (menu did take keystroke):

If low word of wmTaskData > 255:

If tmControlMenu in wmTaskMask = 1:

Call SendEventToCtl with targetOnlyFlag = TRUE.

If result <> 0:

Set wmTaskData2 = handle of control that

took keystroke.

Set wmTaskData3 = result code from

defProc.

Set wmTaskData4 = ID of control that took

keystroke.

Dim the menu title for selected menu item.

Set low word of wmTaskData =

wInControlMenu.

Return (nullEvt).

Endif.

Set low word of wmTaskData = ID of selected menu

item.

Set high word of wmTaskData = ID of menu from

which selection was made.

Return (wiInMenuBar).

Endif.

Chapter 52 Window Manager Update 52-49

Elseif low word of wmTaskData < 250:

If tmOpenNDA in wmTaskMask = 0:

Set low word of wmTaskData = ID of selected menu

item.

Set high word of wmTaskData = ID of menu from

which selection was made.

Return (wInDeskItem).

Endif.

Call OpenNDA.

Dim menu title for selected menu item.

Set low word of wmTaskData = wInDeskItem.

Return (nullEvt).

Elseif tmSpecial of wmTaskMask = 0:

Set low word of wmTaskData = ID of selected menu item.

Set high word of wmTaskData = ID of menu from which

selection was made.

Return (wInSpecial).

Elseif top window is an application window:

If tmControlMenu of wmTaskMask = 1:

Call SendEventToCtl with targetOnlyFlag = TRUE.

If result <> 0:

Set wmTaskData2 = handle of control that

took keystroke.

Set wmTaskData3 = result code from

defProc.

Set wmTaskData4 = ID of control that took

keystroke.

Dim the menu title for selected menu item.

Set low word of wmTaskData =

wInControlMenu.

Return (nullEvt).

Endif.

Endif.

Set low word of wmTaskData = ID of selected menu item.

Set high word of wmTaskData = ID of menu from which

item was selected.

Return (wInSpecial).

52-50 Apple IIGs Toolbox Reference,Volume 3

Elseif low word of wmTaskData = 250, 251, 252, 253, or 254:

Call SystemEdit.

If SystemEdit returns FALSE:

Set low word of wmTaskData = ID of selected menu

item.

Set high word of wmTaskData = ID of menu from

which item was selected.

Return (wInSpecial).

Endif.

Dim menu title for menu item that was selected.

Set low word of wmTaskData = wCalledSysEdit.

Return (nullEvt).

Elseif low word of wmTaskData = 255:

Call CloseNDAbyWinPtr for top window.

Dim menu title for menu item that was just selected.

Set low word of wmTaskData = wClosedNDA.

Return (nullEvt).

Endif.

Endif.

Endif.

CheckControls:

If tmControlKey in wmTaskMask = 1:

Set wmTaskData2, wmTaskData3, and wmTaskData4d = Q.

If there is a front window:

Call SendEventToctl with targetOnlyFlag = FALSE.

If result <> 0:

Set wmTaskData2 = handle of control that took the

keystroke.

Set wmTaskData3

Set wmTaskData4

keystroke.

Set wmTaskData = window containing control.

If control is a check box or radio button:

Set the ctlValue for the control.

Endif.

Return (wInControl).

Endif.

Endif.

Return (keyDownEvt or autoKeyEvt) .

Endif.

result from defProc.

ID of control that took the

Chapter 52 Window Manager Update 52-51

TaskMasterkeyfirst checks to see if menu keys are to be passed to the Menu Manager.

If so, TaskMasterKeycalls Menukey.If the user entered a menu keystroke, MenuKey

handlesit, and TaskMasterKeyretumscontrol to the calling application.

If the user did not enter a menu key equivalent orif keystrokes are not to be passed to

the Menu Manager, TaskMasterKeylooksfor a controlin the active window that can

receive the keystroke. If a control takes the event, TaskMasterKey returns nullEvt to

the calling application. Otherwise, TaskMasterKey retums keyDownEvt, indicating
that the keystroke is for the application.

GDRPrivate $540E

This is an internal Window Managercall; your program should neverissue this call.

52-52 Apple lIGS Toolbox Reference,Volume 3

Error messages

Table 52-4 documents the error numbers and accompanying messages produced bythe
ErrorWindowtoolcall. For each error number, the following table specifies the message
text displayed in the dialog box, the icon shown,and the buttons available for the userto
press. Any required substitution strings are shown in the messagetext.

= Table 52-4 Error messages

Error (hex) Message Icon Button

$00 No error occurred. None OK

$01 Bad system call number. None OK

$04 Invalid parameter count. None OK

$07 GS/OS already active. None OK

$10 Device not found. None OK

$11 Invalid device number. None OK

$20 Bad request or demand. None OK

$21 Bad control or status code. None OK

$22 Bad call parameter. None OK

$23 Character device not open. None OK

$24 Character device already open. None OK

$25 Interrupt table full. None OK

$26 Resources not available. None OK

$27 I/O error. None OK

$28 Device not connected. None OK

$29 Driver is busy and not available. None OK

$2B Device is write protected. None OK

$2C Invalid byte count. None OK

$2D Invalid block number. None OK

$2E Disk has been switched. None OK

$2F Device off-line/no media present. None OK

$40 Invalid pathname syntax. None OK

$43 Invalid reference number. None OK

$44 Subdirectory does not exist. None OK

$45 Volume not found. None OK

$46 File not found. None OK

[continued]

Chapter 52 Window Manager Update 52-53

a Table 52-4 Error messages [continued]

Error (hex) Message Icon Button

$47 Duplicate pathname. None OK

$48 Volume full. None OK

$49 Volume directory full. None OK

$4A Version error. None OK

$4B Bad storage type. None OK

$4C End of file encountered. None OK

$4D Position out of range. None OK

$4E Access not allowed. None OK

$4F Buffer too small. None OK

$50 File is already open. None OK

$51 Directory error. None OK

$52 Unknown volume type. None OK

$53 Parameter out of range. None OK

$54 Out of memory. None OK

$57 Duplicate volume name. None OK

$58 Not a block device. None OK

$59 Specified level is outside legal range.

None OK

$5A Block number too large. None OK

$5B Invalid pathnames for changepath. None OK

$5C Not an executable file. None OK

$5D Operating system not supported. None OK

$5F Stack overflow. None OK

$60 Data unavailable. None OK

$61 End of directory has been reached. None OK

$62 Invalid FST call class. None OK

$63 File does not contain requested resource.

None OK

$64 Specified FST is not present in system.

None OK

$65 FST does not handle this type of call.

None OK

$66 FST handled call, but result is weird.

None OK

[continued]

52-54 Apple IIcs Toolbox Reference,Volume 3

= Table 52-4 Error messages [continued]

Error (hex) Message Icon Button

$67 Internal error. None OK

$68 Device list is full. None OK

$69 Supervisor list is full. None OK

$70 Cannot expand file, resource already exists.

None OK

$71 Cannot add resource fork to this type of file.

None OK

$72 Unknown error: [errorstring]. None Cancel

$80 Error creating the new directory: [reasonstring].

Stop Cancel

$81 Error saving the file: [reason string]. Stop Cancel

$82 Insufficient access privileges to open that folder.

Stop OK

$83 The selected folder cannot be opened: [reasonstring].

Stop Cancel

$84 You cannot replace a folder with a file.

Stop Cancel

985 That file already exists. Stop Cancel

Replace

$86 Insufficient memory to perform that operation.

About[numberstringkk additional needed.
Stop Cancel

$87 Initialization failed: Disk write protected.

Stop Cancel

$88 The pathname is too long. Stop OK

$89 The disk is write protected. Caution Cancel

$8A The disk is full. Stop Cancel

$8B The disk directory is full. Stop Cancel

$8C The file is copy-protected and can't be copied.

Stop Cancel

$8D Memory is full. Stop OK

[continued]

Chapter 52 Window Manager Update 52-55

= Table 52-4 Error messages[continued]

Error (hex) Message Icon Button

$8E There isn't enough memory remaining to complete this

operation. Please close some windows and try again.

Stop OK

$8F The item is locked and can't be renamed.

Stop Cancel

$90 An I/O error has occurred while using the disk.

Stop Cancel

$91 This disk seems to be damaged. Stop Cancel

$92 Not a ProDOS disk. Stop OK

$93 No on-line volumes can be found. Stop OK

$94 Insert the disk: [namestring]. Swap Cancel

52-56 Apple IIGs Toolbox Reference,Volume 3

Appendix E Resource Types

This appendix documents the format and content of standard resources
used by the Apple IIGS Toolbox. The resources are discussed in
alphabetical order by resource type name.A table thatlists all resources

in ascending order by resource type number precedes these resource

descriptions.

E-1

Resource type numbers

This appendix presents resource descriptions in order by resource type name. Often,
however, you may need to determine a resource given only its resource type number. Table
E-1 lists all currently defined resources in ascending order by resource type number.

= Table E-1 Resourceslisted by resource type number

Resource type

number (hex) Resource type name Description

$8001 rIcon Icon specification

$8002 rPicture QuickDraw II picture definition

$8003 rControlList Control Managercontrollist

$8004 rControlTemplate Control Manager input templates

$8005 rClInputString GS/OSclass 1 inputstring
$8006 rPString Pascalstring

$8007 rStringList Array ofPascal strings
$8008 rMenuBar Menubarrecord

$8009 rMenu Menutemplate

$800A rMenuItem Menuitem definition

$800B rTextForLETextBox2 Data for LineEdit LETextBox2 toolcall

$800D rCt1lColorTbl Color table for control
$800E rWindParaml Parameters for NewWindow2

$800F rWindParam2 Parameters for NewWindow2

$8010 rWindColor Window Managercolortable

$8011 rTextBlock Text block

$8012 rStyleBlock TextEdit style information

$8013 rToolStartup Tool set startup record

$8014 rResName Resource name
$8015 rAlertString AlertWindow input data
$8016 rText Unformatted text
$801A rTwoRects Two rectangles
$801C rListRef List member
$801D rcString C string
$8020 rErrorString ExrorWindow input data

$8021 rKTransTable Keystroke translation table
$8023 rCloutputString GS/OSclass 1 output string

$8025 rTERuler TextEdit ruler information

E-2 Apple IIGs Toolbox Reference, Volume 3

rAlertString $8015

Figure E-1 defines the layout of resource type rAlert String ($8015). Resources ofthis
type define the data for alert windowsto be displayed by the AlertWindow Window

Managertoolcall. For more complete information on alert window definitions, see
Chapter 52, “Window Manager Update,” earlier in this book.

AlertWindowaccepts a reference to a string that contains its message and a reference

to an array of substitution strings. The substitution strings can be any of seven standard

strings (such as “OK,” “Continue,” and so on) or can be specified by the application and
stored in the buffer to which the substitution-string pointer refers.

= Figure E-1 Alert string, type rAlert String ($8015)

$00:
: alertString : Array
Le J

alertString The alert message to be displayed. Contents ofthis string must

comply with the rules for alert window definitions documented in
Chapter 52, “Window Manager Update,”earlier in this book.

Appendix E Resource Types E-3

rCliInputString $8005

Figure E-2 defines the layout of resource type rCl Input St ring ($8005). Resources of

this type contain GS/OSclass 1 input strings (length word followed by data).

= Figure E-2 GS/OSclass 1 input string, type rc1 Input St ring ($8005)

S00 length — Word

$02 - stringCharacters : length bytes
l J

length The numberofbytes stored at st ringCharacters. Thisis an

unsignedinteger; valid valueslie in the range from 1 to 65,535.

stringCharacters

Array of lengthcharacters.

E-4

=

Apple IIGs Toolbox Reference, Volume 3

rC1loOutputString $8023

Figure E-3 defines the layout of resource type rcloutput St ring ($8023). Resources of

this type contain GS/OSclass 1 output strings (buffer size word and string length word
followed by data).

s Figure E-3 GS/OSclass 1 outputstring, type rcloutputString ($8023)

$00 bufferSize + Word

$02 stringLength — Word

$04 ° : ;
- stringCharacters - stringLength bytes
L j

bufferSize The numberofbytes in the entire structure, including bufferSize.

stringLength The numberofbytes stored at stringCharacters. This is an

unsigned integer; valid values lie in the range from 1 to 65,535.If the
returned string does notfit in the buffer, this field indicates the length
of the string the system wants to return. Your program should add 4 to
that value (to account for bufferSize and stringLength),resize
the buffer, and reissue the call.

stringCharacters

Array of st ringLengthcharacters.

Appendix E Resource Types E-5

rControlList $8003

Figure E-4 defines the layout of resource type rcont rolList ($8003). The Control

Managerstoreslists of resource IDs in resources ofthis type.

a Figure E-4 Controllist, type rcontrolList ($8003)

 $00 | 1
0: ctlList - Array oflongs

j

ctlList List of resource IDs for control template definitions. The last entry
must be set to NIL.

E-6

=

Apple IIGs Toolbox Reference, Volume 3

rControlTemplate $8004

Resources of type rCont rolTemplate ($8004) define control templates, used with the
Control Manager NewCont ro12 toolcall to create controls. Youfill a type
rControlTemplate resource according to the needs ofthe particular control you want

to create. The system distinguishes between different control templates by examining the
procRef field in the standard header portion that precedes each template.

Control template standard header

Each control template contains the standard header, which consists of seven fields.
Following that header, some templates have additional fields, which further define the
control to be created. Figure E-5 showsthe format and content of the standard template
header.

Custom control definition procedures establish their own item template layout. The only

restriction placed on these templates is that the standard header be present and well
formed. Custom data for the control procedure may follow the standard header.

= Figure E-5 Control template standard header

$00 pCount —+ Word

$02 L a
— ID — Long

$06 rect : Rectangle

SOE |- a
— procRef = Long

$12 - flag — Word

$14 L moreFlags + Word

$16 + 4
— refCon = Long

pCount Count of parameters in the item template, not including the pcount
field. Minimum value is 6; maximum value varies depending on the

type of control template.

Appendix E Resource Types E-7

ID

rect

procRef

Parameterthat sets the ct 11D field of the control record for the new

control. The ct 11D field may be used bythe application to provide a
straightforward mechanism for keeping track of controls. The control
ID is a value assigned by your application, which the control “carries
around” for your convenience. Your application can use the ID, which
has a knownvalue,to identify a particular control.

Parameterthat sets the ct 1Rectfield of the control record for the
new control. Defines the boundary rectangle for the control.

Parameterthat sets the ct 1Procfield of the control record for the
new control. This field contains a reference to the control definition

procedure for the control. The value ofthis field is either a pointer to
(or a resource ID for) a control definition procedure or the ID of a
standardroutine.If the fct 1ProcRefNotPtr flag in the
moreF lagsfield is set to 0, then procRef must contain a pointer. If

the flag is set to 1, then the Control Manager checks the low-order

three bytes of procRef.If these bytes are all zero, then procRef

must contain the ID for a standard routine; if these bytes are nonzero,

procRef contains the resource ID for a control routine.

The standard values are

simpleButtonControl $80000000 Simple button

checkControl $82000000 Check box
iconButtonControl $07FF0001 Icon button

editLineControl $83000000 LineEdit

listControl $89000000 List

pictureControl $8D000000 Picture

popUpControl $87000000 Pop-up menu
radioControl $84000000 Radio button

scrollBarControl $86000000 Scroll bar

growControl $88000000 Size box

statTextControl $81000000 Static text

editTextControl $85000000 TextEdit

©@ Note: The procRef value for iconButtonControlis nottruly a standard value but
rather the resource ID of the standard control definition procedure for icon buttons.

E8

=

Apple IIGs Toolbox Reference, Volume 3

flag A word used to set both ct 1Hilite and ct1F1lagin the control

record for the new control. Since this is a word, the bytes for
ctlHilite and ct1Flag are reversed. The high-order byte of flag

contains ct 1Hilite,and the low-order byte contains ct 1Flag. The

bits in £1ag are mappedasfollows:

Highlight bits 15-8 Indicates highlighting style.
0 = Control active, no highlighted parts
1-254 = Part code of highlighted part
255 = Control inactive

Invisible bit 7 Governsvisibility of control.

0 = Controlvisible
1 = Controlinvisible

Variable bits 6-0 Values and meaning depend upon

control type.

Appendix E Resource Types E-9

moreFlags Used to set the ct 1MoreFlagsfield of the control record for the

new control.

The high-order byte is used by the Control Managerto store its own

control information. The low-order byte is used by the control

definition procedure to define reference types.

The defined Control Managerflags are

fCtlTarget $8000

fCtlCanBeTarget $4000

fCtlWantEvents $2000

fCtlProcRefNotPtr

$1000

fCtlTellAboutSize

$0800

fCtlIsMultiPart $0400

If this flag is set to 1, this control is currently the
target of any typing or editing commands.

If this flag is set to 1, this control can be made the

target control.

If this flag is set to 1, this control can be called when

events are passed via the SendEventToCt1 Control
Managercall. (Note that, if the fct 1canBeTarget

flag is set to 1, this control will receive events sent to
it regardless of the setting ofthis flag.)

If this flag is set to 1, then the Control Manager
expects procRef to contain the ID or resource ID of
a control procedure;ifit is set to 0, then procRef

contains a pointer to a custom control procedure.

If this flag is set to 1, this control needs to be
notified when the size of the owning window has
changed.This flag allows custom control procedures

to resize their associated control images in response

to changes in windowsize.

If set to 1, then this is a multipart control. This flag
allows control definition procedures to manage

multipart controls (necessary since the Control

Managerdoesnot know aboutall the parts of a
multipart control).

The low-order byte uses the following convention to describe
references to color tables andtitles (note, though, that some control

templates do not follow this convention):

titleIsPtr $00
titleIsHandle $01

titleIsResource $02

colorTableIsPtr $00

Title reference is by pointer

Title reference is by handle

Title reference is by resource ID (resource type

corresponds to string type)

Color table reference is by pointer

E-10 Apple IIGs Toolbox Reference, Volume 3

colorTableIsHandle $04 Color table reference is by handle
colorTableIsResource $08 Color table reference is by resource ID (resource type

of rct 1ColorTbl, $800D)

refCon Used to set the ct LRefConfield of the control record for the new

control. Reserved for application use.

Appendix E Resource Types E-11

Keystroke equivalent information

Manyof these control templates allow you to specify keystroke equivalent information

for the associated controls. Figure E-6 shows the standard format for that keystroke

information.

= Figure E-6 Keystroke equivalent record layout

S00 keyl Byte

$01 key2 Byte

S02 keyModifiers + Word

S04 keyCareBits + Word

keyl

key2

keyModifiers

keyCareBits

E-12

This is the ASCII code for the uppercase or lowercase of the key
equivalent.

This is the ASCII code for the uppercase or lowercase of the key
equivalent. Taken with key1, this field completely defines the values

against which key equivalents will be tested. If only a single key code

is valid, then set key1 and key2 to the samevalue.

These are the modifiers that must be set to 1 for the equivalencetest
to pass. The format of this flag word corresponds to that defined for
the event record in Chapter 7, “Event Manager,” in Volume 1 of the

Toolbox Reference. Note that only the modifiers in the high-order byte
are used here.

These are the modifiers that must match for the equivalencetest to
pass. The format of this word corresponds to that of

keyModifiers. This word allows you to discriminate between

double-modified keystrokes. For example, if you want Control-7 to
be an equivalent, but not Option-Control-7, you set the controlKey bit

in keyModifiers and boththe optionKey and the controlKeybits in
keyCareBitsto 1. If you want Return and Enter to have the same
effect, you should set the keyPadbit to 0.

Apple IIGs Toolbox Reference, Volume 3

Simple button control template

Figure E-7 shows the template that defines a simple button control.

=» Figure E-7 Item template for simple button controls

$00 + pCount — Word—Parameter countfor template:7, 8, or 9

$02 + _
— ID —| Long—Application-assigned control ID

$06 !
; rect - Rectangle—Boundary rectangle for control

SOE |- —
— procRef — Long—simpleButtonCont rol =$80000000

$12, flag — Word—Highlight and contro!flags for control

S14 - moreFlags — Word—Additional controlflags

$16 L _
— refCon —| Long—Application-defined value

S1A | =
— titleRef — Long—Referencetotitle of button

SIE _
— *colorTableref —; Long—Reference to color table for control (optional)

$22 ! ; ,
: *keyEquivalent =: Block, 6 bytes—Keystroke equivalent data (optional)
L_ _I

Defined bits for flag are

Reserved

ctliInvis

Reserved

Button type

bits 15-8 Mustbesetto 0.

bit 7 0 = Visible, 1 = Invisible.

bits 6-2 Must be setto 0.
bits 1-0 Describes button type.

0 = Single-outlined, round-cornered button

1 = Bold-outlined, round-cornered button

2 = Single-outlined, square-cornered button

3 = Single-outlined, square-cornered, drop-

shadowed button

Appendix E Resource Types __E-13

Defined bits for moreFlags are

fCtlTarget bit 15
fCt1lCanBeTarget bit 14

fCtlwWantEvents bit 13

fCtlProcRefNotPtr bit 12

fCtlTellAboutSize bit 11

Reserved bits 10-4

Color table reference bits 3-2

Title reference bits 1-0

Must besetto 0.
Mustbesetto 0.

Set to 1 if button has keystroke equivalent.
Must beset to 1.
Mustbesetto 0.
Mustbesetto 0.
Defines type of reference in colorTableRef.

(See Chapter 4, “Control Manager,” in Volume 1 of
the Toolbox Referencefor the definition of the

simple button colortable.)

00 = Color table reference is by pointer

01 = Color table reference is by handle

10 = Color table reference is by resource ID

(resource type of rct 1ColorTbl, $800D)
11 = Invalid value

Defines typeoftitle reference in titleRef.

00 = Title reference is by pointer

01 = Title reference is by handle

10 = Title reference is by resource ID (resource type
correspondsto string type)

11 = Invalid value

keyEquivalent Keystroke equivalent information stored at keyEquivalentis

formatted as shownin Figure E-6.

E-14 Apple IIGs Toolbox Reference, Volume 3

Check box control template

Figure E-8 showsthe template that defines a check box control.

= Figure E-8 Control template for check box controls

S00

$02

$06 |

SOE

$12

$14

$16

SIA

SIE

$20

$24

pCount —

1
] ID

|
1
4

rect

procRef

flag

moreF lags

i
y
i

refCon

titleRef

initialValue

|

*colorTableRef

*keyEquivalent

Defined bits for flag are

Reserved

ctlInvis

Reserved

Word—Parametercountfor template: 8, 9, or 10

Long—Application-assigned control ID

- Rectangle—Boundary rectangle for control

Long—checkBoxControl =582000000

Word—Highlight and controlflags for control

Word—Additional controlflags

Long—Application-defined value

Long—Referenceto title of box

Word—lInitial box setting: 0 for clear, 1 for checked

Long—Reference to color table for control (optional)

Block, 6 bytes—Keystroke equivalentdata (optional)

bits 15-8 Mustbesetto 0.

bit 7 0 = Visible, 1 = Invisible.
bits 6-0 Must beset to 0.

Appendix E Resource Types E-15

Defined bits for moreFlagsare

fCtlTarget bit 15

fCtlCanBeTarget bit 14

fCtlWantEvents bit 13

fCtlProcRefNotPtr bit 12

fCtlTellAboutSize bit 11

Reserved bits 10-4

Color table reference bits 3-2

Title reference bits 1-0

Must besetto 0.

Must besetto 0.
Set to 1 if check box has keystroke equivalent.
Must besetto 1.

Mustbesetto 0.

Mustbesetto 0.

Defines type of reference in colorTableRef.
(See Chapter 4, “Control Manager,” in Volume 1 of

the Toolbox Reference for the definition of the

check box colortable.)

00 = Color table reference is by pointer

01 = Colortable reference is by handle

10 = Color table reference is by resource ID

(resource type of rct 1ColorTb1, $800D)
11 = Invalid value
Defines type oftitle reference in titleRef.
00 = Title reference is by pointer
01 = Title reference is by handle
10 = Title reference is by resource ID (resource type
correspondsto string type)

11 = Invalid value

keyEquivalent Keystroke equivalent information stored at keyEquivalentis

formatted as shownin Figure E-6.

E-16 Apple Ics Toolbox Reference, Volume 3

Icon button control template

Figure E-9 showsthe template that defines an icon button control. For more information

about icon button controls, see “Icon Button Control” in Chapter 28, “Control Manager
Update,” in this book.

= Figure E-9 Control template for icon button controls

$00 pCount —| Word—Parameter countfor template: 7, 8, 9, 10, or 11

$02 L 4
— ID —| Long—Application-assigned control ID

$06 : rect - Rectangle—Boundary rectangle for control

SOE - =
— procRef — Long—iconButtonControl =S07FF0001

$12 - flag — Word—Highlight andcontrolflags for control

$14 moreFlags — Word—Additional controlflags

$16 =
— refCon — Long—Application-defined value

S1A —
— iconRef — Long—Referenceto icon for control

SIE —
— *citleRef —| Long—Referenceto title for control (optional)

$22 L =
— *colorTableref -—| Long—Reference to colortable for control (optional)

$26} *displayMode —| Word—Bitflag controlling icon appearance(optional)

$28 : *keyEquivalent —: Block, 6 bytes—Key equivalent information (optional)
L j

Appendix E Resource Types E-17

Defined bits for f1ag are

ctlHilite bits 15-8 Sets the ct 1Hilite field of the control record.

ctlInvis bit 7 0 = Visible, 1 = Invisible.

Reserved bits 6-3 Mustbesetto 0.
showBorder bit 2 0 = Show border, 1 = No border.

buttonType bits 1-0 Defines button type.

00 = Single-outlined, round-cornered button

01 = Bold-outlined, round-cornered button

10 = Single-outlined, square-cornered button

11 = Single-outlined, square-cornered, and drop-
shadowedbutton

E-18 Apple IIGS Toolbox Reference, Volume3

Defined bits for moreFlagsare

fCtlTarget

£CtlCanBeTarget

fCtlwantEvents

£CtlProcRefNotPtr

fCtlTellAboutSize

Reserved

Icon reference

Color table reference

Title reference

bit 15
bit 14

bit 13
bit 12

bit 11

bits 10-6

bits 5—4

bits 3-2

bits 1-0

Mustbeset to 0.

Must besetto 0.

Must besetto 0.

Mustbesetto 1.

Mustbesetto 0.

Mustbesetto 0.

Defines type of icon reference in iconRef.

00 = Icon reference is by pointer
01 = Icon reference is by handle
10 = Icon reference is by resource ID (resource

type of rIcon, $8001)
11 = Invalid value
Defines type of reference in colorTableRef;the
color table for an icon button is the sameasthat
for a simple button. (See Chapter 4, “Control

Manager,” in Volume1 of the Toolbox Referencefor
the definition of the simple button color table.)

00 = Colortable reference is by pointer

01 = Color table reference is by handle

10 = Colortable reference is by resource ID

(resource type of rct 1ColorTbl, $800D)
11 = Invalid value

Defines typeoftitle reference in titleRef.
00 = Title reference is by pointer
01 = Title reference is by handle

10 = Title reference is by resource ID (resource

type of rPst ring, $8006)
11 = Invalid value

titleRef Reference to thetitle string, which must be a Pascalstring. If you are
not using a title but are specifying other optional fields, set
moxreF lagsbits 0 and 1 to 0, andsetthis field to 0.

Appendix E Resource Types _E-19

displayMode

Background color

Foreground color

Reserved

offLine

openicon

selectediIcon

keyEquivalent

Passed directly to the DrawIconroutine, a field defining the display

modefor the icon. Thefield is defined as follows (for more

information on icons, see Chapter 17, “QuickDraw II Auxiliary,” in

Volume2 of the Toolbox Reference).

bits 15-12 Defines the background color to apply to black part

of black-and-white icons.
bits 11-8 Defines the foregroundcolorto apply to white part

of black-and-white icons.
bits 7-3 Mustbeset to 0.
bit 2 0 = Don’t perform the AND operation on the image

1 = Perform the logical AND operation with light-gray
pattern and image being copied

bit 1 0 = Don’t copylight-gray pattern

1 = Copylight-gray pattern instead of image

bit 0 0 = Don’t invert image
1 = Invert image before copying

Color values (both foreground and background) are indexes into the

current color table. See Chapter 16, “QuickDrawII,” in Volume 2 of the

Toolbox Reference for details about the format and contentof these
color tables.

Keystroke equivalent information stored at keyEquivalentis
formatted as shownin Figure E-6.

E-20

=

Apple IIGS Toolbox Reference, Volume 3

LineEdit control template

Figure E-10 shows the template that defines a LineEdit control. For more information
about LineEdit controls, see “LineEdit Control” in Chapter 28, “Control Manager Update,”
in this book.

= Figure E-10 Control: template for LineEdit controls

S00 - pCount —| Word—Parameter countfor template: 8

S02 - -
— ID — Long—Application-assigned control ID

$06 rect : Rectangle—Boundary rectangle for control

SOE - _
— procRef + Long—editLineControl =$83000000

$12 - flag — Word—Highlight and controlflags for control

$14 - moreFlags — Word—aAdditionalcontrol flags

$16 - 4
— refCon — Long—Application-defined value

SIA maxSize — Word—Maximum length ofinputline (in bytes)

S1C _
— defaultRef — Long—Reference to default text

Defined bits for flag are

Reserved bits 15-8 Must besetto 0.

ctlInvis bit 7 0 = Visible, 1 = Invisible.

Reserved bits 6-0 Must besetto 0.

Appendix E Resource Types E-21

Defined bits for moreFlagsare

fCtlTarget bit 15 Mustbesetto 0.

fCtlCanBeTarget bit 14 Must besetto 1.

fCtlWantEvents bit 13 Must besetto 1.

fCtlProcRefNotPtr bit 12 Mustbesetto 1.

£CtlTellAboutSize

bit 11 Must beset to 0.

Reserved bits 10-2 Must beset to 0.
Text reference bits 1-0 Defines type oftext reference in defaultRef.

00 = Text reference is by pointer
01 = Text reference is by handle

10 = Text reference is by resource ID (resource

type of rPString, $8006)

11 = Invalid value

maxSize The maximum numberofcharacters allowedin the LineEdit field.

Valid valueslie in the range from 1 to 255.

The high-order bit indicates whether the LineEdit field is a password

field. Password fields protect user input by echoing asterisks rather

than the actual user input. If this bit is set to 1, then the LineEdit field
is a passwordfield.

Note that LineEdit controls do not support color tables.

E22 Apple IIGs Toolbox Reference, Volume 3

List control template

Figure E-11 shows the template that defines a list control. For more information aboutlist
controls, see “List Control” in Chapter 28, “Control Manager Update,” in this book.

a Figure E-11 Control template for list controls

$00 L pCount — Word—Parameter countfor template: 14 or 15

$02 L -
— ID — Long—Application-assigned control ID

$06 !
rect - Rectangle—Boundary rectangle for control

SOE L -
— procRef — Long—listCont ro1=$890000000

$12 F flag — Word—Highlight and controlflags for control

$14 L moreFlags — Word—Additional controlflags

$16 -
— refCon — Long—Application-defined value

SIA |. listSize —| Word—Numberof membersin list

SIC ListView | Word—Numberofmembers in window

SIE L listType —| Word—Type oflist entries, selection options

$20 L listStart — Word—First visible list member
$22 L _

— listDraw — Long—Pointer to member-drawingroutine

$261. listMemHeight — Word—Heightofeachlist item in pixels

S28} histmemsize —| Word—Size oflist entry in bytes

S2A LL -
om listRef — Long—Referenceto list of memberrecords

S2E -
-- *colorTableRef — Long—Referenceto colortable (optional)

Defined bits for flag are

Reserved bits 15-8 Must besetto 0.

ctlinvis bit 7 0 = Visible, 1 = Invisible.

Reserved bits 6-0 Must besetto 0.

Appendix E Resource Types __E-23

Defined bits for moreFlags are

fCtlTarget bit 15

fCtlCanBeTarget bit 14

fCtlWantEvents bit 13

fCtlProcRefNotPtr

bit 12

fCtlTellAboutSize

bit 11

fCtlisMultiPart bit 10

Reserved bits 9-4
Color table reference bits 3-2

List reference bits 1-0

Must besetto 0.

Must be set to 0.

Mustbesetto 0.

Must besetto 1.

Mustbeset to 0.
Must besetto 1.
Mustbeset to 0.
Defines type of reference in colorTableRef.(The
colortable for a list control is described in

Chapter 11, “List Manager,” in Volume 1 of the
Toolbox Reference.)

00 = Colortable referenceis by pointer

01 = Color table reference is by handle
10 = Colortable referenceis by resource ID (resource
type of rct 1ColorTbl, $800D)
11 = Invalid value

Defines type ofreference in 1istRef. (The format
of a list memberrecord is described in Chapter 11,
“List Manager,” in Volume 1 of the Toolbox Reference.)
00 = List reference is by pointer

01 = List reference is by handle
10 = List reference is by resource ID (resource type of
rListRef, $801C)

11 = Invalid value

E-24 Apple IIGs Toolbox Reference, Volume 3

listType Valid values for 1istTypeare as follows:

Reserved bits 15-3 Must besetto 0.

fListScrollBar bit 2 Allows you to control wherethe scroll barforthelist is

drawn.

0 = Scroll bar drawn on outside of boundary rectangle
1 = Scroll bar drawn on inside of boundary rectangle;
the List Managercalculates space needed, adjusts

dimensions of boundary rectangle, and resets this flag

fListSelect bit 1 Controls type of selection options available to the user.
0 = Arbitrary and rangeselection allowed

1 = Onlysingle selection allowed
fListString bit 0 Defines the type ofstrings used to definelist items.

0 = Pascalstrings

1 = C strings ($00-terminated)

For details on the remaining custom fields in this template, see the discussion of“List
Controls and List Records” in Chapter 11, “List Manager,” of Volume 1 of the Toolbox
Reference.

Appendix E Resource Types E-25

Picture control template

Figure E-12 shows the template that defines a picture control. For more information about picture

controls, see “Picture Control” in Chapter 28, “Control Manager Update,” in this book.

a Figure E-12 Control template for picture controls

$00 pCount Word—Parameter countfor template:7

— ID — Long—Application-assigned control ID

$06 : rect : Rectangle—Boundary rectangle for control

SOE ~
— procRef — Long—pictureCont rol =S8D000000

$12 flag + Word—Highlight and controlflags for control

S14- moreFlags — Word—Additional controlflags

$16 L -
— refCon ~ Long—Application-defined value

SIAL ~
— pictureRef — Long—Referenceto picture for control

Defined bits for flag are

ctlHilite bits 15-8 Specifies whether the control wants to receive mouse
selection events; the values for ct LHilite are
0 = Controlis active

255 = Controlis inactive

ctliInvis bit 7 0 = Visible, 1 = Invisible.

Reserved bits 6-0 Must besetto 0.

E-26 Apple IIGs Toolbox Reference, Volume 3

Defined bits for moreFlagsare

fCtlTarget bit 15 Mustbeset to 0.

fCt1CanBeTarget bit 14 Mustbesetto 0.

fCtlWantEvents bit 13 Mustbesetto 0.

fCtlProcRefNotPtr bit 12 Must besetto 1.

fCtlTellAboutSize bit 11 Mustbesetto 0.

Reserved bits 10-2 Must besetto 0.

Picture reference bits 1-0 Define type of picture reference in pictureRef.
00 = Invalid value
01 = Reference is by handle
10 = Reference is by resource ID (resource type of
rPicture, $8002)

11 = Invalid value

Appendix E Resource Types _E-27

Pop-up control template

Figure E-13 shows the template that defines a pop-up control. For more information about pop-up
controls, see “Pop-up Control” in Chapter 28, “Control Manager Update,” in this book.

= Figure E-13 Control template for pop-up controls

S00 pCount —| Word—Parameter countfor template: 9 or 10

S02 = ID - Long—Application-assigned control ID

$06 ; rect - Rectangle—Boundary rectangle for control

SOE + =
— procRef = Long—popUpCont ro1=$87000000

S120 flag —| Word—Highlight and controlflags for control

$14 - moreF lags — Word—Additionalcontrolflags

“16 L refCon - Long—Application-defined value

SIA [7 titleWidth — Word—Width in pixels oftitle string area

16 H menuRe f 4 Long—Reference to menu definition

520 [initiaivalue |—| Word—Item ID ofinitialitem

22 | *colorTableRef - Long—Referenceto colortable for control (optional)

E-28

=

Apple IIGs Toolbox Reference, Volume3

Defined bits for flag are

ctlHilite

ctliInvis bit 7

fType2PopUp bit 6

fDontHiliteTitle bit 5

fDontDrawTitle bit 4

fDontDrawResult bit 3

fInWindowOnly bit 2

fRightJustifyTitle

bit 1

bits 15-8 Specifies whether the control wants to receive mouse

selection events; the values for ct LHilite are

0 = Control is active

255 = Controlis inactive

0 = Visible, 1 = Invisible.

Tells the Control Manager whether to create a pop-up
menu with white spacefor scrolling (see Chapter37,
“Menu Manager Update,” for details on type 2 pop-up
menus).
0 = Draw normal pop-up
1 = Draw pop-up with white space (type 2)
Controls highlighting of the controltitle.

0 = Highlighttitle
1 = Do nothighlighttitle

Allows you to prevent thetitle from being drawn

(note that you must supply title in the menu

definition, whether or notit will be displayed);if

tit leWidthis defined andthis bit is set to 1, then

the entire menuis offset to the right by tit leWidth
pixels.

0 = Drawthetitle

1 = Do not drawthetitle
Allows you to control whetherthe selection is drawn

in the pop-uprectangle.

0 = Draw theresult
1 = Do not draw theresult in the result area after a
selection
Controls the extent to which the pop-up menu can be
enlarged; this is particularly relevant to type 2 pop-up

menus(see Chapter 37, “Menu Manager Update,”for
details on type 2 pop-up menus).

0 = Allow the pop-up menuto enlarge to screen size
1 = Keep the pop-up menuin the current window

Controls title justification.
0 = Left-justify the title

1 = Right-justify the title; note that if thetitle is right

justified, then the control rectangle is adjusted to

eliminate unneeded pixels; the value for

titleWidthis also adjusted

Appendix E Resource Types E-29

fRightJustifyResult

bit 0

Defined bits for moreFlagsare

fCtlTarget bit 15
fCtlCanBeTarget bit 14

fCtlWantEvents bit 13

fCtlProcRefNotPtr

bit 12

£CtlTellAboutSize

bit 11

Reserved bits 10-5
Color table reference bits 4-3

fMenuDefIsText bit 2

Menureference bits 10

E-30

Controls result justification.

0 = Left-justify theselection t itLleWidth pixels
from the left of the pop-up rectangle
1 = Right-justify the selection

Mustbesetto 0.
Mustbesetto 0.

Mustbeset to 1 if the pop-up menu has any

keystroke equivalents defined.

Must besetto 1.

Mustbesetto 0.
Mustbesetto 0.
Defines type of reference in colorTableRef. (The
color table for a menu is described in Chapter 13,
“Menu Manager,” in Volume1 of the Toolbox

Reference.)

00 = Color table reference is by pointer

01 = Color table reference is by handle

10 = Colortable reference is by resource ID (resource

type of rct1ColorTbl, $800D)

11 = Invalid value

Defines type of data referred to by menuRef.
0 =menuRefis a reference to a menu template (See

Chapter 13, “Menu Manager,” in Volume1 of the

Toolbox Reference for details on format and content
of a menutemplate.)
1 = menuRefis a pointerto a text stream in

NewMenu format (Again, see Chapter 13, “Menu
Manager,” in Volume1 of the Toolbox Reference for
details.)
Defines type of menu reference in menuRef (if
fMenuDefIsTextis set to 1, then thesebits are

ignored).
00 = Menureferenceis by pointer

01 = Menureference is by handle

10 = Menureference is by resource ID (resource type

of rMenu, $8009)

11 = Invalid value

Apple IIGs Toolbox Reference, Volume 3

rect

titleWidth

menuRef

initialValue

The boundary rectangle for the pop-up menuandits title, before the

menuis selected by the user. The Menu Managercalculates the lower-
right coordinates of the rectangle for you if you specify them as (0,0).

A parameter providing additional control over placement of the menu
on the screen. The tit lewidth field defines an offset from the left
edge of the control (boundary) rectangle to the left edge of the pop-
up rectangle. If you are creating a series of pop-up menus and you
wantto align them vertically, give all menus the same x] coordinate

and tit lewidthvalue. You may use tit leWidthforthis evenif

you are not going to display thetitle (fDontDrawTit1eflagis set to
1 in flag). If you set tit leWidthto 0, then the Menu Manager

determines its value according to the length of the menutitle, and the

pop-up rectangle immediately followsthe title string. If the width of
yourtitle exceeds the value of tit lewidth,results are

unpredictable.

Reference to menu definition (see Chapter 13, “Menu Manager,” in
Volume 1 of the Toolbox Reference and Chapter 37, “Menu Manager

Update,” in this book for details on menu templates). The type of

reference contained in menuRef is defined by the menureferencebits

inmoreFlags.

Theinitial value to be displayed for the menu.Theinitial value is the

default value for the menu andis displayed in the pop-up rectangle of
unselected menus. You specify an item by its ID,thatis, its relative

position within the array of items for the menu (see Chapter 37, “Menu
Manager Update,” for information on the layout and content of the
pop-up menu template). If you pass an invalid item ID, then no item is
displayed in the pop-uprectangle.

Appendix E_ Resource Types E-31

Radio button control template

Figure E-14 shows the templatethat defines a radio button control.

= Figure E-14 Control template for radio button controls

S00 pCount — Word—Parameter countfor template:8, 9, or 10

$02 + -
— ID — Long—Application-assigned control ID

$06 !
: rect : Rectangle—Boundary rectangle for control

SOE + —
— procRef — Long—radioButtonCont ro1=$84000000

$12 flag — Word—Highlight and controlflags for control

$14 moreFlags — Word—Additional control flags

$16 + —
— refCon -—| Long—Application-defined value

SIAL _
— titleRef — Long—Referencetotitle of button

SIE|- initialvalue — Word—Initial setting: 0 for clear, 1 for set

$20 - _
- *colorTableRef —| Long—Reference to colortable for control (optional)

$24 ° . .*keyEquivalent : Block, 6 bytes—Keystroke equivalent data (optional)

Defined bits for flag are

Reserved bits 15-8 Must be setto 0.
ctlinvis bit 7 0 = Visible, 1 = Invisible.

Family number bits 6-0 Family numbers define associated groups of radio

E-32

buttons; radio buttons in the same family are logically

linked, that is, setting one radio button in a family

clears all other buttons in the samefamily.

Apple IIGS Toolbox Reference, Volume 3

Defined bits for moreFlags are

fCtlTarget bit 15
fCtlCanBeTarget bit 14

fCtlWantEvents bit 13

F£CtlProcRefNotPtr

bit 12

fCtlTellAboutSize

bit 11

Reserved bits 10-4

Color table reference bits 3-2

Title reference bits 1-0

Mustbesetto 0.

Mustbesetto 0.
Set to 1 if button has keystroke equivalent.

Must beset to 1.

Must besetto 0.
Mustbesetto 0.

Defines type of reference in colorTableRef.(See
Chapter 4, “Control Manager,” in Volume1 of the

Toolbox Reference for the definition of the radio

button colortable.)
00 = Color table reference is by pointer

01 = Colortable reference is by handle
10 = Colortable reference is by resource ID (resource
type of rct 1ColorTb1l, $800D)
11 = Invalid value
Defines typeoftitle reference in titleRef.

00 = Title reference is by pointer
01 = Title reference is by handle

10 = Title reference is by resource ID (resource type

correspondsto string type)

11 = Invalid value

keyEquivalent Keystroke equivalent information stored at keyEquivalentis
formatted as shownin Figure E-6.

Appendix E Resource Types E-33

Scroll bar control template

Figure E-15 showsthe templatethat defines a scroll bar control.

Control template for scroll bar controls

es Figure E-15

$00 pcount

$02 L _

$06 :
. rect

SOE |
— procRef =

$12 — flag —

$14 moreFlags =

$16 _
— refCon =

S1A poe maxSize =

$1CL viewSize =

S1E — initialValue =

$20 |- 4
me *colorTableRef —

Defined bits for flag are

Reserved

ctliInvis

Reserved

horScroll

rightFlag

leftFlag

downFlag

upFlag

Word—Parameter count for template: 9 or 10

Long—Application-assigned control ID

: Rectangle—Boundary rectangle for control

Long—scrollCont ro1=$86000000

Word—Highlight and controlflags for control

Word—aAdditional controlflags

Long—Application-defined value

Word—Initial size of displayed item

Word—Amountofitem initially visible

Word—Initial setting

Long—Referenceto colortable for control (optional)

bits15-8 Must be set to 0.

bit 7 0 = Visible, 1 = Invisible.
bits 6-5 Must besetto 0.

bit 4
bit 3

bit 2

bit 1

bit 0

0 = Vertical scroll bar, 1 = Horizontal scroll bar.

0 = Bar has noright arrow,1 = Barhas right arrow.

0 = Bar has noleft arrow, 1 = Barhas left arrow.

0 = Bar has no downarrow,1 = Bar has downarrow.

0 = Bar has no uparrow,1 = Bar has up arrow.

Note that extraneousflag bits are ignored, depending onthestate of the horScroll
flag. For example,for vertical scroll bars, rightFlag and leftFlagare ignored.

E-34 Apple IIGs Toolbox Reference, Volume 3

Defined bits for moreFlags are

fCtlTarget bit 15
fCtlCanBeTarget bit 14

fCtlWantEvents bit 13

fCtlProcRefNotPtr

bit 12

£CtlTellAboutSize

bit 11

Reserved bits 10-4

Color table reference bits 3-2

Reserved bits 1-0

Must beset to 0.

Mustbesetto 0.

Must besetto 0.

Must be setto 1.

Mustbesetto 0.

Must besetto 0.

Defines type of reference in colorTableRef.(See
Chapter 4, “Control Manager,” in Volume 1 of the
Toolbox Reference and “Clarifications” in Chapter 28,
“Control Manager Update,” in this book for the

definition of the scroll bar color table.)

00 = Colortable reference is by pointer
01 = Color table reference is by handle

10 = Color table reference is by resource ID (resource

type of rct 1ColorTbl, $800D)
11 = Invalid value

Mustbesetto 0.

Appendix E Resource Types E-35

Size box control template

Figure E-16 showsthe template that defines a size box control.

= Figure E-16 Control template for size box controls

S00 pCount — Word—Parametercountfor template: 6 or 7

$02 L =
— ID Long—Application-assigned control ID

$06 : rect - Rectangle—Boundary rectangle for control

SOE -
— procRef — Long—growContro1=$88000000

$12 - flag — Word—Highlight and controlflags for control

$14 - moreFlags — Word—Additional controlflags

— refCon -| Long—Application-defined value

SIA 4
- *colorTableRef —| Long—Referenceto colortable for control (optional)

Defined bits for fag are

Reserved bits 15-8 Must besetto 0.

ctliInvis bit 7 0 = Visible, 1 = Invisible.
Reserved bits 6-1 Mustbe setto 0.

fCallWindowMgr bit 0 0 = Just highlight control,

1 = Call GrowWindow and SizeWindowto trackthis

control.

E-36

=

Apple IIGs Toolbox Reference, Volume 3

Defined bits for moreFlags are

fCtlTarget bit 15

fCtlCanBeTarget bit 14

fCtlWantEvents bit 13

FCtlProcRefNotPtr

bit 12

fCtlTellAboutSize

bit 11

Reserved bits 10-4

Color table reference bits 3-2

Reserved bits 1-0

Must besetto 0.

Must besetto 0.

Must besetto 0.

Must besetto 1.

Mustbesetto 0.

Mustbesetto 0.

Defines type of reference in colorTableRef.(See
“Error Corrections” in Chapter 28, “Control Manager

Update,” in this book for the definition of the size
box color table.)
00 = Color table reference is by pointer

01 = Color table reference is by handle

10 = Color table reference is by resource ID (resource
type of rct 1ColorTbl, $800D)
11 = Invalid value
Mustbesetto 0.

Appendix E Resource Types E-37

Static text control template

Figure E-17 shows the template that defines a static text control. For more information

aboutstatic text controls, see “Static Text Control” in Chapter 28, “Control Manager

Update,” in this book.

= Figure E-17 Control template for static text controls

0 pCount — Word—Parametercountfor template:7, 8, or 9

$02 - _
— ID — Long—Application-assigned control ID

$06 °
: rect - Rectangle—Boundary rectangle for control

SOE _
— procRef + Long—statTextContro1=$81000000

S12 flag — Word—Highlight and controlflags for control

$14 L moreFlags + Word—Additional control flags

$16 +
— refCon ~| Long—Application-defined value

SIAL _
— textRef ~— Long—Referenceto text for control

SIE "textSize — Word—Text sizefield (optional)

$20 L “just — Word—tnitialjustification for text (optional)
Defined bits for flag are

Reserved bits 15-8 Must besetto 0.

ctliInvis bit 7 0 = Visible, 1 = Invisible.
Reserved bits 6-2 Mustbesetto 0.
fSubstituteText bit 1 0 = No text substitution to perform,

1 = There is text substitution to perform.
fSubTextType bit 0 0 = C strings, 1 = Pascalstrings.

E-38 Apple IIGS Toolbox Reference, Volume 3

Defined bits for moreFlagsare

fCtlTarget bit 15 Mustbesetto 0.

fCtlCanBeTarget bit 14 Must besetto 0.

fCtlWantEvents bit 13 Must besetto 0.

FCtlProcRefNotPtr

bit 12 Must besetto 1.

£CtlTellAboutSize

. bit 11 Mustbesetto 0.

Reserved bits 10-2 Must beset to 0.

Text reference bits 1-0 Defines type of text reference in textRef.

00 = Text reference is by pointer

01 = Text reference is by handle

10 = Text reference is by resource ID (resource type
of rTextForLETextBox2, $800B)

11 = Invalid value

textSize The size of the referenced text in characters, but onlyif the text

reference in text Ref is a pointer. If the text referenceis either a

handle or a resource ID, then the Control Managercan extract the

length from the handle.

just The justification word passed to LEText Box2 (see Chapter10,
“LineEdit Tool Set,” in Volume 1 of the Toolbox Referencefor details

on the LETextBox2 toolcall) and usedto set theinitial justification

for the text being drawn.Valid values for just are

leftJustify 0 Text is left justified in the display window
centerJustify 1 Text is centered in the display window
rightJustify -l_ Text is right justified in the display window

fulldustify 2 Text is fully justified (both left and right) in
the display window

Static text controls do not support color tables. To display text of different color, you

must embed the appropriate commands into the text string you are displaying. See the

discussion of LETextBox2 in Chapter 10, “LineEdit ToolSet,” in Volume 1 of the Toolbox
Reference for details on command format and syntax.

Appendix E Resource Types _E-39

TextEdit control template

Figure E-18 showsthe template that defines a TextEdit control. For more information
about TextEdit controls, see “TextEdit Control” in Chapter 28, “Control Manager Update,”
in this book.

= Figure E-18 Control template for TextEdit controls

$00 - pCount Word—Parameter countfor template: 7 to 23

$02 =
— ID — Long—Application-assigned control ID

$06 : rect : Rectangle—Boundary rectangle for control

SOE
— procRef = Long—editTextCont ro1=$85000000

$12 - flag —| Word—Highlight and controlflags for control

$14 moreFlags — Word—Additionalcontrolflags

$16 -
— refCon — Long—Application-defined value

SIAL —
— textFlags — Long—Specific TextEdit controlflags (see below)

SIE! , . ,
*indentRect - Rectangle—Text indentation from control rect (optional)

$26 |- 4
— *vertBar — Long—Handleto vertical scroll bar for control (optional)

S2A;- *vertAmount — Word—Vertical scroll amount,in pixels (optional)

$2C _
— *horzBar — Long—Reserved; must be set to NIL (optional)

$30}- *horzAmount — Word—Reserved; must be setto 0 (optional)

$32 - -
La "styleRef — Long—Referencetoinitial style informationfor text (optional)

$36 | *textDescriptor —| Word—Fommatofinitial text and textRef (optional)

$38 |- _
— *textRef —| Long—Referenceto initial text for edit window (optional)

$3C a
- sttextLength

=

| Long—Length ofinitial text (optional)

continued
E40 Apple IIGs Toolbox Reference, Volume 3

$40

$44

$48

S4A

$4C

$50

$52

continued

P
l
t

*maxChars

a
n
e

T
l *maxLines

|
j

|

*maxCharsPerLine

*maxHeight

*colorRef

*drawMode

r
t
d *filterProcPtr

Defined bits for flag are

Reserved

ctliInvis

Reserved

Long—Maximum numberofcharacters allowed (optional)

Long—Reserved; must be set to 0 (optional)

Word—Reserved; mustbe set to 0 (optional)

Word—Reserved; must be set to 0 (optional)

Long—Reference to TextEditcolor table (optional)

Word—QuickDrawII text mode for edit window (optional)

Long—Pointerto filter routine for this control (optional)

bits 15-8 Must be setto 0.

bit 7

bits 6-0 Must besetto 0.

0 = Visible, 1 = Invisible.

Defined bits for moreFlags are

fCtlTarget bit 15 Must besetto 0.

fCtlCanBeTarget bit 14 Mustbesetto 1.

fCtlWantEvents bit 13 Must besetto 1.

fCtlProcRefNotPtr

bit 12 Mustbesetto 1.

fCt1lTellAboutSize

bit 11 If this bit is set to 1, a size box is created in the

lower-right corner of the window. Wheneverthe
control window is resized, the edit text is resized and

redrawn.

fCtlIsMultiPart bit 10 Must besetto 1.
Reserved bits 9-4 Must besetto 0.

Appendix E Resource Types E41

Color table reference bits 3-2

Style reference bits 10

Definestype of reference in colorRef. (Thecolor

table for a TextEdit control [TEColorTable]is
described in Chapter 49, “TextEdit ToolSet,” in this
book.)

00 = Color table reference is by pointer
01 = Colortable reference is by handle
10 = Colortable reference is by resource ID (resource
type of rct 1ColorTbl, $800D)
11 = Invalid value
Defines type of style reference in st yleRef;the

format for a TextEdit style descriptor is described in

Chapter 49, “TextEdit Tool Set,” in this book.
00 = Style reference is by pointer
01 = Style reference is by handle
10 = Style reference is by resource ID
11 = Invalid value

“A, Important Do not set fCt1Te1llAboutSizeto 1 unless the TextEdit record
also has a vertical scroll bar. This flag works only for TextEdit records
that are controls. a

Valid values for textFlags are

fNotControl bit 31

fSingleFormat bit 30

fSingleStyle bit 29

fNoWordWrap bit 28

fNoScroll bit 27

fReadOnly bit 26

Mustbeset to 0.
Mustbesetto 1.

Allows you to restrict the style options available to

the user.

0 = Do notrestrict the numberofstylesin the text

1 = Allow onlyonestyle in the text
Allows you to control TextEdit word wrap behavior.
0 = Perform word wrapto fit the ruler
1 = Do not word wrapthe text; break lines only on
return ($0D) characters
Controls user accesstoscrolling.

0 = Allow scrolling

1 = Do notallow either manual or automatic scrolling
Restricts the text in the window to read-only
operations (copying from the windowisstill

allowed).
0 = Allow editing
1 = Do notallow editing

E42 Apple IIGs Toolbox Reference, Volume 3

fSmartCutPaste bit 25 Controls TextEdit support for smart cut and paste.

(See Chapter 49, “TextEdit Tool Set,” for details on
smart cut and paste support.)

0 = Do not use smart cut and paste

1 = Use smart cut and paste

fTabSwitch bit 24 Defines behavior of the Tab key. (See Chapter 49,
“TextEdit Tool Set,” for details.)
0 = Tab inserted in TextEdit document
1 = Tab to next control in the window

fDrawBounds bit 23 Tells TextEdit whether to draw a box aroundtheedit

window,just inside rect; the pen for this box is 2
pixels wide and 1 pixelhigh.

0 = Do not draw rectangle

1 = Draw rectangle

fColorHilight bit 22 Mustbesetto 0.

fGrowRuler bit 21 Tells TextEdit whether to resize the ruler in response

to the resizing of the edit window bythe user. If this

bit is set to 1, TextEdit automatically adjusts the
right margin valuefor the ruler.
0 = Do notresize the ruler

1 = Resizethe ruler

fDisableSelection

bit 20 Controls whetheruser can select text.
0 = Usercanselect text
1 = User cannotselect text

fDrawInactiveSelection

bit 19 Controls how inactive selected text is displayed.

0 = TextEdit does not display inactive selections

1 = TextEdit draws a box around inactive selections
Reserved bits 18-0 Must besetto 0.

indentRect A rectangle whose coordinates specify the amount,in pixels, of white

space to leave between the boundary rectangle for the control and the

text itself. Default values are (2,6,2,4) in 640 mode and (2,4,2,2) in 320

mode. Each indentation coordinate may be specified individually. To

assert the default for any coordinate, specify its value as $FFFF.

vertBar Handle of the vertical scroll bar to use for the TextEdit window.If you

do not wanta scroll barat all, then set this field to NIL. If you want
TextEdit to create a scroll bar, just inside the right edge of the

boundary rectangle for the control, then set this field to $FFFFFFFF.

Appendix E Resource Types E-43

vertAmount

horzBar

horzAmount

styleRef

The numberofpixels to scroll wheneverthe user presses the up or
down arrow onthe vertical scroll bar. To use the default value (9
pixels), set this field to $0000.

Must beset to NIL.

Must besetto 0.

Referenceto initial style information for the text. See the description
of the TEFormat record in Chapter 49, “TextEdit Tool Set,” for

information about the format and contentofa style descriptor. Bits 1

and 0 of moreF lagsdefine the type of reference (pointer, handle,
resource ID). To use the default style and ruler information,set this
field to NIL.

textDescriptor

textRef

textLength

Input text descriptor that defines the reference type fortheinitial
text (which is defined in the textRef field) and the format ofthat
text. See Chapter 49, “TextEdit ToolSet,” for detailed information on

text and reference formats.

Reference to initial text for the edit window.If you are not supplying

anyinitial text, then set this field to NIL.

The length oftheinitial text. If text Ref is a pointerto theinitial
text, then this field must contain the length oftheinitial text. For

other reference types, TextEdit extracts the length from the reference
itself.

@ Note: You mustspecify or omit the textDescriptor, textRef, andtextLength
fields as a group.

maxChars Maximum numberofcharacters allowed in the text. If you do not want
to define any limit to the number of characters, then setthis field to NIL.

maxLines Mustbesetto 0.

maxCharsPerLine

Mustbesetto NIL.

maxHeight Mustbesetto 0.

colorRef Reference to the color table for the text. This is a TextEdit color table

(see Chapter 49, “TextEdit Tool Set,” for the format and content of
TEColorTable), Bits 2 and 3 of moreFlags define the type of

reference stored here.

E-44 Apple IIGS Toolbox Reference, Volume 3

drawMode The text mode used by QuickDraw II for drawing text. See

Chapter 16, “QuickDrawII,” in Volume 2 of the Toolbox Reference for
details on valid text modes.

filterProcPtr Pointer to a filter routine for the control. See Chapter 49,
“TextEdit Tool Set,” for details on TextEdit generic filter routines. If you
do not wantto usea filter routine for the control, set this field to NIL.

Appendix E Resource Types -E-45

rCString $801D

Figure E-19 defines the layout of resource type rcst ring ($801D). Resourcesofthis

type contain C strings (null-terminated character arrays).

= Figure E-19 C string, type rcSt ring ($801D)

$00 °
- stringCharacters -: Bytes
Ll __J

stringCharacters

Array of characters; last character must be a null terminator ($00). The
string may contain up to 65,535 characters, including the null

terminator.

rCtlColorTbl S800D

Resources of this type store color tables for various tool sets. These resources do not have
a consistent internal layout; you must construct these resources according to the needs of
the tool set that is to use the colortable.

E46 Apple IIGs Toolbox Reference, Volume 3

rErrorString $8020

Resources of this type define the data that appears in error windows displayed by the
ErrorWindow Window Managertoolcall. The layout of rErrorSt ring resourcesis the

same as that of rAlertString resources, which in turn correspondto thestrings that

define alert windows. For more complete information on alert string definitions, see
Chapter 52, “Window Manager Update,” in this book.

Appendix E Resource Types _E-47

rIcon $8001

Figure E-20 defines the layout of resource type rIcon ($8001).

= Figure E-20 Icon, type rIcon ($8001)

$00 iconType Word

$02 {conSize — Word

$04 iconHeight 4 Word

$06 L iconWidth 4 Word

$08 : iconImage ; Array

{ |
j t

Sx: iconMask - Array
[

iconType Flags defining the type of icon stored in the icon record.

Color indicator bit 15 Indicates whether the icon contains a color or

black-and-white image.
0 = Icon is black and white

1 = Iconis color

iconSize The size, in bytes, of the icon image stored at iconImage.

iconHeight The height, in pixels, of the icon.

iconWidth The width,in pixels, of the icon.

iconImage iconSize bytes of icon image data.

iconMask iconSize bytes of mask data to be applied to the imagelocated at
iconImage.

E48 Apple IIGs Toolbox Reference, Volume 3

rKTransTable $8021

Figure E-21 defines the layout of resource type rKTransTable ($8021). Resources of
this type define keystroke translation tables for use by the Event Manager (see
Chapter 31, “Event Manager Update,” in this book for complete information on the
format and content of resources ofthis type).

= Figure E-21 Keystroketranslation table, type rkKTransTable ($8021)

$000 ! ,; transTable : 256 bytes—Keystroke translation array

$100 ! «tap:
deadKeyTable : sxbytes—Dead key validation array

$100+xx -
replacementTable +: yy bytes—Dead key replacementarray

L j

transTable A packed array of bytes used to map the ASCII codes produced by
the keyboard into the character value to be generated. Each cell in the
array corresponds directly to the ASCII code that is equivalent to the

cell offset. For example, the transTablecell at offset $0D (13

decimal) contains the character replacement value for keyboard code

$0D, which, for a straight ASCII translation table, is a carriage return

(CR). Cells 128 to 255 ($80 to $FF) of the transTable contain values
for Option-key sequences (such as Option-S).

Appendix E Resource Types E-49

deadKeyTable Table containing entries used to validate dead keys. Dead keys are

keystrokes used to introduce multikey sequences that produce single
characters. For example, pressing Option-U followed bye yields é.

There is one entry in deadKeyTablefor each defined dead key. The

last entry must be set to $0000. Each entry must be formatted as
follows:

deadKey Byte—Character code for dead key

 offset Byte—Offset from deadKeyTab1einto replacementTable

deadKey

offset

The character code for the dead key. The system uses this value

to check for user input of a dead key. The system compares this
value with the first user keystroke.

Byte offset from beginning of deadKeyTab1einto the relevant
subarray in replacement Tab1e,divided by 2. The system

uses this value to access the valid replacementvaluesfor the

dead key in question.

replacementTable

Table containing the valid replacement values for each dead key

combination. This table is made up of a series of variable-length
subarrays, each relevant to a particular dead key. Thelast entry in each
subarray mustbe set to $0000. Each entry in the replacementTable

must be formatted as follows:

scanKey

 replaceValue

Byte—Character code for dead key combination
Byte—Result character code for dead key combination

scanKey A valid character code for dead key replacement. The system
uses this field to determine whetherthe user entered a valid dead
key combination. The system comparesthis value with the
second user keystroke.

replaceValue The replacementvalue for the character specified in scankey
for this entry. The system delivers this value as the replacement

for a valid dead key combination.

E-50 Apple IIGS Toolbox Reference, Volume 3

rListRef $801C

Figure E-22 defines the layout of the array element that composes resource type

rListRef ($801C). Resources of this type define membersoflist controls (see
Chapter 28, “Control Manager Update,” in this book for more information onlist
controls). A single rListRef resource may contain more than one ofthese elements; you
concatenate the elements to form the resource.

= Figure E-22 List memberreference array element, type rListRef ($801C)

$00 L
L ID — Long—Resource ID oflist member (rPSt ring type)

S04 itemFlag Byte—Controlflags for list member

$05 item : Array—List memberdata; (listMemSize - 5) bytes of data
L

ID Resource ID ofthe list member (resource type of rPSt ring, $8006).

itemFlag Controlflags for the member.

memSelect bits 7-6 Indicates whether the item is selected.
00 = Item is enabled but not selected

01 = Item is disabled (cannot be selected)

10 = Item is selected
11 = Invalid value

Reserved bits 5-0 Must beset to 0.

item Application-specific data for the list member. The ListMemSize
field of the list control template specifies the size of this field, plus5.
For example, to assign a 2-byte tag to each list member, you would set

listMemSize to 7 (2+5) and placethe tag value at item in eachlist

member.

Appendix E Resource Types E-51

rMenu $8009

Figure E-23 defines the layout of resource type rMenu ($8009). Resources of this type

define parameters to some new Menu Managertoolcalls. See Chapter 37, “Menu Manager

Update,” in this book for more information.

e Figure E-23 Menutemplate, type rMenu ($8009)

$00 LL version Word—Version numberfor template; mustbe set to 0

$02 L menuID — Word—MenuID

$04.0 menuFlag _| Word—Menuflag word

$06 _
— menuTitleRef — Long—Reference to menutitle string

SOA! : ,
- dtemRe fArray : nlongs—References to menu items
L j

version The version of the menu template. The Menu Managerusesthisfield to

distinguish between different revisions of the template. Must besetto 0.

menuID Unique identifier for the menu. See Chapter 13, “Menu Manager,” in

Volume 1 of the Toolbox Reference for information on valid values for
menulID.

E-52 Apple IIGS Toolbox Reference, Volume 3

menuFlag Bit flags controlling the display and processing attributes of the menu.
Valid values for menuFlag are

titleRefType bits 15-14 Defines the type of reference in menuTitleRef.

00 = Reference is by pointer
01 = Reference is by handle
10 = Reference is by resource ID
11 = Invalid value

itemRefType bits 13-12 Defines the type of reference in each entry of

itemRefArray(all array entries must be of the same
type).

00 = Reference is by pointer
01 = Reference is by handle

10 = Referenceis by resource ID
11 = Invalid value

Reserved bits 11-9 Must beset to 0.

alwaysCallmChoose

bit 8 Causes the Menu Managerto call a custom menu

defProc mChooseroutine even whenthe pointeris
not in the menu rectangle (supports tear-off menus).
0 = Do not always call mchoose routine

1 = Always call mchooseroutine
disabled bit 7 Enablesor disables the menu.

0 = Menu enabled
1 = Menudisabled

Reserved bit 6 Mustbesetto 0.
XOR bit 5 Controls how selection highlighting is performed.

0 = Do not use XORto highlight item
1 = Use XORto highlight item

custom bit 4 Indicates whether menu is custom or standard.

0 = Standard menu

1 = Custom menu
allowCache bit 3 Controls menu caching.

0 = No menucachingallowed

1 = Menucaching allowed
Reserved bits 2~0 Must besetto 0.

menuTitleRef Reference totitle string of menu. The tit leRefTypebits in

menuFLag indicate whether menuTit leRef contains a pointer, a

handle, or a resource ID. If menuTitleRefis a pointer, then thetitle
string must be a Pascal string. Otherwise, the Menu Manager can
retrieve the string length from control information in the handle.

Appendix E Resource Types E-53

itemRefArray Array of referencesto the items in the menu. The itemRefTypebits

in menuF lagindicate whetherthe entries in the array are pointers,
handles, or resource IDs. Note that all array entries must be ofthe

same reference type. Thelast entry in the array mustbeset to

$00000000.

E-54 Apple IIcs Toolbox Reference, Volume 3

rMenuBar $8008

Figure E-24 defines the layout of resource type rMenuBar ($8008). Resources of this type
define the characteristics of a menu bar for new Menu Managertoolcalls. For more
information, see Chapter 37, “Menu Manager Update,” in this book.

= Figure E-24 Menubarrecord, type rMenuBar ($8008)

$00 version —| Word—Version numberfor template; must be set to 0

S02 -~ menuBarFlag —{ Word—Menubarflag word

$04 !
: menuRe fArray - nlongs—References to menus

|

version The version of the menu bar template. The Menu Managerusesthis

field to distinguish between different revisions of the template. Must

be set to 0.

menuBarFlag Bit flags controlling the display and processing attributes of the menu
bar. Valid values for menuBarFlag are

menuRefType bits 15-14 Defines the type of reference in each entry of
menuRefArray(all array entries must be of the same
type).

00 = Reference is by pointer

01 = Reference is by handle

10 = Reference is by resource ID

11 = Invalid value
Reserved bits 13-0 Mustbesetto 0.

menuRefArray Array of references to the menusin the menu bar. The menuRefType

bits in menuBarFlag indicate whetherthe entries in the array are

pointers, handles, or resource IDs. Note thatall array entries must be
of the samereference type. Thelast entry in the array must be set to

$00000000.

Appendix E Resource Types _—_E-55

rMenulitem S800A

Figure E-25 defines the layout of resource type rMenuItem ($800A). Resourcesofthis

type define menuitems to some new Menu Managertoolcalls. See Chapter 37, “Menu
Manager Update,” in this book for more information.

= Figure E-25 Menuitem template, type rMenuItem ($800A)

S00 L version | Word—Version numberfor template; must be set to 0

$02 itemID | Word—Menuitem ID

$04 itemChar Byte—Primary keystroke equivalent character
$05 itemAltChar Byte—Altemate keystroke equivalent character
$06 itemCheck | Word—Character code for checked items

$08 itemFlag —| Word—Menuitem flag word

SOA - -
— itemTitleRef —7 Long—Referencetoitem title string

version The version of the menu item template. The Menu Managerusesthis

field to distinguish between different revisions of the menu item
template. Must be set to 0.

itemID Unique identifier for the menu item. See Chapter 13, “Menu Manager,”

in Volume1 of the Toolbox Reference for information on valid values
for itemID.

itemChar, itemAltChar

itemCheck

Fields defining the keystroke equivalents for the menu item. The user
can select the menu item by pressing the Commandkeyalong with the

key corresponding to oneofthesefields. Typically, these fields
contain the uppercase and lowercase ASCII codes for a particular

character. If you have only a single key equivalence, set both fields to
that value.

The character to be displayed next to the item whenit is checked.

E-56 Apple IIGS Toolbox Reference, Volume 3

itemFlag

titleRefType

Reserved

shadow

outline

Reserved

disabled

divider

XOR

Reserved

underline

italic

bold

itemTitleRef

Bit flags controlling the display attributes of the menu item. Valid

values for itemFlag are

bits 15-14 Defines the type of reference in itemTitleRef.

bit 13

bit 12

bit 11

bits 10-8

bit 7

bit 6

bit 5

bits 4-3
bit 2

bit 1

bit 0

00 = Reference is by pointer
01 = Reference is by handle
10 = Reference is by resource ID

11 = Invalid value

Mustbesetto 0.

Indicates item shadowing.

0 = No shadow

1 = Shadow
Indicates item outlining.

0 = Not outlined
1 = Outlined

Mustbesetto 0.

Enables or disables the menu item.

0 = Item enabled

1 = Item disabled

Controls drawing of a divider bar below item.
0 = No divider bar

1 = Divider bar

Controls how highlighting is performed.
0 = Do not use XORto highlight item
1 = Use XORto highlight item

Must be setto 0.

Controls item underlining.
0 = Do not underline item

1 = Underline item

Indicates whether item is italicized.

0 = Notitalicized

1 = Italicized

Indicates whetheritem is in boldface.

0 = Not bold

1 = Bold

Referencetotitle string of menu item. The tit LeRefTypebits in

itemFlag indicate whether itemTit leRef contains a pointer, a
handle, or a resource ID. If itemTitleRef is a pointer, then thetitle
string must be a Pascalstring. Otherwise, the Menu Managercan
retrieve the string length from control information in the handle.

Appendix E Resource Types __E-57

rPicture $8002

Resources of this type store QuickDraw picture definitions. QuickDraw pictures are

described by a series of QuickDraw operation codes specifying the commands that
created the picture. When these pictures are stored as data structures, the actual picture

data (the operation codes) is preceded by control information, some of which may be of
interest to Apple IIGs developers. Figure E-26 shows someofthis control information.
Note that the layout of this control information is subject to change.

= Figure E-26

$00 L picSCB “

$02 . picFrame

SOA = picVersion ”

QuickDraw picture, type rPicture ($8002)

Word—Picture’s scan line control byte (high byteis 0)

: Rectangle—Picture’s boundary rectangle

Word—Version numberfor picture

E-58 Apple IIGS Toolbox Reference, Volume 3

rPString $8006

Figure E-27 defines the layout of resource type rPSt ring ($8006). Resources ofthis type

contain Pascal strings.

= Figure E-27 Pascal string, type rPSt ring ($8006)

$00 | lengthByte | Byte

$01!
- StringCharacters - nbytes
L J

lengthByte Numberofbytes of data stored in stringCharactersarray.

stringCharacters

Array of lengthByte characters.

Appendix E Resource Types __E-59

rResName $8014

Figure E-28 defines the layout of resource type rResName ($8014). Resources of this type
define namestrings for resources of a given type and ID. The resource ID value assigned to
an rResName resource must be of the form

$0001xxxx

where xxxx corresponds to the resource type of resources whose namesare defined in this
resource. Within the rResName resource you define namestrings corresponding to
resources with specified resource IDs. Namesare stored in Pascal strings, are not case-

sensitive, and must be unique within the appropriate resource type. Resource namesare

not required, so you mayspecify names for only a few resources within a given type.

= Figure E-28 Resource namearray, type rResName ($8014)

$00 versNum 4 Word

$02 + 4
— nameCount _ Long

$06 : resNames - Array of nameCount name blocks
t j

versNum The resource template version. Must besetto 1.

nameCount Countof entries in the resNames name-definition array.

resNames Array of namestrings. Each entry must be formatted as follows:

$00
— namedResID — Long

$04 ! ;
; resName : Pascalstring
| J

namedResID ID of the resource for this name.

resName Namestring of the resource.

E60 Apple IIGS Toolbox Reference, Volume 3

rStringList $8007

Figure E-29 defines the layout of resource type rst ringList ($8007). Resources ofthis
type contain an array of Pascal strings.

= Figure E-29 Pascalstring array, type rStringList ($8007)

300 count —| Word

$02 ! ‘ .; ,
: strings : Array of Pascalstrings (resourcesoftype rPSt ring)
L J

count The numberofPascal strings stored at st rings.

strings An array of count Pascalstrings.

Appendix E Resource Types E-61

rStyleBlock $8012

Figure E-30 defines the layout of resource type rStyleBlock ($8012). Resources ofthis

type contain TextEdit TEFormat structures, which store TextEdit style information.

= Figure E-30 TextEdit style information, type rSt yleBlock ($8012)

$00 version 4 Word

$02 / _
— rulerListLength -; Long

$06!
. theRulerList - Array of TERuler structures

Sxx LL 4
— styleListLength -—j Long

Sxx ! :
: theStyleList : Array of TESty1le structures

$xx [7

— numberOfStyles —| Long

Sxx !
theStyles : Array of StyleItem structures

— j

version Version number correspondingto the layout of this TEFormat
structure. The numberofthis version of the structure is $0000.

rulerListLength

The length, in bytes, of theRulerList.

theRulerList Ruler data for the text record. The TERuler structure is embeddedin

the TEFormatStructure at this location.

styleListLength

The length, in bytes, of thestyleList.

theStyleList List ofall unique styles for the text record. The TESty1estructures
are embedded in the TEFormatstructure at this location. Each

TEStyle structure must define a unique style—there must be no
duplicate style entries. To apply the same style to multiple blocks of
text, you should create additional st yleItems for each block of
text and make eachitem referto the samestylein this array.

E-62 Apple IIGs Toolbox Reference, Volume3

numberOfStyles

The numberof StyleItems contained in theStyles.

theStyles Array of StyleItems specifying which actual styles (stored in

theStyleList) apply to which text within the TextEdit record.

Appendix E Resource Types E-63

rTERuler $8025

Figure E-31 defines the layout of resource type rTERuler ($8025). Resources ofthis type

contain TextEdit TERuler structures, which store TextEdit ruler information.

es Figure E-31 TextEdit ruler information, type rTERuler ($8025)

SOO + leftMargin —| Word

$02 leftIndent + Word

$04 + rightMargin 4 Word

S06 just + Word

$08 extraLS + Word

SOA flags 4 Word

SOC -
— userData = Long

$10 tabType — Word

$12 : theTabs - Array of TabItem structures

Sxx — tabTerminator Word

leftMargin The numberof pixels to indent from the left edge of the text rectangle
(viewRect in TERecord)forall text lines except those thatstart
paragraphs.

leftIndent The numberofpixels to indent from theleft edge of the text rectangle
for text lines that start paragraphs.

rightMargin Maximum line length, expressed as the numberofpixels from theleft

edge ofthe text rectangle.

E64 Apple IIGS Toolbox Reference, Volume 3

just

extraLS

flags

userData

tabType

theTabs

tabTerminator

Text justification.

0 Left justification—all text lines start flush with left margin
-1 Right justification—all text lines start flush with right margin
1 Center justification—all text lines are centered betweenleft

and right margins
2 Full justification—text is blocked flush with both left and

right margins; TextEdit pads spaces with extra pixels to
justify the text fully

Line spacing, expressed as the numberofpixels to add betweenlines

of text. Negative values result in text overlap.

Reserved.

Application-specific data.

The type of tab data, specified as follows:

0 No tabs are set—t abTypeisthelastfield in the structure

1 Regular tabs—tabs are set at regular pixel intervals,

specified by the value of the tabTerminator field;
theTabsis omitted from the structure

2 Absolute tabs—tabs are set at absolute, irregular pixel
locations; theTabs defines those locations;

tabTerminator marks the end of theTabs

If tabTypeis set to 2, this is an array of TabIt emstructures defining

the absolute pixel positions for the various tab stops. The

tabTerminatorfield, with a value of $FFFF, marks the end ofthis

array. For other values of tabType,this field is omitted from the
structure.

If tabTypeis set to 0, this field is omitted from the structure.If

tabTypeis set to 1, then theTabsis omitted, and this field contains

the numberof pixels correspondingto the tab interval for the regular

tabs. If tabTypeis set to 2, tabTerminatoris set to $FFFF and
marks the end of theTabsarray.

Appendix E Resource Types _E-65

rText $8016

Figure E-32 defines the layout of resource type rText ($8016). Resources of this type

contain text blocks (data arrays with no embeddedlength information; block length must
be indicated in otherfields).

= Figure E-32 Text block, type rText ($8016)

$00:
- stringCharacters - Bytes
t J

stringCharacters

Array of up to 65,535 characters. Any length information is contained
in a separately maintainedfield.

E66 Apple IGS Toolbox Reference, Volume 3

rTextBlock $8011

Figure E-33 defines the layout of resource type rfextBlock ($8011). Resources ofthis
type contain text blocks (data arrays with no embedded length information; block length
must be indicated in otherfields).

= Figure E-33 Text block, type rTextBlock ($8011)

S00 f |
- stringCharacters : Bytes
L_ J

stringCharacters

Array of up to 65,535 characters. Any length information is contained
in a separately maintainedfield.

Appendix E Resource Types E-67

rTextForLETextBox2 S8O00OB

Figure E-34 defines the layout of resource type rTextForLETextBox2 ($800B).
Resourcesof this type contain data formatted as input to the LETextBox2 LineEdit tool

call (see Chapter 10, “LineEdit Tool Set,” in Volume 1 of the Toolbox Reference fordetails).

e Figure E-34 LETextBox2 input text, type rfTextForLETextBox2 ($800B)

soo length | Word

$02 ! :
stringCharacters - Bytes

l _I

length The numberofbytes stored at st ringCharacters.Valid values lie
in the range from 1 to 32,767.

SstringCharacters

Array of up to 32,767 characters. Formatting information is embedded

in the character array and is includedin the value of length. See

Chapter10, “LineEdit Tool Set,” in Volume 1 of the Toolbox Reference
for complete information on the syntax of this embedded
information.

E-68 Apple IIGS Toolbox Reference, Volume 3

rToolStartup $8013

Figure E-35 defines the layout of resource type rfoolStartup ($8013). Resources of
this type define tool set startup records for use with the Tool Locator startUpTools

and ShutDownTools toolcalls (see Chapter 51, “Tool Locator Update,” in this book for
more information).

a Figure E-35 Tool set start-stop record, type rfoolStartup ($8013)

S00 flags Word—Flag word—mustbeset to 0

$02 L videoMode —| Word—Video mode for QuickDrawII

$04 - resFileID + Word—Set by startUpTools

$06 _
— dPageHandle + Long—Set by startUpTools

SOA numTools Word—Numberofentries in toolArray

SOc !
: toolArray - numTools ToolSpec records
l |

videoMode Defines the masterSCB for QuickDraw II. See Chapter 43,

“QuickDraw II Update,” in this book for valid values.

resFileID The StartUpTools Call sets this field, which ShutDownTools

requires as input.

dPageHandle The StartUpToolscall sets this field, which ShutDownTools
requires as input.

Appendix E Resource Types __E-69

toolArray Each entry defines a toolset to be started. The numTools field
specifies the numberofentries in this array. Each entry is formatted as

follows:

$00 toolNumber —| Word—Toolset identifier

$02 - minVersion —| Word—Minimum acceptable toolset version

toolNumber The tool set to be loaded. Valid tool set numbers are discussed

in Chapter 51, “Tool Locator Update,” in this book.

minVersion The minimum acceptable version forthe tool set. See
Chapter 24, “Tool Locator,” in Volume 2 of the Toolbox Reference
for the formatofthis field.

E-70 Apple IIGs Toolbox Reference, Volume 3

rTwoRects S801A

Figure E-36 defines the layout of resource type rTwoRects ($801A).

= Figure E-36 Tworectangles, type rTwoRect s ($801A)

$00 ! |
rectl Rectangle

|]
| 1

$08 : rect2 : Rectangle
l J

rectl First rectangle.

rect2 Secondrectangle.

Appendix E Resource Types _E-71

rWindColor $8010

Figure E-37 defines the layout of resource type rWindColor ($8010). Resources of this
type define window color tables for the Window Manager.

= Figure E-37 Windowcolortable, type rwindColor ($8010)

$00 frameColor 4+ Word

$02 titleColor | Word

$04 om tBarColor = Word

$06 L growColor — Word

$08 infoColor = Word

frameColor Color of the window frame and the alert frame.

Reserved bits 15-8 Mustbe setto 0.

windowFrame bits 7-4 Color of window frame—valueis an index into the

active color table.

Reserved bits 3-0 Must besetto 0.

titleColor Colors of inactive title bar, inactive title, and activetitle.

Reserved bits 15-12 Must besetto 0.

inactiveTitleBar bits 11-8 Colorofinactive title bars—value is an index into the

active color table.

inactiveTitle bits 7-4 Colorofinactive titles—value is an index into the

active color table.

activeTitle bits 30 Colorof activetitles, close box, and zoom box—

value is an index into the active colortable.

tBarColor Color and pattern information for active title bar.

pattern bits 15-8 Defines pattern oftitle bar.
00 = Solid

01 = Dithered

02 = Lined
patternColor bits 7-4 Color of pattern—valueis an index into the active

color table.

backColor bits 3-0 Background color—valueis an index into the active
color table.

E-72 Apple IIGS Toolbox Reference, Volume 3

growColor

alertMidFrame

Reserved

sizeUnselected

sizeSelected

infoColor

alertMidFrame

Reserved

infoBar

Reserved

Color of size box and middle outline of alert frame.

bits 15-12 Color of middle outline of alert frame—valueis an

bits 11-8

bits 7-4

bits 3-0

index into the active colortable.

Mustbesetto 0.

Color of unselected size box—value is an index into

the active color table.

Color of selected size box—value is an index into the

active color table.

Color of information bar and inside outline of alert frame.

bits 15-12 Colorof inside outline of alert frame—valueis an

bits 11-8

bits 7-4

bits 3-0

index into the active colortable.

Mustbeset to 0.

Color of information bar—value is an index into the

active color table.

Must besetto 0.

Appendix E Resource Types E-73

rWindParaml S800E

Figure E-38 defines the layout of resource type rWindParam1 ($800E). This resource

defines a template used to create windows with the NewWindow2 Window Managertool
call (see Chapter 52, “Window Manager Update,” in this book). Mostof thesefields

correspondto fields in the NewWindow parameterlist (defined in Chapter 25, “Window
Manager,” in Volume 2 of the Toolbox Reference).

E-74 Apple IIGS Toolbox Reference, Volume 3

Figure E-38

$00 plLength =

$02 — plFrame =

S04 + 4
— plTitle =

S08 + 4
— plRefCon _

SOC |
. plZoomRect

$14 L 4
— plColorTable =

$18 plyOrigin =

SIA plxOrigin

Sic L plDataHeight =

SIEL pipatawiath 4

$20 - plMaxHeight =

$22 plMaxWidth =

$24 L plVerScroll =

$26 — plHorScroll =

$28 plVerPage =

$2A om plHorPage _

— pliInfoText =

$30 _— plInfoHeight =

$32 4
— plDefProc =

$36 a
— pilinfoDraw _

S3AL 4
— pl1ContentDraw =

S3E°
: plPosition

$46
— plPlane ~_
— =

S4A _
— picControlList =

$4E _— plinDesc

Window template, type rWindParam1 ($800E)

Word

Word—See NewWindow wFrameBits parameter

Long

Long—See NewWindow wRe/Con parameter

: Rectangle—SeeNewWindow wZoom parameter

Long

Word—SeeNewWindow wYOrigin parameter

Word—SeeNewWindow wXOrigin parameter

Word—SeeNewWindow wDataH parameter

Word—SeeNewWindow wDataWparameter

Word—SeeNewWindow wMaxH parameter

Word—See NewWindow wMaxW parameter

Word—See NewWindow wScrollVer parameter

Word—See NewWindow wScrollHor parameter

Word—See NewWindow wPageVer parameter

Word—See NewWindow wPageHor parameter

Long—See NewWindow winfoRe/Con parameter

Word—See NewWindow win/oHeight parameter

Long—See NewWindow wFrameDefProc parameter

Long—See NewWindow winfoDefProc parameter

Long—See NewWindow wContDefProc parameter

- Rectangle—See NewWindow wPosition parameter

Long—See NewWindow wPlane parameter

Long

Word

Appendix E Resource Types —_E-75

piLength

plTitle

piColorTable

plControlList

The numberof bytes in the template, including the length of
plLength.Must beset to $50.

Referencetotitle string for the window. The contents of p1InDesc

specify the type ofreference stored here. Thetitle must be stored in a

Pascalstring containing both a leading and trailing space.

If p1Titleis set to NIL, the Window Managercreates a window

withouta title bar. If your program is creating a window with title

bar, you must specify a title of some sort. To create a window without

a title, make p1Title (or fitlePtron the NewWindow2call) refer toa
nullstring.

Note that the Window Managercreates a copyofthetitle string,

allowing your program to free the memory occupiedbythis string
after the NewWindowz2call is issued.

If you specify a non-NIL value fortitlePtr on the NewWindow?2call,
this field is ignored.

Reference to the color table for the window. The contents of

pliInDesc specify the type of reference stored here. If
plColorTableisset to NIL, the Window Manager assumesthat
there is no colortable for the window.

The format ofthe color table is defined in Chapter 25, “Window
Manager,” in Volume2 ofthe Toolbox Reference. If p1colorTable
refers to a resource, then the color table must be defined in a resource
of type rWindColor.

Reference to the template or templates defining controls for the
window. The Window Managerpasses this value to the NewCont ro12
Control Managertool call as the reference parameter. Note that
pliInDesccontains the data for the NewCont rol2 referenceDesc
parameter. Refer to Chapter 28, “Control Manager Update,” in this
book for more information about NewControl2.

If this field is set to NIL, then the Window Managerassumesthat there
is no controllist for the window and doesnotcall NewControl2.

E-76 Apple IIGS Toolbox Reference, Volume 3

plinDesc The type ofreference stored in pl1ColorTable and p1Tit1le.This

field also contains the referenceDesc value for NewContro12that
defines the contents of picontrolList.

Reserved bits 15-12 Mustbesetto 0.

colorTableRef bits 11-10 Defines the type of reference stored in
plColorTable.

00 = Reference is by pointer to color table

01 = Reference is by handle to colortable

10 = Reference is by resource ID of rWwindColor
resource
11 = Invalid value

titleRef bits 9-8 Defines the type of reference stored in piTitle.

00 = Reference is by pointer to Pascalstring
01 = Reference is by handleto Pascalstring
10 = Referenceis by resource ID of rpPString

resource
11 = Invalid value

controlRef bits 7-0 Defines the type of reference stored in
plControlList; passed directly to the

NewCont rol2 Control Managertoolcall as the
referenceDesc parameter. (For valid values, see the
description of the NewCont ro12 tool call in

Chapter 28, “Control Manager Update,” earlier in this
book.)

Appendix E Resource Types __E-77

rWindParam2 S800F

Figure E-39 defines the layout of resource type rWindParam2 ($800F). This resource
defines a template used to create windows with the NewWindow2 Window Managertool
call (see Chapter 52, “Window Manager Update,” in this book). Use this template for

custom windows.

= Figure E-39 Window template, type rWindParam2 ($800F)

$00 L p2ListID + Word

$02 —
— p2DefProc = Long

$06 : p2Data : Byte array
l J

p2ListID The resource template version. Must be set to NIL.

p2DefProc Pointer to the definition procedure for the window. Whenusing the
rWindParam2 window template, you mustpass a pointerto a valid
definition procedure, either in the template or with the defProcPtr

parameter to the NewWindow2 Window Managertoolcall. On disk,
this field does not contain valid value.

p2Data Window definition data required by the routine pointed to by

p2DefProc. The format and contentofthis field are determined by
the window definition procedure.

E-78 Apple IIGs Toolbox Reference, Volume 3

Appendix F Delta Guide

This appendix collects all information that corrects errors or clarifies
ambiguities in Volumes 1 and 2 of the Apple lIGs Toolbox Reference. This

information was derived from the “Error Corrections” and

“Clarifications” sections in the chapters of this book. This appendix

contains a separate major section for each tool set to be addressed; the
sections are presented alphabetically, by tool set name.

Apple Desktop Bus

The following sections correct errors or omissions in Chapter 3, “Apple Desktop Bus
Tool Set,” in Volume1 of the Toolbox Reference.

Error corrections

The parametertable for the ReadKeyMicroData toolcall ($0A09) in Volume 1 of the
Toolbox Reference incorrectly describes the format of the readconfig command ($0B).
The description should beas follows:

Command dataLength Name Action

$0B 3 readConfig Read configuration; dataPtrrefers to a
3-byte data structure.

Byte ADB keyboard and mouse

addresses.

Low nibble = keyboard

High nibble = mouse

Byte Keyboard layout and display

language.

Low nibble = keyboard layout

High nibble = display language

Byte Repeat rate and delay.
Low nibble = repeatrate
High nibble = repeat delay

The description of this configuration record is also wrongin the tool set summary. The

following list correctly describes ReadConfigRec,the configuration record for the
ReadKeyMicroDatatoolcall.

Name Offset Type Definition

rcADBAddr $0000 Byte ADBkeyboard and mouse addresses.
Low nibble = keyboard
High nibble = mouse

rcLayoutOrLang $0001 Byte Keyboard layout anddisplay language.
Low nibble = keyboard layout

High nibble = display language

F-2 Apple IIGS Toolbox Reference, Volume 3

rcRepeatDelay $0002 Byte Repeat rate and delay.
Low nibble = repeatrate

High nibble = repeat delay

Clarification

This section presents new information about the AsyncADBReceivecall.

If you call AsyncADBReceiveto poll a device using register2, it returns certain useful

information aboutthe status of the keyboard. Thecall returns the following information
in the specified bits of register 2:

Bit 5: 0 = Caps Lock key down
1 = Caps Lock key up

Bit 3: 0 = Control key down

1 = Control key up

Bit 2: 0 = Shift key down
1 = Shift key up

Bit 1: 0 = Option key down

1 = Option key up

Bit 0: 0 = Command key down

1 = Command key up

Appendix F DeltaGuide F-3

Audio Compression and Expansion Tool Set

The following section discusses an error in a previous version of this book.

Error correction

An error existed in the Apple lcs Toolbox Reference Update (distributed by APDA). The
description of the ACEExpandtoolcall included an incorrect parameter block. This book
contains a corrected description.

F-4

—

Apple IIGs Toolbox Reference, Volume 3

Control Manager

The following sections correct errors or omissions in Chapter 4, “Control Manager,” in
Volume1 of the Toolbox Reference.

Error corrections

This section documents errors in Chapter4, “Control Manager,” in Volume 1 of the Toolbox
Reference.

ws The color table for the size box control in the Toolbox Reference is incorrect. The

correct table follows, with new information in boldface.

growOutline

growNorBack

growSelBack

word

word

word

Outline color

Bits 15-8 = zero

Bits 7-4 = outline color

Bits 3-0 = Zero

Color ofinterior when not highlighted

Bits 15-8 = Zero

Bits 7-4 = background color

Bits 3-0 = icon color

Color of interior when highlighted

Bits 15-8 = zero

Bits 7-4 = background color

Bits 3-0 = icon color

a This description on page 4-76 of the Toolbox Reference, in the section about the
SetCt1Paramscall, is misleading: “Sets new parameters to the control’s definition
procedure.”In fact, the call does not set the parameters directly. Rather, it sends the
new parametersto the control’s definition procedure. In this way, SetCt1Paramsis

unlike SetCt1Value, whichactually sets the appropriate value in the control record
and then passesthe value to the definition procedure.

Appendix F DeltaGuide F-5

Clarifications

The following items provide additional information about features previously described
in Volume 1 of the Toolbox Reference.

m The barArrowBackentry in thescroll bar color table was never implementedas first
intended andis no longerused.

ws The Control Managerpreservesthe current port across Control Managercalls, including
those that are passed throughothertools, such as the Dialog Manager.

a The Control Managerpreserves the following fields in the port of a window that
contains controls:

bkPat

pnLoc

pnSize

pnMode

pnPat

pnMask

pnVis

fontHandle

fontID

fontFlags

txSize

txFace

txMode

SpExtra

chExtra

fgColor

bgColor

background pattern
pen location

pen size

pen mode

pen pattern
pen mask

pen visibility

handle of current font
ID of current font
font flags

text size

text face
text mode
value of space extra
value of character extra
foreground color

backgroundcolor

= The control definition procedures for simple buttons, check boxes, and radio buttons

can now computethe size of boundary rectangles automatically. The computedsize is
based on thesize ofthetitle string of the button or box.

w To ensure predictable color behavior, you should always align controls based on color
tables on an even pixel boundary in 640 mode.If you do not do so, the control will not
appearin the colors you specify, due to the effect of dithering.

F-6 Apple IIGs Toolbox Reference, Volume 3

Dialog Manager

The following section corrects errors or omissions in Chapter 6, “Dialog Manager,” in

Volume1 of the Toolbox Reference.

Error corrections

This section documents errors in Chapter 6, “Dialog Manager,” in Volume 1 of the Toolbox

Reference.

= Astatement about SetDItemType on page 6-82 of Volume 1 of the Toolbox Reference

is in error. This call is not used to changea dialog item to a different type. In fact,
SetDItemTypeshould be used only to changethe state of an item from enabled to

disabled or vice versa. ’

= Anentry in Table 6-3 on page 6-12 of Volume 1 of the Toolbox Referenceis incorrect.
The Dialog Manager does not support dialog item type values of picItem or
iconItem.

Appendix F Delta Guide F-7

Event Manager

The following section corrects an error in Chapter 7, “Event Manager,” in Volume 1 of the

Toolbox Reference.

Error correction

ws Thedescription of the EMShut Downtoolcall incorrectly states that the call returns no
errors. This call can return any valid Event Managererror code.

F-8 Apple IIGs Toolbox Reference, Volume 3

Font Manager

The following section corrects an error in Chapter 8, “Font Manager,” in Volume1 ofthe
Toolbox Reference.

Error corrections

= On page 8-4 of Volume1 of the Toolbox Reference, the font family numberfor the
Shaston font is given as 65,524. This is incorrect. The correct decimal value is 65,534

($FFFE).

a Page 8-24, Volume 1 of the Toolbox Reference incorrectly describes the newSpecs
parameter, indicating that it contains a word of Font SpecBits. Actually, this

parameter contains FontStatBits for the new font.

= Contrary to the call description in the Toolbox Reference, the FMSet SysFonttoolcall

does not load orinstall the indicated font.

Appendix F DeltaGuide —F-9

Integer Math ToolSet

The following section describes a bug that has beenfixed in the Integer Math ToolSet.

Clarification

This section presents new information about the Long2Dec Integer Mathtoolcall.

w The Long2DecInteger Mathtool call now correctly handles input long values whose
low-order three bytesare set to zero.

F-10 Apple IIGS Toolbox Reference, Volume 3

List Manager

The following sections correct errors or omissions in Chapter 11, “List Manager,” in Volume
1 of the Toolbox Reference.

Clarifications

The following items provide additional information about features previously described
in Volume 1 ofthe Toolbox Reference.

= The Toolbox Referencestates that a disabled item of a list cannot be selected. In fact, a

disabled item can be selected, but it cannot be highlighted. The List Manager provides

the ability to select disabled (dimmed)items so that a user can,for instance, select a
disabled commandaspart of a help dialog box. To make an item unselectable, make it
inactive (see “List Manager Definitions” later in this appendix).

a AnyList Managertoolcall that draws will changefields in the GrafPort record. If you

are using List Managertool calls, you must set up the GrafPort correctly and save any

valuable GrafPort data before issuing the call.

= Item text is now drawn in 16 colors in both 320 and 640 mode.

a Previous versions of List Manager documentation do notclearly define the relationship

between the listView, listMemHeight, and listRect fields in thelist record.

To understandthis relationship, note that the following formula must be true for values
in any list record:

(listView * listMemHeight) + 2 = listRect.v2 = listRect.vl

If you set ListViewto 0, the List Manager automatically adjusts the ListRect.v2

field and sets the 1istViewfield so that this formula holds. Note that if you pass a 0

value for 1istView, the bottom boundary of 1istRect may changeslightly.

Appendix F DeltaGuide F-11

List Manager definitions

The following terms define the valid states of a list item:

inactive

disabled

enabled

selected

highlighted

Inactive items appear dimmed and cannotbe highlighted orselected.

Bit 5 of the list item’s memF lagfield is set to 1.

Disabled items appear dimmed and cannotbehighlighted. Bit 6 of the
list item’s memF lagfield is set to 1.

Enabled items are not dimmed and can be highlighted. Bit 6 of the list
item’s memF lag fieldis set to 0.

This bit is set when a userclicks the list item or whenthe item is in a range
of selected items. A selected item appears highlighted onlyifit is also

enabled. Bit 7 of the list item’s memF lagfieldis set to 1.

An item in a list appears highlighted only whenit is both selected and

enabled. A highlighted item is drawnin the highlight colors. Bit 7 of the
memF lagfield is set to 1 andbit 6 is set to 0.

F-12 Apple IIGs Toolbox Reference, Volume 3

Memory Manager

The following sections correct errors or omissions in Chapter 12, “Memory Manager,” in
Volume1 of the Toolbox Reference.

Error correction

Figure 12-7 on page 12-10 of Volume1 of the Toolbox Reference shows the low-orderbit of
the user ID as reserved.This is not correct. The figure should show that the main1ID field

comprises bits 0-7 and that the mainID value of $00 is reserved.

Clarification

The Toolbox Reference documentation of the Set HandleSizecall ($1902) includes the

statement, “If you need more room to lengthen a block, you may compact memory or

purge blocks.” This is misleading. In fact, to satisfy a request the Memory Manager

compacts memory or purges blocksto free sufficient contiguous memory. Therefore, the

sentence should read, “If your request requires more memory thanis available, the Memory

Manager may compact memory or purge blocks, as needed.”

Appendix F Delta Guide F-13

Menu Manager

The following sections correct errors or omissions in Chapter 13, “Menu Manager,” in
Volume 1 of the Toolbox Reference.

Error corrections

This section documents errors in Chapter 13, “Menu Manager,” in Volume 1 of the Toolbox
Reference.

= Part of the description of the Set SysBartoolcall (pages 13-86 and 13-3) in Volume 1

of the Toolbox Referenceis incorrect. It includes the mistaken statementthat, after an

application issues this call, the new system menu bar becomesthe current menubar.In
reality, your application must issue the SetMenuBartoolcall to make the new menu

bar the current menubar.

= Inthe definition of the menu bar record (pages 13-17 and 13-18), Volume1 of the
Toolbox Reference showsthat bits 0-5 of the ct 1F1agfield are used to indicate the

starting position of thefirst title in the menu bar. This is incorrect. The ct lHilite

field defines the starting position of the first title. Note further that the entire
ct1lHilitefield is used in this manner. The documented purpose of the ct 1Hilite
field (numberof highlightedtitles) is not supported by the menubarrecord.

a Thecall descriptions for the MenuKey and MenuSelecttoolcalls are incorrect. The

calls do not return selection status information in the when field of the event record.

Rather, these calls both return selection status information in the TaskData field of
the task record.

F-14 Apple IIGS Toolbox Reference, Volume 3

Clarifications

The following items provide additional information about features previously described
in Volume 1 of the Toolbox Reference.

u The SetBarColorstoolcall changes the colortable for all menu bars in a window.If
you wantto use separate color tables for different menu bars, your application must
build a menu barcolor table and modify the ct 1Color field of the appropriate

control record so that it points to this custom colortable. See “SetBarColor’” in
Chapter 13, “Menu Manager,” in Volume 1 ofthe Toolbox Reference for the format and
contents of a menu barcolortable.

m The description of the InsertMenutoolcall should also note that to display the modified

menu bar,yourapplication mustcall FixMenuBarbefore calling DrawMenuBar.

m The description of the InitPalette toolcall in the Toolbox Reference should also

notethat this call changes color tables 1 through 6 to correspondto the colors needed

for drawing the Apple logoin its standard colors.

m The CalcMenuSizecall uses the newWidth and newHeight parameters to compute

the size of a menu. These parameters may contain the width and height of the menu or
may contain the value $0000 or $FFFF. A value of $0000 tells calcMenuSize to
calculate the parameter automatically. A value of $FFFFtells it to calculate the
parameter only if the current setting is 0.

Theseare the effects ofall three uses:

o Pass the new value. The value passed determines thesize of the resulting menu.

Use this method when you need a menuofa specific size.

a Pass $0000. Thesize value is automatically computed. This option is usefulif

commands are addedordeleted, resulting in an incorrect size. The height and
width of the menu can be automatically adjusted by calling calcMenuSize with .
newWidth and newHeight equal to $0000.

o Pass SFFFF. The width and height of a menu are 0 whenit is created.
FixMenuBarcalls CalcMenuSize with newWidth and newHeight equal to $FFFF

to calculate the sizes of those menus with heights and widthsof0.

= To provide the user a consistentvisual interface, you should always pad your menu

titles with leading andtrailing space characters. The Apple IIGs Finder uses two spaces.

Appendix F DeltaGuide F-15

Miscellaneous Tool Set

The following section corrects errors or omissions in Chapter 14, “Miscellaneous ToolSet,”

in Volume1 of the Toolbox Reference.

Error corrections

This section documents errors in Chapter 14, “Miscellaneous ToolSet,” in Volume 1 of the
Toolbox Reference.

m On page 14-58 of Volume1 of the Toolbox Reference, Figure 14-3 showsthe low-order
bit of the user ID as reserved. This is not correct. The figure should show that the

mainIDfield comprises bits 0-7 and that the mainID value of $00 is reserved.

= The sample code on page 14-28 contains twoerrors. In the codeto clear the 1-second

IRQ source, the secondinstruction reads

TSB $C032

This instruction should read

TRB $C032

In addition, preceding this instruction the following code should beinserted

PEA $0000

PLB
PLB

These three instructions allow the code to reliably access the appropriate location in

bank zero memory. These samethree instructions should also be inserted in the code

shown on page 14-29, immediately preceding the sTA instruction.

a The descriptions of the PackBytes and UnPackBytestool calls are unclear with
respect to the startHandle parameterto eachcall. The stack diagrams correctly
describe the parameter as a pointer to a pointer. However, the C sample code for each

call defines startHandle as a handle. In both cases, startHandle is not a Memory

Managerhandlebut a pointer to a pointer. Creating startHandle as a handlewill cause
unpredictable system behavior.

= Throughout Chapter14 of the Toolbox Reference the value ofthe signature word for
Miscellaneous ToolSet data structures is given as $5AA5 and $A55A.Signature words

are always $A55A, never $5AA5.

F-16 Apple IIGs Toolbox Reference, Volume3

Clarification

Note that the ClrHeartBeattoolcall removesall tasks from the heartbeat interrupt
task queue, including those installed by system software. Consequently, only system
software should issue the ClrHeartBeattoolcall.

Appendix F DeltaGuide F-17

Print Manager

The following sections correct errors or omissions in Chapter 15, “Print Manager,”in

Volume1 of the Toolbox Reference.

Error corrections

This section documents errors in Volume 1 of the Toolbox Reference.

The diagram ofthe job subrecord, Figure 15-10 on page 15-14 of Volume 1 of the
Toolbox Reference, showsthat the £FromUsr field is a word.Thisis incorrect. The
fFromUsr field is actually a byte. Note that as a result the offsets forall fields

following this one are incorrect. This error is also reflected in the tool set summary at
the end of the chapter.

The description of the PrJobDialogtool call includes this incorrect statement: “The

initial settings displayed in the dialog box are taken from the printer driver.” The

sentence should be “Theinitial settings displayed in the dialog box are taken from the
print record.”

Clarifications

The following items provide additional information about features previously described in Volume 1
of the Toolbox Reference.

The existing Toolbox Reference documentation for the PrP icFiletoolcall does not
mention that your program maypass a NIL value for statusRecPtr. Passing a NIL pointer
causes the system to allocate and managethestatus record internally.

The PrPixelMapcall (documented in Volume 1 of the Toolbox Reference) provides an
easy way to print a bitmap. It does much of the required processing, and an
application need not makethecalls normally required to start and end the print loop.
The srcLocPtr parameter must be a pointer to a LocInforecord (see Figure 16-3 in

Chapter 16, “QuickDrawII,” in Volume 2 of the Toolbox Reference for the layout of the
locInfo record).

The port driver auxiliary file type of an AppleTalk driver is $0003.Its file type remains $BB.

F-18 Apple IIGS Toolbox Reference, Volume 3

QuickDraw I

The following section corrects errors or omissions in Chapter 16, “QuickDrawII,” in

Volume 2 of the Toolbox Reference.

Error corrections

The following items provide corrections to the documentation for QuickDraw II in
Volume 2 of the Toolbox Reference:

a The explanation of pen modes is somewhat misleading. Thereare, in fact, 8 drawing
modes, and you mayset the pen to draw lines and other elements of graphics in any of

these modes. There are also 16 modes used for drawing text, and they are completely
independentof the graphic pen modes. The 8 drawing modeslisted in Table 16-9 on

page 16-235 are valid modesfor either the text pen or the graphics pen. You canset

either pen to any of these modesby using the appropriate calls. You can also set the

text pen to 8 other modes. These modesare listed in the table on page 16-260 of the
Toolbox Reference. The SetPenModecall sets the mode used bythe graphics pen;the

Set TextModecall sets the mode usedbythetext pen.Setting either one does not
affect the other.

a There are two versions of the Apple IIGS standard 640-modecolor tables, one on page
16-36 and one on page 16-159. The twotablesare different; Table 16-7 on page 16-159
is correct.

= Chapter 16 states that the coordinates passed to the LineTo and MoveTocalls should

be expressed as global coordinates. In fact, the coordinates must be local and must

refer to the GrafPort in which the drawing or moving takesplace.

a Thepenstate record shownin Figure 16-38 on page 16-238is incorrect. The correct

record layout is shownin Figure F-1.

Appendix F DeltaGuide F-19

= Figure F-1 Penstate record

om H psPenLoc 7 Long—Pointspecifying pen location

$04 L -
- psPenSize 5 Long—Pointspecifying pensize

$08 | psPenMode — Word—Pen mode

SOA psPenPat 32 bytes—Pen pattem

S2A 7 psPenMask : 8 bytes—Pen mask

Clarification

QuickDraw pictures are described by a series of QuickDraw operation codes specifying

the commands by whichthe picture was created. When these pictures are stored as data

structures, the actual picture data (the operation codes) is preceded by control
information, some of which may beofinterest to Apple IIGs developers. Figure F-2 shows

someof this control information. Note that the layout of this control information is

subject to change.

s Figure F-2 QuickDraw picture header

—) Word—Picture's scan line control byte (high byteis 0)

- Rectangle—Picture’s boundary rectangle

$00 — picSCB

$02 . picFrame

SOA picVersion — Word—Version numberfor picture

F-20 Apple IIGs Toolbox Reference, Volume 3

Sound Tool Set

The following sections correct errors or omissions in Chapter 21, “Sound ToolSet,” in

Volume2 of the Toolbox Reference.

Error corrections

This section contains corrections to the documentation of the Sound ToolSet in

Volume 2 of the Toolbox Reference.

The documentation of the FFSoundDoneStatuscall contains an error. You will note
that the paragraph that describes the call does not agree with the diagram describing
the stack after the call. The text states that the call returns TRUE if the specified sound
is still playing, whereas the diagram states that it returns FALSEifstill playing. The

diagram, notthe text, is correct.

There is an undocumenteddistinction between a generatorthat is playing a sound and
onethat is active. A generator that is playing a sound returns FALSE in response to an

FFSoundDoneStatus Call. One thatis active may or may not be playing a sound; the

value ofthe flag returned by FFSoundStatusis TRUE. Active generators are those
that are allocated to a voice. At any given momentthe generator may be playing a

sound, and so the FFSoundDoneStatusretums FALSE—orit maybesilent between

notes, in which case FFSoundDoneStatusreturns TRUE.

The description of the Get SoundVolumetoolcall is misleading with respect to the

numberofsignificantbits in the returned volumesetting. The text accompanying the
stack diagram is correct—only the high nibble of the low-order byte contains valid
volume data.

The FFGeneratorStatustoolcall can return error code $0813,indicating that the
genNumberparameter contains an invalid generator number.

Appendix F DeltaGuide F-21

Clarification

This section presents more complete information about the FFStart Soundtoolcall,

including further explanation ofits parameters, a new error code, an example procedure
for moving a sound from the Macintosh computerto the Apple IIGS computer, and some
sample code demonstrating the use ofthe call. The original documentationfor this call is

in Chapter 21, “Sound ToolSet,” in Volume 2 of the Toolbox Reference.

FFStartSound

Thefree-form synthesizer is designed to play back long waveforms. To handle longer
waveforms, the synthesizer uses two buffers (which must be the samesize), alternating its
input from oneto the other. When the synthesizer exhausts a buffer, it generates an
interrupt and then starts reading data from the other buffer. The Sound ToolSet services
the interrupt and beginsrefilling the empty buffer. This process continues until the
waveform has been completely played.

Notethat all synthesizer input buffers must be buffer-size aligned. Thatis, if you have
allocated 4 KB buffers, then those buffers must be aligned on 4 KB memory boundaries.

Parameter block

$00 _
— waveStart = Long

$04 - waveSize — Word

S06 — freqOffset — Word

$08 - docBuffer + Word

SOA L bufferSize — Word

SOC 4
— nextWavePtr = Long

$10 volSetting 4 Word

waveStart The starting address of the wave to beplayed, not in Digital Oscillator
Chip (DOC) RAM but in AppleIIGs system RAM. The SoundTool Set
loads the waveform data into DOC RAM asit is played.

F-22 Apple IIGS Toolbox Reference, Volume 3

waveSize

freqOffset

docBuffer

bufferSize

nextWavePtr

volSetting

New error code

The size in pages of the waveto be played. A value of 1 indicates that
the wave is one page (256 bytes) in size, a value of 2 indicates thatit
is two pages (512 bytes) in size, and so on, as you might expect. The

only anomalyis that a value of 0 specifies that the wave is 65,536

pagesin size.

This parameter is copied directly into the Frequency High and

Frequency Lowregisters of the DOC.

Contains the address in Sound RAM where buffers are to be allocated.

This value is written to the DOC Waveform Table Pointer register. The
low-order byte is not used and should always besetto 0.

The lowest 3 bits set the values for the table-size and resolution

portions of the DOC Bank-Select/Table-Size/Resolution register.

This is the address of the next waveform to be played. If the field’s
value is 0, then the current waveform is the last waveform to be

played.

The low byte of the volSettingfield is copied directly into the
Volumeregister of the DOC.All possible byte values are valid.

$0817 IRQNotAssignedErr No master IRQ wasassigned.

Appendix F Delta Guide F-23

Moving a sound from the Macintosh computer to the Apple Ics computer

To move a digitized sound from the Macintosh computer to the Apple IIGS computer and

play the sound, you perform the following steps:

1. Save the sound as a pure datafile on the Macintosh computer.

2. Transfer thefile to the Apple IIGS computer (using Apple File Exchange, for example).

3. Filter all the 0 sample bytes outofthe file by replacing them with bytes set to $01. This

is very important, because the Apple IIGs computerinterprets 0 bytes as the end of a
sample.

4. Load the sound into memory with GS/OScalls.

5. Issue the FFStart Soundtoolcall to play the sound. Set the freqoOffset parameter
to $01B7 to match the tempo at which the sound is played on the Macintosh

computer, assuming that you recorded the original sound at the standard Macintosh
sampling rate of 22 kHz.

Sample code

This assembly-language code sample demonstrates the use of the FFStart Soundtoolcall.

ChanGenType

STParamBlk

WaveSize

Freq

Start

Size

Nxtwave

Vol

F-24

PushWord

PushLong

chanGenType

#STParamBlk

_FFStartSound

DC.W $0201

DS.L 1

WaveSizeEntry

DS.W 1

DC.W $200

DC.W $8000

DC.W $6

DC.L $0

DC.W SFF

Apple IIGs Toolbox Reference, Volume 3

Set generator for FFSynth

Address of param block

Start free-form synth

Generator 2, FFSynth

Store the address of the

sound in system memory here

Store the number of pages to

play here

A9 set for each sample once

Start at beginning

16k buffers

No new param block

Maximum volume

Tool Locator

The following sections correct errors or omissions in Chapter 24, “Tool Locator,” in

Volume 2 of the Toolbox Reference.

Error correction

Contrary to thecall descriptions in Chapter 24 of the Toolbox Reference, both the

MessageCenterand SaveTextStatetool calls can return Memory Managererrors.

\

Clarification

Applications that explicitly start up Apple IIGS tool sets should start the Desk Managerlast.

Appendix F DeltaGuide F-25

Window Manager

The following section corrects errors or omissions in Chapter 25, “Window Manager,” in

Volume 2 of the Toolbox Reference.

Error corrections

This section corrects someerrors in the documentation of the Window Managerin

Volume2 of the Toolbox Reference.

The description of Set ZoomRectis incorrect. The correct description is as follows:

Sets the £Zoomedbit of the window's wFramerecord to 0. The rectangle passed to
Set ZoomRectthen becomes the window's zoom rectangle. The window’s size and

position when Set ZoomRectis called become the window’s unzoomedsize and
position, regardless of what the unzoomed characteristics were before Set ZoomRect
was Called.

“If wmTaskMask bit tmInfo(bit 15) = 1,” on page 25-126, shouldread,“If

wmTaskMaskbit tmInfo (bit 15) = 0.”

When used with a window that does not have scroll bars, the WwindNewRes call invokes

the window’s defProc to recompute windowregions. A call to SizeWindowis not
necessary underthese circumstances.

The input region for the Inva1Rgntoolcall is defined in local coordinates; however,
the call returns the region expressed in global coordinates.

There are twoerrors in the series of equations given with the PinRect toolcall. In the
last two equations the greater-than sign (>) should be replaced with a greater-than-or-
equal sign (>=).

Note that the CloseWindowtoolcall does not change the GrafPort setting. Your
application should ensure that a valid GrafPort is set before performing any other
actions.

F-26 Apple IIGS Toolbox Reference, Volume 3

Clarifications

This section elaborates on topics addressed in Volume2 of the Toolbox Reference.

a Windowtitle strings should always contain leading andtrailing space characters. This

spacing is especially important for windowswith a lined window bar because, without
the spaces,theline pattern runsinto thetitle text. Also, because window editor desk
accessories mayallow the user to changethetitle bar pattern without making the
change knownto your application, you should pad your windowtitles with spaces
even if you use blacktitle bars.

a Table 25-6 on page 25-43 of the Toolbox Reference contains misleading labels. Note that

in this table byte 1 refers to the high-order byte of the long that defines the desktop
pattern, and byte 4 refers to the low-order byte.

Appendix F DeltaGuide F-27

Appendix G Toolbox Code Example

This appendix contains a sample program, BusyBox, that demonstrates
the use of many of the new features of the Apple IIGs Toolbox.

G-1

The Busy.p module

This section contains the sourcelisting for the main module of the BusyBox program.

{ RAKKKK IKKE KKK KEK KK KK KEK KKK KEKE KKK KKK KKKKKK KEK KKK KKK KK KKK KK KKKKKKKKEK KK

{*

{* BusyBox (Main Program)

{*

{* Copyright (c)

{* Apple Computer, Inc. 1986-1990

{* All Rights Reserved.

{*

{* This file contains the BusyBox program.

{*

{ FH ie ie ie ee ie ee He ie ie te ie eeiKKKKKKKKK KEKE KKK KKK EKEKKKKKKKKKK KKK KKK KKKKKK

{$R-}

program BusyBox;

USES

types,

gsos,

Quickdraw,

fonts,

memory,

IntMath,

events,

prodos,

locator,

controls,

windows,

lists,

scrap,

lineedit,

dialogs,

menus,

desk,

STDFile,

QDAUX,

print,

miscTool,

resources,

G-2 Apple IIGs Toolbox Reference, Volume 3

var

BEGIN

END.

uGlobals,

utils,

uWindow,

uMenu,

uEvent;

InitRef : ref;

InitGlobals;

MyMemoryID

TLStartUp;

{ HodgePodge Code Units }

{ This holds the reference to the startstop

record }

{ of MAIN program BusyBox }

{ Init our globals }

s:= MMStartup;

{ Start up & get ID from the Memory Manager }

{ Start up the tool locator }

{ Startup the tools using the new toolbox call }

InitRef := StartupTools (MyMemoryID, RefIsResource, ref (1));

if toolErr = 0 then { note: usage of _toolErr may vary between

compilers }

begin

SetUpMenus; { Set up menus }

SetupWindows;

InitCursor; { Make cursor show ready }

MainEvent; { Use application }

end;

{ Let the toolbox shut down the tools }

ShutDownTools (RefIsHandle, InitRef) ;

TLShutDown; { Shut down the tool locator }

{ of MAIN program BusyBox }

Appendix G Toolbox Code Example G3

The busybox.r module

This section contains the MPW source statements for the Apple IIGS resource editor that
create the resourcefile for the BusyBox program.

/* For APW, the following should read '#include "types.rez"'.

#include "typesiigs.r"

[®e---------------= Values used throughout -~-------------------

#define MainWindow $2000

#define ButtonWindow $2001

#define StatTextWindow $2002

#define LineEditWindow $2003

#define PictureWindow $2004

#define PopUpWindow $2005

#define TextEditWindow $2006

#define ListWindow $2007

#define ProglWindow $2008

#define Prog2Window $2009

#define Prog3Window $200A

#define Prog4Window $200B

#define ProgSWindow $200C

#define Prog6éWindow $200D

#define ButButtons $0001

#define ButStatText $0002

#define ButLineEdit $0003

#define ButPictures $0004

#define ButPopUps $0005

#define ButTextEdit $0006

#define ButLists $0007

#define ButProgl $0008

#define ButProg2 $0009

#define ButProg3 SOOOA

#define ButProg4 $000B

#define ButProg5 $000C

#define ButProg6 $000D

#define MainText SOOOE

G4 Apple IIGS Toolbox Reference, Volume 3

#define AboutBusyAlert 1

#define BusyBoxStartup 1

eee About BOX qrrrrrrrrrrrrrren

resource rAlertString (AboutBusyAlert) {

"O\SLO\SOO\SAO\SOO\SAA\SO0O\SEO\S01"
"o/"

TBCenterJust

TBStyleOutline

“"BusyBox"

TBEndOfLine

TBStylePlain

"A sample program to demonstrate the new features of the "

“Apple IIGS toolbox."

TBEndOfLine

TBEndOfLine
"by e

TBEndOfLine

"Steven E. Glass"

TBEndOfLine

TBEndOfLine

"Copyright Apple Computer, Inc."

TBEndOfLine

"All Rights Reserved"

TBEndOfLine

"Version 1.1/*#6\$00"

Appendix G Toolbox Code Example G-5

[BeererrrStartup Record --------9-9*/

resource rToolStartup (BusyBoxStartup) {

mode640, /* master SCB */

{

3,$0100, /* Misc Tool */

4,$0100, /* QuickDraw */

5,$0100, /* Desk Manager */

6,$0100, /* Event Manager */

/* 7,$0100, /* Scheduler */

/* 8,$0100, /* sound tools */

/* 9,$0100, /* ADB tools */

/* 10,$0100, /* SANE */

11,$0100, /* Int Math */

14,$0300, /* Window Manager */

15,$0300, /* Menu Manager */

16, $0300, /* Control Manager */

18,$0200, /* QD AUX */

19,$0100, /* Print Manager */

20,$0100, /* LineEdit Tool Set */

21,$0100, /* Dialog Manager */

22,$0100, /* Scrap Manager */

23,$0100, /* Standard File */

27,$0100, /* Font Manager */

28,$0100, /* List Manager */

34,$0100, /* TextEdit */

/* 29,$0100, /* ACE */

/* 32,$0100, /* MIDI Tools */

/* 25,$0100, /* Note Synth */

/* 26,$0100 /* Note Seq */

G6 Apple IIGs Toolbox Reference, Volume 3

/*

/* Main Window
/*

/* This is the template for the main window with all the buttons that

/* lead to other buttons.
/*

[| Bameneee e e

resource rWindParaml (MainWindow) {

fTitle+fVis, /* frame bits

MainWindow, /* title id

0, /* ref con

{0,0,0,0}, /* zoom rect

0, /* color table id

{0,0}, /* origin

{0,0}, /* data size

{0,0}, /* max height-width

{0,0}, /* scroll amount, hor,ver

{0,0}, /* page amount

0, /* winfo ref con

0, /* wInfo height

{40,90,180,550}, /* window position

infront, /* wPlane

MainWindow, /* control ref

refIsResource*0x0100+resourceToResource

/* descriptor

resource rPString (MainWindow) {

"BusyBox"

};

Appendix G Toolbox Code Example G-7

/* The following define the controls for the main window.

/* First I start with some constants.
/*awraawewrweeeee*/

#define ButWidth 140

#define ButHeight 12

#define ButSep 8

#define ButVSep 5

#define TopOfRowl 50

#define BottomOfRowl TopOfRow1+ButHeight

#define TopOfRow2 BottomOfRow1+ButVSep
#define BottomOfRow2 TopOfRow2+ButHeight

#define TopOfRow3 BottomOfRow2+ButVSep

#define BottomOfRow3 TopOfRow3+ButHeight

#define TopOfRow4 BottomOfRow3+ButVSep+ButVSep
#define BottomOfRow4 TopOfRow4+ButHeight

#define TopOfRow5 BottomOfRow4+ButVSep
#define BottomOfRow5 TopOfRow5+ButHeight

#define LeftEdgel ButSep

#define RightEdgel LeftEdgel+ButWidth
#define LeftEdge2 RightEdgel1+ButSep

#define RightEdge2 LeftEdge2+ButWidth
#define LeftEdge3 RightEdge2+ButSep
#define RightEdge3 LeftEdge3+ButWidth

G-8

=

Apple IGS Toolbox Reference, Volume 3

/* List of all controls in main window */

resource rControlList (MainWindow) {

{

ButButtons,

ButStatText,

ButLineEdit,

ButPictures,

ButPopUps,

ButTextEdit,

ButLists,

ButProgl,

ButProg2,

ButProg3,

ButProg4,

ButProg5,

ButProg6,

MainText

};

Appendix G Toolbox Code Example

_

G-9

resource rControlTemplate (MainText) {

G-10

MainText, /* control id */

{2,4,42, 456}, /* control rectangle */

EditTextControl { { /* control type */

0x0000, /* flag */

fCtlCanBeTarget+fCtlWantEvents+fctlProcRefNotPtr+

fCtliIsMultiPart,

/* more flags */

0, /* ref con */

fReadOnly+fDrawBounds,

/* text flags */

{OxFFFF, OxFFFF, OxFFFF, OxFFFF},

/*

OxFFFFFFFF, /*

0, /*

0, /*

0, /*

0, /*

indent rect */

vert bar */

vert amount */

hor bar */

hor amount */

style ref */

dataIsTextBlock+RefIsResource*8,

/*

MainText, /*

0 /*

text descriptor */

text ref */

text size (not used) */

Apple IIGS Toolbox Reference, Volume 3

/* The static text for main window */

resource rText (MainText) {

"The new toolbox makes it much easier to write programs for the "

“Apple IIGS."

TBEndOfLine

TBEndOfLine

"This program is incredibly simple.

TBEndOfLine

TBEndOfLine

"Press one of the round buttons to find out about the new kinds

"of controls that are supported. "

TBEndOfLine

TBEndOfLine

"Press one of the square "

“buttons to see the code for this program."

/* The definition of the Buttons button */

resource rControlTemplate (ButButtons) {

ButButtons, /* control id */

{TopOfRowl1, LeftEdgel, BottomOfRowl, RightEdgel},

/* control rect */

SimpleButtonControl { /* control type */

NormalButton, /* flag */

f£CtlProcRefNotPtr+RefIsResource,

/* more flags */

0, /* xref con */

ButButtons /* title ref */

resource rpString (ButButtons) {

"Buttons..."

};

Appendix G Toolbox Code Example G-11

/* The Static Text button */

resource rControlTemplate (ButStatText) {

ButStatText, /* control id */

{TopOfRowl, LeftEdge2, BottomOfRowl, RightEdge2},

/* control rect */

SimpleButtonControl { { /* control type */

NormalButton, /* flag */

fCtlProcRefNotPtr+RefIsResource,

/* more flags */

0, /* ref con */

ButStatText /* title ref */

resource rpString (ButStatText) {

"Static Text..."

};

/* The Line Edit button */

resource rControlTemplate (ButLineEdit) {

ButLineEdit, /* control id */

{TopOfRowl, LeftEdge3, BottomOfRowl1, RightEdge3},

/* control rect */

SimpleButtonControl{ { /* control type */

NormalButton, /* flag */

FCtlProcRefNotPtr+RefIsResource,

/* more flags */

0, /* ref con */

ButLineEdit /* title ref */

resource rpString (ButLineEdit) {

"Line Edit..."

de

G-12 Apple IIGs Toolbox Reference, Volume 3

/* The Pictures button */

resource rControlTemplate (ButPictures) {

ButPictures, /* control id */

{TopOfRow2, LeftEdgel, BottomOfRow2, RightEdgel},

/* control rect */

SimpleButtonControl { { /* button type */

NormalButton, /* flag */

fCtlProcRefNotPtr+RefIsResource,

/* more flags */

0, /* ref con */

ButPictures /* title ref */

resource rpString (ButPictures) {

"Pictures..."

}3

/* The Pop-ups button */

resource rControlTemplate (ButPopUps) {

ButPopUps, /* control id */

{TopOfRow2, LeftEdge2, BottomOfRow2, RightEdge2},

/* control rect */

SimpleButtonControl{ { /* control type */

NormalButton, /* flag */

fCtlProcRefNotPtr+RefIsResource,

/* more flags */

0, /* ref con */

ButPopUps /* title ref */

resource rpString (ButPopUps) {

"Pop-up Menus...’

be

Appendix G Toolbox Code Example G-13

/* The TextEdit button */

resource rControlTemplate (ButTextEdit) {

ButTextEdit, /* control id */

{ TopOfRow2, LeftEdge3, BottomOfRow2, RightEdge3},

/* control rect */

SimpleButtonControl { { /* control type */

NormalButton, /* flag */

fCtlProcRefNotPtr+RefIsResource,

/* more flags */

0, /* ref con */

ButTextEdit /* title ref */

resource rpString (ButTextEdit) {

};

/* The Lists button */

resource rControlTemplate (ButLists) {

ButLists, /* control id */

{ TopOfRow3, LeftEdge2, BottomOfRow3, RightEdge2},

/* control rect */

SimpleButtonControl { { /* control type */

NormalButton, /* flag */

f£CtlProcRefNotPtr+RefIsResource,

/* more flags */

0, /* ref con */

ButLists /* title ref */

resource rpString (ButLists) {

"Lists..."

}3

G-14 Apple IIGS Toolbox Reference, Volume 3

/* The Main Program button */

resource rControlTemplate (ButProgl) {

ButProgl, /* control id */

{TopOfRow4, LeftEdgel, BottomOfRow4, RightEdgel},

/* control rect */

SimpleButtonControl { { /* control type */

SquareButton, /* flag */

fCtlProcRefNotPtr+RefIsResource,

/* more flags */

0, /* ref con */

ButProgl /* title ref */

resource rpString (ButProgl) {

"Main Program..."

};

/* The Main Program button */

resource rControlTemplate (ButProg2) {

ButProg2, /* control id */

{TopOfRow4, LeftEdge2, BottomOfRow4, RightEdge2},

/* control rect */

SimpleButtonControl{ { /* control type */

SquareButton, /* flag */

fCtlProcRefNotPtr+RefIsResource,

/* more flags */

0, /* ref con */

ButProg2 /* title ref */

d};

resource rpString (ButProg2) {

"Events..."

};

Appendix G Toolbox Code Example G-15

/* The Main Program button */

resource rControlTemplate (ButProg3) {

ButProg3, /* control id */

{TopOfRow4, LeftEdge3, BottomOfRow4, RightEdge3},

/* control rect */

SimpleButtonControl { { /* control type */

SquareButton, /* flag */

fCtlProcRefNotPtr+RefIsResource,

/* more flags */

0, /* ref con */

ButProg3 /* title ref */

resource rpString (ButProg3) {

"Menus..."

};

/* The Main Program button */

resource rControlTemplate (ButProg4) {

ButProg4, /* control id */

{ TopOfRow5, LeftEdgel, BottomOfRow5, RightEdgel},

/* control rect */

SimpleButtonControl { /* control type */

SquareButton, /* flag */

fCtlProcRefNotPtr+RefIsResource,

/* more flags */

0, /* ref con */

ButProg4 /* title ref */

resource rpString (ButProg4) {

"Windows..."

}e

G-16 Apple IIGs Toolbox Reference, Volume 3

/* The Main Program button */

resource rControlTemplate (ButProg5) {

ButProg5, /* control id */

{TopOfRowS, LeftEdge2, BottomOfRowS5, RightEdge2},

SimpleButtonControl { {

SquareButton,

/* control rect */

/* control type */

/* flag */
fCtlProcRefNotPtr+RefIsResource,

0,

ButProg5

resource rpString (ButProg5)

"Utilities..."

}3

/* The Main Program button */

/* more flags */

/* ref con */

/* title ref */

{

resource rControlTemplate (ButProg6) {

ButProg6, /* control id */

{TopOfRowS, LeftEdge3, BottomOfRowS, RightEdge3},

SimpleButtonControl { {

SquareButton,

/* control rect */

/* control type */

/* flag */

fCctlProcRefNotPtr+RefIsResource,

0,

ButProg6

resource rpString (ButProg6)

"Globals..."

}3

/* more flags */

/* ref con */

/* title ref */

{

Appendix G Toolbox Code Example G-17

/*

/* Buttons...

/*

/* The List window uses IDs in the $3000 range.

/*

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

G-18 Apple IIGS Toolbox Reference, Volume 3

ButtonTextID

Butl

But2

But3

But 4

Checkl

Check2

Check3

Check4

Radiol

Radio2

Radio3

Radio4

Iconl

Icon2

BLinel

BLine2

BLine3

BLine4

50

$3001

$3101

$3102

$3103

$3104

$3105

$3106

$3107

$3108

$3109

$310A

$310B

$310C

$310D

$310E

BLine1l+18

BLine2+18

BLine3+18

resource rWindParaml (ButtonWindow) {

fTitle+fMove+fZoom+fGrow+fBScroll+fRScroll+fClose,

/* frame bits */

ButtonWindow, /* title id */

0, /* ref con */

{0,0,0,0}, /* zoom rect */

0, /* color table id */

{0,0}, /* origin */

{400,640}, /* data size */

{200,640}, /* max height-width */

{1,1}, /* scroll amount, hor,ver */

{0,0}, /* page amount */

0, /* wInfo ref con */

0, /* wInfo height */

{50,50,120,260}, /* window position */

infront, /* wPlane */

ButtonWindow, /* control ref */

refIsResource*0x0100+resourceToResource

/* descriptor */

3

resource rpString (ButtonWindow) {

"Buttons Window"

};

Appendix G Toolbox Code Example 6-19

resource rControlList (ButtonWindow) {

{
ButtonTextID,

Butl,

But2,

But3,

But4,

Checkl,

Check2,

Check3,

Check4,

Radiol,

Radio2,

Radio3,

Radio4,

Iconl,

Icon2

/* Template for static text in main window */

resource rControlTemplate (ButtonTextID) {

ButtonTextID, /* control id */

{2,4,48, 460}, /* control rectangle */

StatTextControl { { /* control type */

ctlInactive, /* flag */

fCtlProcRefNotPtr+RefIsResource,

/* more flags */

0, /* ref con */

ButtonTextID /* title ref */

/* The static text for List window */

resource rTextForLETextBox2 (ButtonTextID) {

"There are four types of buttons: simple buttons, check boxes, "

"radio buttons, and Icon Buttons. Each button can have its own "

"keyboard equivalent. All tracking and hiliting is handled by "

"TaskMaster."

G-20 Apple IIGS Toolbox Reference, Volume 3

resource rControlTemplate (Butl)

Butl, /*

{BLinel, LeftEdgel,0,0}, /*

SimpleButtonControl { { /*

NormalButton, /*

{

control id */

control rect */

control type */

flag */

fctlProcRefNotPtr+fCtlwantEvents+RefIsResource,

/*

0, /*

Butl, /*

0, /*
("A","a",0,0} /*

resource rpString (Butl) {

“Normal Button (A)"

)3

resource rControlTemplate (But2)

But2, /*

{BLine2, LeftEdgel,0,0}, /*

SimpleButtonControl { { /*

DefaultButton, /*

more flags */

ref con */

title ref */

color table not used */

key equiv */

{

control id */

control rect */

control type */

flag */

fctlProcRefNotPtr+fCtlWwantEvents+RefIsResource,

/* more flags */

0, [*

But2, /*

0, /*

{"B","b",0,0} /*

resource rpString (But2) {

"Default Button (B)"

ref con */

title ref */

color table not used */

key equiv */

Appendix G Toolbox Code Example G-21

resource rControlTemplate (But3) {

But3,

{BLine3, LeftEdgel,0,0},

SimpleButtonControl { {

SquareButton,

/* control id */

/* control rect */

/* control type */

/* flag */

fctlProcRefNotPtr+fCtlWantEvents+RefIsResource,

{"C", "co", 0, 0}

resource rpString (But3) {

“Square Button (C)"

resource rControlTemplate

But4,

{BLine4, LeftEdgel,0,0},

SimpleButtonControl { {

/* more flags */

/* ref con */

/* title ref */

/* color table not used */

/* key equiv */

(But4) {

/* control id */

/* control rect */

/* control type */

SquareShadowButton,

/* flag */
fctlProcRefNotPtr+fCtlWantEvents+RefIsResource,

0,

But4,

0,

("D","a",0,0}

resource rpString (But4) {

"Square Shadow Button

G-22

/*

/*

/*

/*

/*

more flags */

ref con */

title ref */

color table not used */

key equiv */

(D) ve

Apple IIGs Toolbox Reference, Volume 3

resource rControlTemplate (Checkl) {

Checkl, /* control id */

{BLinel, LeftEdge3,0,0}, /* control rect */

CheckControl { { /* control type */

0, /* flag */

fctlProcRefNotPtr+fCtlWantEvents+RefIsResource,

/* more flags */

0, /* ref con */

Checkl, /* title ref */

1, /* initial value */

0, /* color table not used */

{"e","E",0,0} /* key equiv */

resource rpString (Checkl) {

"Check One (E)"

resource rControlTemplate (Check2) {

Check2, /* control id */

{BLinel+10, LeftEdge3,0,0},

/* control rect */

CheckControl { { /* control type */

0, /* flag */

fctlProcRefNotPtr+fCtlWantEvents+RefIsResource,

/* more flags */

0, /* ref con */

Check2, /* title ref */

1, /* initial value */

0, /* color table not used */

{"£","F",0,0} /* key equiv */

};

resource rpString (Check2) {

"Check Two (F)"

};

Appendix G Toolbox Code Example G-23

resource rControlTemplate (Check3) {

Check3, /* control id */

{BLinel+20, LeftEdge3,0,0},

/* control rect */

CheckControl { { /* control type */

0, /* flag */

fctlProcRefNotPtr+f£CtlWantEvents+RefIsResource,

/* more flags */

0, /* ref con */

Check3, /* title ref */

0, /* initial value */

0, /* color table not used */

{"G","g",0,0} /* key equiv */

d}7

resource rpString (Check3) {

"Check Three (G)"

resource rControlTemplate (Check4) {

Check4, /* control id */

{BLine1l+30, LeftEdge3,0,0},

/* control rect */
CheckControl { { /* control type */

0, /* flag */

fctlProcRefNotPtr+fCtlWantEvents+RefIsResource,

/* more flags */
0, /* ref con */

Check4, /* title ref */
1, /* initial value */
0, /* color table not used */

{"H","h",0,0} /* key equiv */

}}3

resource rpString (Check4) {

"Check Four (H)"

G-24 Apple IIGs Toolbox Reference, Volume 3

resource rControlTemplate (Radiol) {

Radiol, /* control id */

{BLine4, LeftEdge3,0,0}, /* control rect */

RadioControl { { /* control type */

0, /* flag */

fctlProcRefNotPtr+fCtlWantEvents+RefIsResource,

/* more flags */

0, /* ref con */

Radiol, /* title ref */

0, /* initial value */

0, /* color table not used */

("i","I",0,0} /* key equiv */

resource rpString (Radiol) {

"Radio One (I)"

resource rControlTemplate (Radio2) {

Radio2, /* control id */

{BLine4+10, LeftEdge3,0,0}, /* control rect */

RadioControl{ { /* control type */

0, /* flag */

fctlProcRefNotPtr+fCtlWantEvents+tRefIsResource,

/* more flags */

0, /* ref con */

Radio2, /* title ref */

1, /* initial value */

O, /* color table not used */

("go","j",0,0} /* key equiv */

resource rpString (Radio2) {

"Radio Two (J)"

Appendix G Toolbox Code Example G25

resource rControlTemplate (Radio3) {

Radio3, /* control id */

{BLine4+20, LeftEdge3,0,0},

/* control rect */

RadioControl { { /* control type */

0, /* flag */

fctlProcRefNotPtr+fCtlWantEvents+RefIsResource,

/* more flags */

0, /* ref con */

Radio3, /* title ref */

0, /* initial value */

0, /* color table not used */

{"K","k",0,0} /* key equiv */

resource rpString (Radio3) {

“Radio Three (K)"

resource rControlTemplate (Radio4) {

Radio4, /* control id */

{BLine4+30, LeftEdge3,0,0},

/* control rect */

RadioControl{ { /* control type */

0, /* flag */

fctlProcRefNotPtr+fCtlWantEvents+RefIsResource,

/* more flags */

0, /* ref con */

Radio4, /* title ref */

0, /* initial value */

0, /* color table not used */

("L","1",0,0} /* key equiv */

resource rpString (Radio4) {

"Radio Four (L)"

G-26 Apple IIGS Toolbox Reference, Volume 3

resource rControlTemplate (Iconl) {

Iconl, /* control id */

{BLine4+20, LeftEdgel, BLine4+20+40, LeftEdgel1+100},

/* control rect */

IconButtonControl{ { /* control type */

SquareButton, /* flag */

fctlProcRefNotPtr+fCtlWantEvents+RefIsResource+tRefIsResource*$0010,

/* more flags */

0, /* ref con */

Iconl, /* icon ref */

Iconl, /* title ref */

0, /* color table not used */

0, /* display mode */

{"M","™m",0,0} /* key equiv */

resource rpString (Iconl) {

"Icon One (M)"

resource riIcon (Iconl) {

0x8000, /* kind */

20, /* height */

28, /* width */

Appendix G Toolbox Code Example _G-27

G-28

S"FFFFFFFFFFFOOOOOFFFFFFFFFFFE"

S"FFFFFFFFOO00ddddadO00OFFFFFFFFF"

S"FFFFFF0088888dddddd00OFFFFFFF"

S"FFFFF0d888888d88 8dd8d0FFFFFF"

S"FFFF08888888dd8 88dd8880FFFFEF"

S"FFFF08888888dd8 8dd88880FFFFF"

S"FFF08888888dddddddd88880FFFF"

S"FFF08888888dddddddddd8d0FFFF"

S"FF0d8d8 8dd8ddddddd8888880FFE"

S"FF0d8d8 8dd8dddddd88888880FFF"

S"FFOdddd8ddddddddd88888880FFF"

S"FF0dd88 88 8ddddddd88888880FFF"

S"FFF08888888dddddd8888880FFFF"

S"FFF08888888ddddddd888880FFFF"

S"FFFF088888 8dddddddd8880FFFFEF"

S"FFFF088888ddddddddd8 880FFFFE"

S"FFFFF0888 8ddddddddd880FFFFFF"

S"FFFFFF008dddddddddd0OFFFFFFF"

S"FFFFFFFF000ddddd000FFFFFFFFEF"

S"PPFFFFFFFFFOOOOOFFFFFFFFFFFE",

S"O0000000000FFFFF000000000000"

S"QOOO000000FFFFFFFFFFF000000000"

S"OOOOO0OFFFFFFFFFFFFFFF0000000"

S"QO000FFFFFFFFFFFFFFFFF000000"

S"OO0OFFFFFFFFFFFFFFFFFFFO00000"

S"OOOOFFFFFFFFFFFFFFFFFFF00000"

S"O00FFFFFFFFFFFFFFFFFFFFF0000"

S"OOOFFFFFFFFFFFFFFFFFFFFFO000"

S"OOFFFFFFFFFFFFFFFFFFFFFFF000"

S"OOFFFFFFFFFFFFFFFFFFFFFFFO00"

S"OOFFFFFFFFFFFFFFFFFFFFFFF000"

S"OOFFFFFFFFFFFFFFFFFFFFFFFOO0O"

S"OOOFFFFFFFFFFFFFFFFFFFFF000Q"

S"OOOFFFFFFFFFFFFFFFFFFFFFO0000"

S"OOOOFFFFFFFFFFFFFFFFFFFO000O0"

S"OOOOFFFFFFFFFFFFFFFFFFF00000"

S"OOO000FFFFFFFFFFFFFFFFF000000"
S"OO0OOO000FFFFFFFFFFFFFFF0000000"

S"OOO00000FFFFFFFFFFF000000000"

S"OOO00000000FFFFF000000000000":;

Apple IIGS Toolbox Reference, Volume 3

ao

resource rControlTemplate (Icon2) {

Icon2, /* control id */

{BLine4+20, LeftEdge2, BLine4+20+40, LeftEdge2+100},

/* control rect */

IconButtonControl { { /* control type */

SquareButton, /* flag */

fctlProcRefNotPtr+fCtlWantEvents+RefIsResource+RefIsResource*$0010,

/* more flags */

0, /* ref con */

Icon2, /* icon ref */

Icon2, /* title ref */

0, /* color table not used */

0, /* display mode */

{"N","n",0,0} /* key equiv */

resource rpString (Icon2) {

“Icon Two (N)"

resource riIcon (Icon2) {

0x8000, /* kind */

20, /* height */

28, /* width */

Appendix G Toolbox Code Example G-29

S"FRFFFFFFFFFFFFFFFFFFFFFFFFFE"

S"FFFFFFFFFFFFFFFFFFFFFFFFFFFF"

S"FFFFFFFFFFFFFFFFFFFFFFFFFFFF"

S"FFFFFFFFFFFFFFFFFFFFFFFFFFFF"

S"FPFFFFFFFFFOFFFFFFFFFDFFFFFFEF"

S"FFFFFFFFFOOFFFFFFFEFFDFFFFFF"

S"FFFFFFFFOFOFFFFFAFFEFFDFFFFF"

S"FFFFFFFOFFOFF7FFAFFEFFDFFFFF"

S"FFOOQQOOFFFOFFF7FFAFFEFFDFFFF"

S"FOFFFFOFFFOFFF7FFAFFEFFDFFFF"

S"FOFFFFOFFFOFFF7FFAFFEFFDFFFFEF"

S"FOFFFFOFFFOFFF7FFAFFEFFDFFFEF"

S"FFOQOOQOOOFFFOFFF7FFAFFEFFDFFFE"

S"FFFFFFFOFFOFF7FFAFFEFFDFFFFF"

S"FFFFFFFFOFOFFFFFAFFEFFDFFFFE"

S"FFFFFFFFFOOFFFFFFFEFFDFFFFFE"

S"FFFFFFFFFFOFFFFFFFFFDFFFFFFE"

S"FFFFFFFFFFFFFFFFFFFFFFFFFFFEF"

S"FFFFFFFFFFFFFFFFFFFFFFFFFFFE"

S"FFFFFFFFFFFFFFFFFFFFEFFFFFFEF"

G-30 Apple IIGS Toolbox Reference, Volume 3

}e

$"0000000000000000000000000000"

$"0000000000000000000000000000"

$"0000000000000000000000000000"

$"0000000000000000000000000000"

S"O0000000000FO00000000F0000000"

S"OO0000000FFOO00000FO0F000000"

S"OO000000FFFOOO00FOOFOOF00000"

S"OO00000FFFFOOFOOFOOFOOFO0000"

S"OOFFFFFFFFFOOOFOOFOOFOOFO000"

S"OFFFFFFFFFFOOOFOOFOOFOOFOO000"

S"OFFFFFFFFFFOOOFOOFOOFOOFO0000"

S"OFFFFFFFFFFOOOFOOFOOFOOFO000"

S"OOFFFFFFFFFOOOFOOFOOFOOFO000"

S"OOO00000FFFFOOFOOFOOFOOFO0000"

S"Q00000000FFFOOO000FOOFOOFO00000"

S"QOOO0000000FFOOO00000FOOF000000"

S"O0000000000FO00000000F0000000"

$"0000000000000000000000000000"

$"0000000000000000000000000000"

$"0000000000000000000000000000";

Appendix G Toolbox Code Example G-31

/*

/* StatText...

/*

/* The StatText window uses IDs in the $4000 range.

/*

#define StatTextTextID $4001

resource rWindParaml (StatTextWindow) {

fTitle+fMovet+fZoom+fGrow+fBScroll+fRScroll+fClose,
/*

StatTextWindow, /*

0, /*

{0,0,0,0}, /*

0, /*

{0,0}, /*

{400,640}, /*

{200,640}, /*

{1,1}, /*

{0,0}, /*

0, /*

0, /*

{50,50,120,260}, /*

infront, /*

StatTextWindow, /*

frame bits */

title id */

ref con */

zoom rect */

color table id */

origin */

data size */

max height-width */

scroll amount, hor,ver */

page amount */

wInfo ref con */

winfo height */

window position */

wPlane */

control ref */

refIsResource*0x0100+resourceToResource

/* descriptor */

resource rpString (StatTextWindow) {

G-32

"Static Text Window"

Apple IIGS Toolbox Reference, Volume 3

resource rControlList (StatTextWindow) {

{

StatTextTextID,

0

/* Template for static text in main window */

resource rControlTemplate (StatTextTextID) {

StatTextTextID, /* control id */

{2,4,200,560}, /* control rectangle */

StatTextControl { { /* control type */

ctlInactive+fSubstituteText,

/* flag */

fctlProcRefNotPtr+RefIsResource,

/* more flags */

0, /* ref con */

StatTextTextID /* title ref */

Appendix G Toolbox Code Example G-33

/* The static text for List window */

resource rTextFOrLETextBox2 (StatTextTextID) {

"Static text is a simple but powerful control that lets you put "

"predefined text in a window. The text is drawn with LETextBox2 "

"so you can format the text any way you want: using special "

TBStyleOutline

"styles"

TBStylePlain
ve i|

av

TBFont

TBVenice

"\SOO\SOE"

"fonts"

TBFont

TBShaston

"\SOO\S08"
ee

7

TBForeColor

TBColor5

"colors"

TBForeColor

TBColor0
nom

TBEndOfLine

TBRightJust

"indenting or justification."

TBEndOfLine

TBLeftJust

TBEndOfLine

"An additional feature of static text is substitutions. You may "

"substitute up to ten strings into your ""static"" text, making "

"it not so static. The ## and ** symbols are used to indicate "

"substitutions."

"You use ##n to indicate a built-in string. You use **n to "
"indicate a particular string of your own. The SetCtlParamPtr "

"call lets you set up the substitution array that should be "

"used."

G-34 Apple IIGs Toolbox Reference, Volume 3

TBEndOfLine

TBEndOfLine

"The built-in strings are "

TBEndOfLine

TBEndOfLine

TBLeftMargin

"\$20\$00"

"“##0 is #0"

TBEndOfLine

"##1l is ""#1"""

TBEndOfLine

"##2 is ""#2"""

TBEndOfLine

"##3 is ""#3"""

TBEndOfLine

"##4 is ""#4""n"

TBEndOfLine

"##5 is ""#5"""

TBEndOfLine

"##6 is “"#6"""™

TBEndOfLine

};

| Be wanenmeeex/

/*

/* LineEdit...

/* ,

/* The List window uses IDs in the $5000 range.

/*

/*------------------+--+x/

#define LineEditTextID $5001

#define LineEditl $5002

#define LineEdit2 $5003

#define LineEdit3 $5004

#define LineEdit4 $5005

#define LineEdit5 $5006

#define LineEdit6 $5007

Appendix G_ Toolbox Code Example G-35

#define

#define

#define

#define

#define

#define

#define

LELinel

LELine2

LELine3

LELeftl

LEWidth

LEHeight

LELeft2

80

100

120

10

200

13

220

resource rWindParaml (LineEditWindow) {

£Title+fMovetfZoomt+fGrowtfBScroll+fRScroll+fClose,

LineEditWindow,

0,
{0,0,0,0},

0,

{0,0},

{400,640},

{200,640},

{1,1},

{0,0},

0,

0,
{50,50,120,260},
infront,

LineEditWindow,

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

frame bits */

title id */

ref con */

zoom rect */

color table id */

origin */

data size */

max height-width */

scroll amount, hor,ver */

page amount */

winfo ref con */

winfo height */

window position */

wPlane */

control ref */

refIsResource*0x0100+resourceToResource

/* descriptor */

resource rpString (LineEditWindow) {

"Line Edit Window"

G-36 Apple IIGS Toolbox Reference, Volume 3

resource

{

rControlList (LineEditWindow) {

LineEditTextID,

LineEdit6,

LineEditS5,

LineEd@it4,

LineEdit3,

LineEdit2,

LineEditl

resource rControlTemplate (LineEditTextID) {

LineEditTextID, /* control id */

{2,4,52,460}, /* control rectangle */

EditTextControl{ { /* control type */

0x0000, /* flag */

fCtlCanBeTarget+fCtlWantEvents+fctlProcRefNotPtr,

/* more flags */

0, /* ref con */

fReadOnly+fDrawBounds+fTabSwitch,

/* text flags */

{OxFFFF, OxFFFF, OxFFFF, OxFFFF},

/* indent rect */

OxFFFFFFFF, /* vert bar */

0, /* vert amount */

0, /* hor bar */

0, /* hor amount */

0, /* style ref */

dataIsTextBlock+RefIsResource*8,

/* text descriptor */

LineEditTextID, /* text ref */

0 /* text length */

Appendix G Toolbox Code Example _G-37

/* The static text for List window */

resource rText (LineEditTextID) {

"The following six line edit fields are all defined in "

“resources. "

"All the typing, mouse tracking, and tabbing are handled by the "

"Toolbox. The application does not have to do anything until it "

"wants to read what is in the fields. Note that the fifth item "

"is set up to work as a password item. The characters you type "

"are not echoed, but they are collected correctly. "

resource rControlTemplate (LineEditl) {

0, /* control id */

{LELinel, LELeftl1, LELinel+LEHeight, LELeft1+LEWidth},

/* control rectangle */

EditLineControl { { /* control type */

0, /* flag */

fctlProcRefNotPtr+RefIsResource,

/* more flags */

0, /* ref con */

40, /* max length */

LineEditl /* initial value ref */

resource rPString (LineEditl) {

"First Line Edit Item"

G-38 Apple IIcs Toolbox Reference, Volume3

resource rControlTemplate (LineEdit2) {

0, /* control id */

{LELinel, LELeft2, LELinel+LEHeight, LELeft2+LEWidth},

/* control rectangle */

EditLineControl { { /* control type */

0, /* flag */

fctlProcRefNotPtr+RefIsResource,

/* more flags */

0, /* ref con */

40, /* max length */

LineEdit2 /* initial value ref */

resource rPString (LineEdit2) {

"Second Line Edit Item"

resource rControlTemplate (LineEdit3) {

0, /* control id */

{LELine2, LELeft1, LELine2+LEHeight, LELeft1+LEWidth h,

/* control rectangle */

EditLineControl { /* control type */

0, /* flag */

fctlProcRefNotPtr+RefIsResource,

/* more flags */

0, /* ref con */

40, /* max length */

LineEdit3 /* initial value ref */

resource rPString (LineEdit3) {

"Third Line Edit Item"

Appendix G Toolbox Code Example 6-39

resource rControlTemplate (LineEdit4) {

0, /* control id */

{LELine2, LELeft2, LELine2+LEHeight, LELeft2+LEWidth},

/* control rectangle */

EditLineControl { { /* control type */

0, /* flag */

fctlProcRefNotPtr+RefIsResource,

/* more flags */

0, /* ref con */

AO, /* max length */

LineEdit 4 /* initial value ref */

resource rPString (LineEdit4) {

“Fourth Line Edit Item"

resource rControlTemplate (LineEdit5) {

0, /* control id */

{LELine3, LELeft1, LELine3+LEHeight, LELeft1+LEWidth},

/* control rectangle */
EditLineControl{ { /* control type */

0, /* flag */

fctlProcRefNotPtr+RefIsResource,

/* more flags */

0, /* ref con */

40+$8000, /* max length (password field) */

LineEdit5 /* initial value ref */

resource rPString (LineEdit5) {

"Fifth Line Edit Item"

G40 Apple IGS Toolbox Reference, Volume 3

resource rControlTemplate (LineEdit6) {

/* control id */

{LELine3, LELeft2, LELine3+LEHeight, LELeft2+LEWidth},

/* control rectangle */

/* control type */

0,

EditLineControl { {

0, /* flag */

fctlProcRefNotPtr+RefIsResource,

0,

40,

LineEdit6

resource rPString (LineEdit6)

"Sixth Line Edit Item"

};

/*

/*

/*

/*

{

more flags */

ref con */

max length */

initial value ref */

/k---------+-- +--+eeeeeeeeeeeeee*/

/*

/* Pictures...
/*

/* The List window uses IDs in the $6000 range.
/*

#define PictureTextID $6001

#define Picl $6002

Appendix G Toolbox Code Example G-41

resource rWindParaml (PictureWindow) {

fTitle+fMovetfZoom+f£Grow+fBScroll+fRScroll+fClose,

PictureWindow,

0,

{0,0,0,0},

0,

{0,0},

{400,640},

{200,640},

{1,1},

{0,0},

0,

0,

{50,50,120,260},

infront,

PictureWindow,

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

frame bits */

title id */

ref con */

zoom rect */

color table id */

origin */

data size */

max height-width */

scroll amount, hor,ver */

page amount */

wiInfo ref con */

winfo height */

window position */

wPlane */

control ref */

refIsResource*0x0100+resourceToResource

resource rpString (PictureWindow)

"Pictures Window"

/* descriptor */

{

resource rControlList (PictureWindow) {

{

PictureTextID,

Picl

G42 Apple IIGs Toolbox Reference, Volume 3

/* Template for static text in main window */

resource rControlTemplate (PictureTextID) {

PictureTextID, /* control id */

{2,4,48,460}, /* control rectangle */

StatTextControl { /* control type */

ctlInactive, /* flag */

fCtlProcRefNotPtr+RefIsResource,

/* more flags */

0, /* ref con */

PictureTextID /* title ref */

/* The static text for List window */

resource rTextForLETextBox2 (PictureTextID) {

"You can also make picture controls. Pictures are collections of

"QuickDraw commands that are all drawn at once. They can contain "

"most any drawing command including text, color, and special "

"fonts."

resource rControlTemplate (Picl) {

Picl, /* control id */

{50,2,150,202}, /* control rectangle */

PictureControl { { /* control type */

ctlInactive, /* flag */

fCtlProcRefNotPtr+RefiIsResource,

/* more flags */

0, /* ref con */

Picl /* title ref */

Appendix G Toolbox Code Example G-43

data

$"80

$"01

$"2E

S"1E

$"53

S"71

$"28

rPicture

00

CO

O01

00

00

00

00

00

01

53

80

19

FC

50

00

co

00

00

00

00

00

(Picl)

00

FF

OA

1A

32

53

67

00

3F

00

01

00

00

00

S"DE 00"

7

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

G-44 Apple Ics Toolbox Reference, Volume3

PopUps...

PopUpTextID

PopUp1

PopUp2

PopUpliIteml

PopUplitem2

PopUplItem3

PopUp2Iiteml

PopUp2Item2

PopUp2Item3

PopUp2Item4

PopUp2Iitem5

PopUp2Item6

PopUp2Item7

PopUp2Item8

PopUp2Item9

{

8F

FF

14

53

76

23

E8

00

3F

00

00

00

00

00

38

51

85

14

06

46

53

01

00

00

00

01

00

00

11

05

24

28

53

6C

2D

82

00

01

00

00

00

00

O01

OA

53

7B

1E

F2

SA

$7001

$7100

$7200

$7101

$7102

$7103

$7201

$7202

$7203

$7204

$7205

$7206

$7207

$7208

$7209

00

00

00

00

00

00

00

OA

8A

OF

10

3C

53

62

The List window uses IDs in the $7000 range.

00"

00"

00"

01"

00"

00"

00"

/*

/*

/*

/*

/*

/*

/*

*/

*/

*/

*/

*/

*/

*/

resource rWindParaml (PopUpWindow) {

fTitle+fMove+fZoom+f£Grow+f£BScroll+fRScroll+fClose,

/* frame bits */

PopUpWindow, /* title id */

0, /* ref con */

{0,0,0,0}, /* zoom rect */

0, /* color table id */

{0,0}, /* origin */

{400,640}, /* data size */

{200,640}, /* max height-width */

{1,1}, /* scroll amount, hor,ver */

{0,0}, /* page amount */

0, /* wInfo ref con */

0, /* wInfo height */

{50,50,120,260}, /* window position */

infront, /* wPlane */

PopUpWindow, /* control ref */

refIsResource*0x0100+resourceToResource

/* descriptor */

resource rpString (PopUpWindow) {

"PopUps Window"

resource rControlList (PopUpWindow) {

{

PopUpTextID,

PopUp1,

PopUp2

}3

Appendix G Toolbox Code Example G-45

/* Template for static text in main window */

resource rControlTemplate (PopUpTextID) {

PopUpTextID, /* control id */

{2,4, 48,460}, /* control rectangle */

StatTextControl { { /* control type */

ctlInactive, /* flag */

fCtlProcRefNotPtr+RefIsResource,

/* more flags */

0, /* ref con */

PopUpTextID /* title ref */

/* The static text for List window */

resource rTextForLETextBox2 (PopUpTextID) {

"This window contains two pop-up menus. The first menu has three "

"items and is constrained to pop up inside the window. The "

"second has nine items and can pop up outside the window. The "

"first pop-up is a type 1 pop-up, and the second is a type 2. "

resource rControlTemplate (PopUpl) {

PopUpTextID, /* control id */
{50,50,0,0}, /* control rectangle */

PopUpCont rol{ { /* control type */

fInWindowOnly, /* flags */

fctlProcRefNotPtr+RefIsResource,

/* more flags */

0, /* ref con */

0, /* title width */

PopUp1, /* menu ref */

PopUplItem1 /* initial value */

}}

G46 Apple IIGsS Toolbox Reference, Volume 3

resource rMenu (PopUpl) {

PopUpl, /*id of menu */

RefIsResource*MenuTitleRefShift+RefIsResource*ItemRefShift+fAllowCache,

/* menu flags */

PopUp1, /* id of title string */

{ PopUplIteml, PopUplitem2,PopUplitem3 };

/* id's of items */

resource rPString (PopUpl,noCrossBank) {

“Pop-up One "

resource rMenulItem (PopUplIteml) {

PopUpliteml,
wee ee

0,
RefIsResource*ItemTitleRefShift+f£XOR,

PopUpliteml

};

resource rPString (PopUplIteml,noCrossBank) {

“Pop-up One: Item 1"

resource rMenulItem (PopUplIitem2) {

PopUplitem2,

un we

0,

RefIsResource*ItemTitleRefShift+f£XOR,

PopUplitem2

};

resource rPString (PopUplItem2,noCrossBank) {

"Pop-up One: Item 2"

Appendix G Toolbox Code Example G-47

resource rMenulItem (PopUplItem3) {

PopUplitem3,
he

0,

RefIsResource*ItemTitleRefShift+f£XOR,

PopUplItem3

};

resource rPString (PopUplItem3,noCrossBank) {

"Pop-up One: Item 3"

resource rControlTemplate (PopUp2) {

PopUp2, /* control id */

{80,50,0,0}, /* control rectangle */

PopUpControl { { /* control type */

£Type2Popup, /* flags */

fctlProcRefNotPtr+RefIsResource,

/* more flags */

0, /* ref con */

0, /* title width */

PopUp2, /* menu ref */

PopUp2Iteml /* initial value */

}}

G-48 Apple IIGS Toolbox Reference, Volume 3

resource rMenu (PopUp2) {

PopUp2, /* id of menu */

RefIsResource*MenuTitleRefShift+RefIsResource*ItemRefShift+fAllowCache,

/* menu flags */

PopUp2, /* id of title string */

{ PopUp2Iteml,

PopUp2Item2,

PopUp2Item3,

PopUp2Iitem4,

Popup2Item5,

Popup2Item6,

Popup2Item/7,

Popup2Item8,

Popup2Item9

}; /* id's of items */

};
resource rPString (PopUp2,noCrossBank) {

“Pop-up Two "

resource rMenuItem (PopUp2Iteml) {

PopUp2Iteml,

vee,

0,

RefIsResource*ItemTitleRefShift+£XOR,

PopUp2Iteml

}3

resource rPString (PopUp2Iteml,noCrossBank) {

“Pop-up Two: Item 1"

Appendix G Toolbox Code Example 649

resource rMenulItem (PopUp2Item2) {

PopUp2Item2,

we we

0,

RefIsResource*ItemTitleRefShift+f£XOR,

PopUp2Item2

};

resource rPString (PopUp2Item2,noCrossBank) {

“Pop-up Two: Item 2"

resource rMenuiItem (PopUp2Item3) {

PopUp2Item3,

we, ue

0,

RefIsResource*ItemTitleRefShift+f£XOR,

PopUp2Item3

};

resource rPString (PopUp2Item3,noCrossBank) {

“Pop-up Two: Item 3"

resource rMenuItem (PopUp2Item4) {

PopUp2Item4,

“e, “ew,

0,

RefIsResource*ItemTitleRefShift+f£XOR,

PopUp2Item4

};

resource rPString (PopUp2Item4,noCrossBank) {

“Pop-up Two: Item 4"

G-50 Apple IIGS Toolbox Reference, Volume 3

resource rMenuItem (PopUp2Item5) {

PopUp2Item5,

we, we,

0,

RefIsResource*ItemTitleRefShift+f£XOR,

PopUp2Item5

};

resource rPString (PopUp2Item5,noCrossBank) {

“Pop-up Two: Item 5"

resource rMenuItem (PopUp2Item6) {

PopUp2Item6,

we we

0,

RefIsResource*ItemTitleRefShift+f£XOR,

PopUp2Item6

}; .

resource rPString (PopUp2Item6,noCrossBank) {

"Pop-up Two: Item 6"

resource rMenuItem (PopUp2Item7) {

PopUp2Item7,

we we,

0,

RefIsResource*ItemTitleRefShift+f£XOR,

PopUp2Item7

};

resource rPString (PopUp2Item7,noCrossBank) {

"Pop-up Two: Item 7"

Appendix G Toolbox Code Example G-51

resource rMenuItem (PopUp2Item8) {

PopUp2Iitem8,

wee,

0,

RefIsResource*ItemTitleRefShift+f£XOR,

PopUp2Item8

};

resource rPString (PopUp2Item8, noCrossBank)

"Pop-up Two: Item 8"

resource rMenulItem (PopUp2Item9) {

PopUp2Item9,

we, wn

0,
RefIsResource*ItemTitleRefShift+f£XOR,

PopUp2Item9

3

resource rPString (PopUp2Item9, noCrossBank)

"Pop-up Two: Item 9"

1

/*

/* TextEdits...

/*

/* The TextEdit window uses IDs in the $8000 range.

/*

[*-----------------=--+--+ee+eeeeeeeee

#define TextEditTextID $8001

#define TextEditl $8002

#define TextEdit2 $8003

G-52 Apple IIGs Toolbox Reference, Volume3

resource rWindParaml (TextEditWindow)

fTitle+fMove+fZoom+fGrowt+fBScrol1l+fRScroll+fClose,

/* frame bits */

{

TextEditWindow, /* title id */

0, /* ref con */

{0,0,0,0} , /* zoom rect */

0, /* color table id */

{0,0}, /* origin */

{400,640}, /* data size */

{200,640}, /* max height-width */

{1,1}, /* scroll amount, hor,ver */

{0,0}, /* page amount */

0, /* wInfo ref con */

0, /* wInfo height */

{50,50,120, 260}, /* window position */

infront, /* wPlane */

TextEditWindow, /* control ref */

refIsResource*0x0100+resourceToResource

/* descriptor */

resource rpString (TextEditWindow) {

"TextEdits Window"

resource rControlList (TextEditWindow)

{
TextEditTextID,

TextEdit2,

TextEditl,

0

{

Appendix G Toolbox Code Example G-53

/* Template for static text in main window */

resource rControlTemplate (TextEditTextID) {

TextEditTextID, /* control id */

{2,4, 48,460}, /* control rectangle */

StatTextControl { { /* control type */

ctliInactive, /* flag */

fctlProcRefNotPtr+RefIsResource,

/* more flags */

0, /* ref con */

TextEditTextID /* title ref */

/* The static text for List window */

resource rTextForLETextBox2 (TextEditTextID) {

"Two text edit fields."

G-54 Apple IIGs Toolbox Reference, Volume 3

resource rControlTemplate (TextEditl1) {
TextEditl, /* control id */

{50,4,100,460}, /* control rectangle */

EditTextControl { { /* control type */

0x0000, /* flag */

fCtlCanBeTarget+fCtlWantEvents+fctlProcRefNotPtr,

/* more flags */

0, /* ref con */

fSmartCutPaste+fTabSwitch+fDrawBounds,

/* text flags */

{OxFFFF, OxFFFF, OxFFFF, OxFFFF},

/* indent rect */
OxFFFFFFFF, /* vert bar */

0, /* vert amount */

0, /* hor bar */

0, /* hor amount */

0, /* style ref */

dataIsPString+tRefIsResource*8,

/* text descriptor */

TextEditl, /* text

0 /* text

resource rPString (TextEditl) {

"This is a PString that you can

resource rCString (TextEditl) {

"This is a CString that you can

resource rText (TextEditl) {

ref */

length */

edit."

edit."

"This is a text block that you can edit."

Appendix G Toolbox Code Example _G-55

resource rControlTemplate (TextEdit2) {

TextEditl, /* control id */

{110, 4,150,460}, /* control rectangle */

EditTextControl { { /* control type */

0x0000, /* flag */

f£CtlCanBeTarget+fCtlWantEvents+fctlProcRefNotPtr,

/* more flags */

0, /* ref con */

fSmartCutPaste+fTabSwitch+fDrawBounds,

/* text flags */

{OxFFFF, OxFFFF, OxFFFF, OxFFFF},

/* indent rect */

OxFFFFFFFF, /* vert bar */

0, /* vert amount */

0, /* hor bar */

0, /* hor amount */

0, /* style ref */

dataIsTextBlock+RefIsResource*8,

/* text descriptor */

TextEdit2, /* text ref */

0 /* text length */

/* The static text for List window */

resource rText (TextEdit2) {

"More text. Will it tab?"

G-56 Apple IIGS Toolbox Reference, Volume 3

/* Lists...
/*

/* The List window uses IDs in the $9000 range.

/*

resource rWindParaml (ListWindow) {

fTitle+fMove+fZoomt+fGrowt+tfBScroll+fRScroll+fClose,

/* frame bits */

ListWindow, /* title id */

0, /* ref con */

{0,0,0,0}, /* zoom rect */

0, /* color table id */

{0,0}, /* origin */

{400,640}, /* data size */

{200,640}, /* max height-width */

{1,1}, /* scroll amount, hor,ver */

{0,0}, /* page amount */

0, /* wInfo ref con */

0, /* wiInfo height */

{50,50,120,260}, /* window position */

infront, /* wPlane */

ListWindow, /* control ref */

refIsResource*0x0100+resourceToResource

/* descriptor */

}e

resource rpString (ListWindow) {

"Lists Window"

#define ListID $9000

#define ListTextID $9001

Appendix G Toolbox Code Example G-57

/* List of all controls in main window */

resource rControlList (ListWindow) {

{
ListID,

ListTextID,

0

/* Template for static text in main window */

resource rControlTemplate (ListTextID) {

ListTextID, /* control id */

{2,4,48,460}, /* control rectangle */

StatTextControl { { /* control type */

ctlInactive, /* flag */

fCtlProcRefNotPtr+RefIsResource,

/* more flags */

0, /* ref con */

ListTextID, /* title ref */

0, /* text size (not used) */

/* The static text for List window */

resource rTextForLETextBox2 (ListTextID) {

"This list is defined and contained entirely in resources. "

"The strings in the list are also resources."

G-58 Apple IIGs Toolbox Reference, Volume 3

resource rControlTemplate (ListID) {

ListID, /* control id */

{50,50,152,350}, /* list rectangle */

ListControl { { /* list type */

0, /* flag */

fCtlProcRefNotPtr+RefIsResource,

/* more flags */

0, /* ref con */

16, /* num members in list */

0, /* list view (let list mgr calc) */

0,) /* list type */

1, /* list start (start at top) */

10, /* ListMemHeight */

5, /* ListMemSize */

ListID /* ListRef (id of list record) */

resource rListRef (ListID) {

{ 0x9001,memNormal,

0x9002,memSelected,

0x9003,memDisabled,

0x9004,memNormal,

0x9005,memNormal,

0x9006,memNormal,

0x9007,memNormal,

0x9008,memNormal,

0x9009,memNormal,

0x900A,memNormal,

0x900B,memNormal,

0x900C,memNormal,

0x900D,memNormal,

0x900E,memNormal,

0x900F,memNormal,

0x9010,memNormal

};

};

resource rpString (0x9001) {

"Ttem One"

Appendix G Toolbox Code Example G-59

resource rpString (0x9002) {

"Item Two"

}3
resource rpString (0x9003) {

"Item Three"

};
resource rpString (0x9004) {

"Item Four"

}e

resource rpString (0x9005) {

"Item Five"

he
resource rpString (0x9006) {

"Item Six"

he

resource rpString (0x9007) {

"Item Seven"

}e

resource rpString (0x9008) {

"Item Eight"

};
resource rpString (0x9009) {

“Item Nine"

};

resource rpString (0x900A) {

“Item Ten"

he

resource rpString (0x900B) {

"Item Eleven"

}?
resource rpString (0x900C) {

"Item Twelve"

};

resource rpString (0x900D) {

"Item Thirteen"

};

resource rpString (Ox900E) {

"Item Fourteen"

};
resource rpString (Ox900F) {

"Item Fifteen"

G60 Apple Ics Toolbox Reference, Volume 3

resource rpString (0x9010) {

"Item Sixteen"

[KKK IR KKK KIKIKKKIK KKK IK IKK IK IK IKK KKK KIKI KKK KKK KKK KKK KKEKKKKEKK KKK KKK EK /

/*

/* Menus
/*

[RKIK KK KI IKK KKK KIKI KKKKEKE KEKE KEKKEKKKKKKKAKKKKKKKKKKK KKK KKK KKKKKK /

#define AppleMenuID $1100

#define FileMenuID $1200

#define EditMenuID $1300

#define AboutID $1101

#define CloseID 255

#define QuitID $1202

#define UndoID 250

#define CutID 251

#define CopyID 252

#define PasteID 253

#define ClearID 254

resource rMenuBar ($1000) {

{
AppleMenulD,

FileMenulID,

EditMenulID,

Appendix G Toolbox Code Example 6-61

resource rMenu (AppleMenulID) {

AppleMenulID,

RefIsResource*MenuTitleRefShift+RefIsResource*ItemRefShift+

fALlLowCache,

AppleMenulD,

{ AboutID };

resource rMenu (FileMenuID) {

FileMenulID,

RefIsResource*MenuTitleRefShift+RefIsResource*ItemRefShift+

fAllowCache,

FileMenulID,

{ CloseID,

QuitID };

resource rMenu (EditMenuID) {

EditMenulID,

RefIsResource*MenuTitleRefShift+RefIsResource*ItemRefShift+

fALlLowCache,

EditMenulID,

{

UndolID,

Cut ID,

CopyID,

PastelID,

ClearID

resource rMenulItem (AboutID) {

AboutID,

it) ee
a a

0,

RefIsResource*ItemTitleRefShift+fDivider,

About ID

G62 Apple IIGs Toolbox Reference, Volume 3

resource rMenuItem (UndoID) {

UndolID,

ee te ve ee

a a

0,

RefIsResource*ItemTitleRefShift,

UndoID

resource rMenuItem (CutID) {

CutID,

"X", "x",
0,

RefIsResource*ItemTitleRefShift,

Cut ID

resource rMenuItem (CopyID) {

CopyID,

"cou,"c",

0,

RefIsResource*ItemTitleRefShift,

CopyID

resource rMenulItem (PasteID) {

PastelID,

eye ty",

0,
RefIsResource*ItemTitleRefShift,

PasteID

resource rMenuItem (ClearID) {

ClearID,

ue ve we ce

eo av

0,
RefIsResource*ItemTitleRefShift,

ClearID

Appendix G Toolbox Code Example G-63

resource rMenulItem (CloseID) {

CloselID,
wwe ’ ww '

0,

RefIsResource*ItemTitleRefShift,

CloseID

resource rMenulItem (QuitID) {

QuitID,

"oO" ’ "gq" ’

0,
RefIsResource*ItemTitleRefShift,

QuitID

resource rPString
we"

he

resource rPString

"File"

he

resource rPString

"Edit"

3

(AppleMenuID, noCrossBank)

(FileMenuID, noCrossBank)

(EditMenuID, noCrossBank)

resource rPString (AboutID, noCrossBank)

"About BusyBox..."

};

resource rPString (CloseID,noCrossBank)

"Close"

3

resource rPString

"Undo"

he
resource rPString

"Cut"

};

resource rPString
"Copy"

};

(UndoID, noCrossBank)

(Cut ID, noCrossBank)

(CopyID, noCrossBank)

G64 Apple IIGs Toolbox Reference, Volume 3

{

{

{

{

{

{

resource rPString

"Paste"

}i

resource rPString

"Clear"

he

resource rPString

(PasteID, noCrossBank)

(ClearID, noCrossBank)

(QuitID, noCrossBank)

{

{

{
"Ouit iT}

};

/*ao-----e+5====== x /

/*

/* Program...
/*

/* The Program windows use IDs in the $A000 range.
/*

/*---------+--+5-++--++5555-5==*/

#define Programl SA001

#define Program2 S$A002

#define Program3 $A003

#define Program4 $A004

#define Program5 SA005

#define Program6 $A006

Appendix G Toolbox Code Example G-65

resource rWindParaml

ProglWindow,

0,

{0,0,0,0},

0,

{0,0},

{400,640},

{200,640},

{1,1},

{0,0},

0,

0,

{30,4,180,500},

infront,

Programl,

(ProglWindow) {

fTitle+fMove+fZoom+fClose,

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

frame bits */

title id */

ref con */

zoom rect */

color table id */

origin */

data size */

max height-width */

scroll amount,

page amount */

wInfo ref con */

wiInfo height */

window position */

wPlane */

control ref */

hor,ver */

refIsResource*0x0100+refIsResource

/*

resource rpString (ProglWindow)

"Main Program"

resource rControlList (Program1)

{
Programl,

descriptor */

{

G-66 Apple IIGs Toolbox Reference, Volume3

resource rControlTemplate (Programl) {

control id */

control rectangle */

control type */

flag */

fCtlCanBeTarget+fCtlWantEventst+fctlProcRefNotPtr+fctlTellAboutSize,

more flags */

ref con */

text flags */

indent rect */

vert bar */

vert amount */

hor bar */

hor amount */

TextEditl, /*

{0,0,0,0}, /*

EditTextControl { { /*

0x0000, /*

/*

0, /*

fReadOnly+fNoWordwWrap,

/*

{OxFFFF, OxFFFF, OxFFFF, OxFFFF},

/*

OxFFFFFFFF, /*

0, /*

0, /*

0, /*

0, /*

read rText

style ref */

datalIlsTextBlock+RefIsResource*8,

/* text descriptor */

Programl, /* text ref */

0 /* text length */

(Programl) “busy.p";

Appendix G Toolbox Code Example G-67

resource rwWwindParaml

Prog2Window,

0,

{0,0,0,0},

0,

{0,0},

{400,640},

{200,640},

{1,1},

{0,0},

0,

0,

{30,4,180,500},

infront,

Program2,

(Prog2Window) {

fTitle+fMovet+fZoom+fClose,

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

frame bits */

title id */

ref con */

zoom rect */

color table id */

origin */

data size */

max height-width */

scroll amount, hor,ver */

page amount */

winfo ref con */

winfo height */

window position */

wPlane */

control ref */

refIsResource*0x0100+refIsResource

/*

resource rpString (Prog2Window)

"Event Unit"

resource rControlList

{
Program2,

}e

(Program2)

descriptor */

{

G68 Apple lcs Toolbox Reference, Volume 3

resource rControlTemplate (Program2) {

Program2, /*

{0,0,0,0}, /*

EditTextControl{ { /*

0x0000, /*

control id */

control rectangle */

control type */

flag */

fCtlCanBeTarget+fCtlWantEvents+fct1lProcRefNotPtrt+fctlTellAboutSize,

}3

read rText

more flags */

ref con */

text flags */

indent rect */

vert bar */

vert amount */

hor bar */

hor amount */

/*

0, /*

fReadOnly+fNoWordWrap,

/*

{OxFFFF, OxFFFF, OxFFFF, OxFFFF}),

/*

OxFFFFFFFF, /*

0, /*

0, /*

0, /*

0, /* style ref */

dataIsTextBlock+RefIsResource’*8,

Program2,

0

(Program2)

/*

/*

/*

"uevent .p";

text descriptor */

text ref */

text length */

Appendix G Toolbox Code Example 6-69

resource rWindParaml (Prog3Window) {

fTitle+fMove+fZoom+fClose,

Prog3Window,

0,

{0,0,0,0},

0,

{0,0},

{400,640},

{200,640},

{1,1},

{0,0},

0,

0,

{30,4,180,500},

infront,

Program3,

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

frame bits */

title id */

ref con */

zoom rect */

color table id */

origin */

data size */

max height-width */

scroll amount, hor,ver */

page amount */

winfo ref con */

winfo height */

window position */

wPlane */

control ref */

refIsResource*0x0100+refIsResource

resource rpString (Prog3Window)

"Menu Unit"

};

resource rControlList

{

Program3,

};

(Program3)

/* descriptor */

{

G-70 Apple IIGS Toolbox Reference, Volume 3

resource rControlTemplate (Program3) {

Program3, /*

{0,0,0,0}, /*

EditTextControl { { /*

0x0000, /*

control id */

control rectangle */

control type */

flag */

fCtlCanBeTarget+fCtlWantEvents+fctlProcRefNotPtr+fctlTellAboutSize,

}}-

d?

read rText

0,

/*

/*

more flags */

ref con */

fReadOnly+fNowWordWrap,

/* text flags */

{OxFFFF, OxFFFF, OxFFFF, OxFFFF}),

/*

OxFFFFFFFF, /*

0, /*

0, /*

0, /*

0, /*

indent rect */

vert bar */

vert amount */

hor bar */

hor amount */

style ref */

datalsTextBlock+RefIsResource*8,

Program3,

0

(Program3)

/* ‘cext descriptor */

/* text ref */

/*

"umenu.p";

text length */

Appendix G Toolbox Code Example G-71

resource rWindParaml

Prog4Window,

O,

{0,0,0,0},

0,

{0,0},

{400,640},

{200,640},

{1,1},

{0,0},

0,

0,

{30,4,180,500},

infront,

Program4,

(Prog4Window) {

fTitle+fMovet+fZoom+fClose,

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

frame bits */

title id */

ref con */

zoom rect */

color table id */

origin */

data size */

max height-width */

scroll amount,

page amount */

wiInfo ref con */

winfo height */

window position */

wPlane */

control ref */

hor,ver */

refIsResource*0x0100+refIsResource

/*

resource rpString (Prog4Window)

"Window Unit"

resource rControlList (Program4)

{
Program4,

3

G-72

descriptor */

{

Apple IIGs Toolbox Reference, Volume 3

resource rControlTemplate (Program4) {

control id */

control rectangle */

control type */

flag */

fCtlCanBeTarget+fCtlWantEvents+fctlProcRefNotPtr+fctlTellAboutSize,

more flags */

ref con */

text flags */

indent rect */

vert bar */

vert amount */

hor bar */

hor amount */

Program4, /*

{0,0,0,0}, /*
EditTextControl { { /*

0x0000, /*

/*

0, /*

fReadOnly+fNoWordwWrap,

/*

{OxFFFF, OxFFFF, OxFFFF, OxFFFF},

/*

OxFFFFFFFF, /*

0, /*

0, /*

0, /*

0, /*

read rText

style ref */

dataIsTextBlock+RefIsResource*8,

/* text descriptor */

/* text ref */

/* text length */

Program4,

0

(Program4) "uwindow.p";

Appendix G Toolbox Code Example G-73

resource rWindParaml

ProgSWindow,

0,

{0,0,0,0},

0,

{0,0},

{400,640},

{200,640},

{1,1},

{0,0},

0,

0,

{30,4,180,500},

infront,

Program5,

(ProgSWindow) {

fTitle+fMove+fZoom+fClose,

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

frame bits */

title id */

ref con */

zoom rect */

color table id */

origin */

data size */

max height-width */

scroll amount, hor,ver */

page amount */

wiInfo ref con */

wInfo height */

window position */

wPlane */

control ref */

refIsResource*0x0100+refIsResource

3

/*

resource rpString (Prog5Window)

"Utility Unit"

resource rControlList (Program5)

{

Program5,

};

‘;

descriptor */

{

G-74 Apple IIGS Toolbox Reference, Volume 3

resource rControlTemplate (Program5) {

Program5, /*

{0,0,0,0}, /*

EditTextControl { { /*

0x0000, /*

control id */

control rectangle */

control type */

flag */

fCtlCanBeTarget+fCtlWantEvents+fctlProcRefNotPtr+fctlTellAboutSize,

/*

0, /*

more flags */

ref con */

fReadOnly+f£NowordwWrap,

/* text flags */

{OxFFFF, OxFFFF, OxFFFF, OxFFFF},

/*

OxFFFFFFFF, /*

0, /*

0, /*

0, /*

0, /*

indent rect */

vert bar */

vert amount */

hor bar */

hor amount */

style ref */

dataIsTextBlock+RefIsResource*8,

/* text descriptor */

Program5, /* text ref */

0 /* text length */

read rText (Program5) "uutils.p";

Appendix G Toolbox Code Example G-75

resource rWindParaml

Progé6éWindow,

0,

{0,0,0,0},

0,

{0,0},

{400,640},

{200,640},

{1,1},

{0,0},

0,

0,

{30,4,180,500},

infront,

Program6,

(Prog6éWindow) {

fTitle+fMove+fZoom+fClose,

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

frame bits */

title id */

ref con */

zoom rect */

color table id */

origin */

data size */

max height-width */

scroll amount, hor,ver */

page amount */

wInfo ref con */

winfo height */

window position */

wPlane */

control ref */

refIsResource*0x0100+refIsResource

};

/*

resource rpString (Progé6éWindow)

"Globals Unit"

resource rControlList

{

Program6,

}e

he

(Program6)

descriptor */

{

G-76 Apple IIGS Toolbox Reference, Volume 3

resource rControlTemplate (Program6) {

Program6, /* control ID */

{0,0,0,0}, /* control rectangle */

EditTextControl{ { /* control type */

0x0000, /* flag */

fCtlCanBeTarget+fCtlWantEvents+fctlProcRefNotPtr+fctlTellAboutSize,

/* more flags */

0, /* ref con */

fReadOnly+fNoWordwWrap,

/* text flags */

{OxFFFF, OxFFFF, OxFFFF, OxFFFF},

/* indent rect */

OxFFFFFFFF, /* vert bar */

0, /* vert amount */

0, /* hor bar */

0, /* hor amount */

0, /* style ref */

dataIsTextBlockt+tRefIsResource*8,

/* text descriptor */

Program6, /* text ref */

0 /* text length */

read rText (Program6) "uglobals.p";

Appendix G Toolbox Code Example G-77

The uEvent.p module

This section contains the source code for the uEvent .p module, which implements the

main event loop for the BusyBox program. This code was written in Pascal.

[KKK AK KKK KKK KKKKK KR KK RHR KK KR RR KKKKKK KKK KKK KHER KEK KK KKK KKK KEK KKK KKK }

{*

{* BusyBox uEvent (interface)

{*

{* Copyright (c)

{* Apple Computer, Inc. 1986-1990

{* All Rights Reserved.

{*

{* This file contains the interface to the code which implements the

{* main event loop used by the BusyBox program.

{*

{ ARR K KKK KEK KKKKK KKK KE KK KKK KK KKK KKK KKK EK KK IKK KKK IKE KEKKKEKKKEKKKKKKKKEERE }

UNIT uEvent;

INTERFACE

USES

types,

GSOS,

memory,

locator,

quickdraw,

events,

resources,

controls,

windows,

lineedit,

dialogs,

menus,

stdfile,

IntMath,

Fonts,

Desk,

G-78 Apple IIGS Toolbox Reference,Volume 3

uGlobals,

uUtils,

uWindow,

uMenu;

procedure MainEvent; {Main event handling loop, which repeats }

{ until Quit.}

IMPLEMENTATION

{$R-}

var

LastWindow : GrafPortPtr;

{ This private global is used in }

{ CheckFrontW to prevent extra work when }

{ the windows have not changed. It is }

{ initialized at the beginning of }

{ MainEvent. }

Appendix G Toolbox Code Example G-79

(RF RRRRRRRRIOI IITIIRIORI IOI IOI I III IK IK III KK KIKI KK EK KK KEK KK KK }

DoControls

This procedure is called when an inControl message is returned

by TaskMaster.

When this routine gets control, the ID of the control that was

selected is in TaskData4. The control handle is in TaskData2,

and the part code is in TaskData3.o
N

t
m
p
t

{
{ Hi He eH He i HHH RH KK KKKIKKKKIKIK KK KK KKK IKKE KEKE KKK KEK KKK KEKE KEKE KEKE }

procedure DoControls;

var

TheID : integer;

begin

TheID := Event.wmTaskData4;

if (ButButtonsID <= TheID) and (TheID <= Prog6ID) then

OpenThisWindow (TheID);

end;

{ KKKKKH KKK KKK KKK KKK KKK KKK KEKE KKK KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK |

CheckFrontw

This routine checks the front window to see if any changes need

to be made to the menu items.

We do this so that the edit items are active only when a desk

accessory is active.n
N

O
N
O
e
O
N

t
n

a
n

{KKKAKKHKa KKKIKK IKK KKK KARR KKK KKK EKER KKK KKK KK KEK KK KKK KKK KKK KKK

procedure CheckFrontw;

G-80 Apple IIGs ToolboxReference,Volume 3

var

theWindow : GrafPortPtr;

begin . {of CheckFrontw}

{ Get the front window into local storage. }

theWindow := FrontWindow;

{ If the LastWindow is this window, we are all set. }

if theWindow = lastWindow then Exit (CheckFrontwW);

{ If there are no windows, everything should be disabled. }

if theWindow = nil then

begin

SetMenuFlag ($0080,EditMenulID);

DrawMenuBar;

end

else

begin

{ Otherwise we look at the window and see what to do. }

if GetSysWFlag (theWindow) <> false then

begin {Set up for DA windows. }

SetMenuFlag (S$FF7F,EditMenulID);

DrawMenuBar;

end

else

begin {Set up for our windows. }

SetMenuFlag ($0080,EditMenulID);

DrawMenuBar;

end;

end;

{ Remember this for next time. }

lastWindow := theWindow;

end; {of CheckFrontw}

Appendix G Toolbox Code Example G-81

{FFRHteeIIII RH TKI FH IK TI IK IH IIR IK IK IK IK IK IK IK IK IKK RK KK KIKI KKK KKK KE }

{
{ MainEvent

{
{ This is the main part of the program.

{ loop until the user chooses Select.

{

The program cycles in this

{ % Ok He He He de ieKKKKKKKKKKK KKKKKK KK KKK KK KKK KKK KKKKKK K KK ERK KKK KKEKEKEK EE }

procedure MainEvent;

var

begin

end;

END.

G-82

code :

Event.

Done

LastWindow

repeat

until

integer;

{of MainEvent}

wmTaskMask := SOO1FFFFF;

:= false;

:= NIL;

CheckFrontw;

code

case code of

C
o
e

o
e

o
e
e
e

wiInGoAway >: DoCloseTop;

winSpecial,

wiInMenuBar : DoMenu;

winControl : DoControls;

end;

Done;

{of MainEvent}

Apple IIGs Toolbox Reference,Volume 3

Allow TaskMaster to do }

everything. }

flag will be set by }

item. }

this for CheckFrontw. }

Done

Quit

Init

>= TaskMaster (SFFFF,Event);

The uGlobals.p module

This section contains the source code for uGlobals.p. This Pascal module defines the

globalvariables for the BusyBox program.

{8eeekaee ie te ie ie te kk a kK Ha I KK KK IKKKKKKKKKKKK KKKKKEKK KKK KKK KK KKK KK KK Y

{*

{*

{* BusyBox Globals (interface)

{ *

{* Copyright (c)

{* Apple Computer, Inc. 1986-1990

{* All Rights Reserved.
{*

{* This file contains the global variables used by the BusyBox

{* program.
{*

{ RAHKKKKIK KKK KKK KKKKKK KKK KKK KKK KKK KKK KKK KKK KKKKKEKKKKKKK KKK KKK KK KKK

UNIT uGlobals;

INTERFACE

USES

types,

locator,

memory,

quickdraw,

intMath,

events,

controls,

windows,

lineedit,

dialogs,

STDFile;

Appendix G Toolbox Code Example _G-83

const

var

G-84

AppleMenuID = $1100;

AboutItem = $1101;

FileMenuID = $1200;

CloseItem = 255; {For DA's}

QuitItem = $1202;

EditMenuID = $1300;

UndoItem = 250; {For DA's}

CutItem = 251; {For DA's}

Copyitem = 252; {For DA's}

PasteItem = 253; {For DA's}

ClearItem = 254; {For DA's}

NumWindows = 14;

NumWindowsMinl = 13;

ButButtonsID = 1

ButStatTextID =

ButLineEditID

ButPicturesID

ButPopUpsID = 5;

ButTextEditID = 6;

ButListsID = 7;

‘
w
e2

3;

4 =
e

ProglID = 8;

Prog2ID = 9;

Prog3ID = 10;

Prog4ID = 11;

Prog5ID = 12;

Prog6ID = 13;

MyMemoryID : integer; {Application ID assigned by

Done : boolean; {True when quitting}

Memory Mgr}

StaggerCount : integer; {Used to stagger windows as they open }

Event : WmTaskRec;

{All events are returned here}

WindowList : array [0..NumWindowsMinl) of WindowPtr;

Apple IIGS Toolbox Reference,Volume 3

procedure InitGlobals;

IMPLEMENTATION

procedure InitGlobals;

{of InitGlobals}

MyMemoryID := MMStartup;

StaggerCount := 0;

{of InitGlobals}

begin

end;

END.

{Setup variables}

Appendix G Toolbox Code Example G-85

The uMenu.p module

This section contains the source code for uMenu.p. This Pascal module implements
menus for the BusyBox program.

{ Rw RK KKK KKK KK KKK KKK KEK KKK KKK KK KKK IKE KIRKE KKKKIRKE KEKKEKKKHAKKEKKKKKKEKKKKE |

{*

{* BusyBox uMenu (interface)

{*

{* Copyright (c)

{* Apple Computer, Inc. 1986-1990

{* All Rights Reserved.

{*

{* This file contains the interface to the code that implements

{* menus in the BusyBox program.

{*

{ %RHHH KHiKHIKKKKKKKKIKK KKK KKK IKK K IKK KKKAKKKKAK KKK KKK KKK KKKKKK

UNIT uMenu;

INTERFACE

USES

types,
locator,

quickdraw,

fonts,

INTMATH,

events,

memory,

controls,

gsos,

windows,

lineedit,

dialogs,

menus,

desk,

STDFILE,

resources,

G-86 Apple IIGs Toolbox Reference,Volume3

uGlobals,

uUtils,

uWindow;

procedure DoMenu; {Execute a menu item}

procedure SetUpMenus; {Install menus and redraw menu bar}

IMPLEMENTATION

{SR-}

procedure DoQuitItem;

{Private routine to set Done flag if the "Quit" item was selected}

begin {of DoQuitItem}

Done ;:= true;

end; {of DoQuitItem}

procedure DoAboutItem;

var

ignore : integer;

begin {of DoAboutItem}

ignore := AlertWindow(4,NIL,Ptr(1));

end; {of DoAboutItem}

procedure DoMenu;

{Procedure to handle all menu selections. Examines the }

{Event.TaskData menu item ID word from TaskMaster (from Event }

{Manager) and calls the appropriate routine. While the routine }

{is running the menu title is still highlighted. After the }

{routine returns, we remove the highlighting. }

var menuNum : integer;

itemNum : integer;

Appendix G Toolbox Code Example G-87

begin {of DoMenu}

menuNum := HiWord (Event.wmTaskData) ;

itemNum := LoWord (Event.wmTaskData);

case itemNum of

About Item : DoAbout Item;

CloseItem : DoCloseTop;

QuitiItem : DoQuitItem;

UndoItem : ;

CutItem : ;

CopyItem : ;

PasteItem : ;

ClearItem : ;

otherwise

end;

HiliteMenu (false,menuNum);

{Remove highlighting}
{ *** MAX *ee }

end; {of DoMenu}

procedure SetUpMenus;

{Procedure to install our menu titles and their items in the }

{system menu bar and to redraw it so we can see them}

var height : integer;

begin {of SetUpMenus}

SetSysBar (NewMenubar2 (RefIsResource, ref ($1000) ,NIL));

SetMenuBar (NIL) ;

FixAppleMenu (AppleMenulID); {Add DAs to Apple menu }

height := FixMenuBar; {Set sizes of menus}

DrawMenuBar; {...and draw the menu bar! }

end; {of SetUpMenus}

END.

G-88 Apple IIGs Toolbox Reference,Volume 3

The uvtils.p module

This section contains the source code for uUt ils. p. This Pascal module contains various

utility routines for the BusyBox program.

{ HR RRR KKiKKKK KK KKK KKK IKK KKKKKK KK KKK KKK KKK IKK KKK KEKE KK KKK KEKEKKKKKKK KK }

{*

(*

{*

(*

{*

(*

(*

{*

{*
{*

BusyBox uUtils (interface)

Copyright (c)

Apple Computer, Inc. 1986-1990

All Rights Reserved.

This file contains the interface to the code that implements

various utility routines used by the BusyBox program.

{He He He He He He He ie te ee KKK KK KKK KK KK IK KKK KK IKK KKK KI KKK KKKHAKKKKKKKKKEK KKK AKKKKKKKK |

Unit uUtils;

INTERFACE

USES

types,

locator,

intMath;

CONST

srcCopy = $0000;

FUNCTION IntToString (i : Integer): STR255;

FUNCTION LongToString (l : LongInt): STR255; { test }

FUNCTION IsToolError: BOOLEAN;

PROCEDURE INC(VAR anIndex : Integer);

PROCEDURE Dec(VAR anIndex: Integer) ;

IMPLEMENTATION

{$R-}

Appendix G Toolbox Code Example G-89

FUNCTION IntToString (i : Integer): STR255;

var

size,

count : Integer;

num : longint;

str : string[20];

BEGIN

num := 1;

size := 0;

Long2Dec(num, @str, 19, true);

FOR count := 1 to 19 DO

BEGIN

IF (str{count]) = '-') OR

((str{count] >= '0') AND (str(count) <= '9')) THEN

BEGIN

size := size + 1;

IntToString(size]) := strf{count];

END;

END;

IntToString(0]) := char(size);

END;

FUNCTION LongToString (1 : LongInt): STR255; { test }

var

size,

count : Integer;

num : longInt;

str : string[(20];

G-90 Apple IIGs Toolbox Reference, Volume 3

BEGIN

num := 1;

Size := 0;

Long2Dec (num, @str, 19, true);

FOR count := 1 to 19 DO

BEGIN

IF (strf{count] = '-') OR

((str({count] >= '0') AND (strf[count] <= '9')) THEN

BEGIN

size := size + 1;

LongToString[size]) := str[count];

END;

END;

LongToString[(0] := char(size);

END;

FUNCTION IsToolError: BOOLEAN;

BEGIN

IsToolError := FALSE;

if ToolErrorNum <> 0 then

IsToolError := TRUE;

END;

PROCEDURE INC(VAR anIndex : Integer); {increase integer param by 1}

BEGIN

anIndex := anIndex + 1;

END;

PROCEDURE Dec(VAR anIndex: Integer); {decrease integer param by 1}

BEGIN

anIndex := anIndex - 1;

END;

END.

Appendix G Toolbox Code Example G-91

The uWindow.p module

This section contains the source code for uWindow.p. This Pascal module implements
windowsfor the BusyBox program.

{ %KeeiieiekKKKKKKK IKK KKKEKKEKKKKK KKK KKK KKK KK KK KRRKRKKKK

{*

{* BusyBox uWindow (interface)

{*

{* Copyright (c)

{* Apple Computer, Inc. 1986-1990

{* All Rights Reserved.

{*

{* This file contains the interface to the code that implements

{* windows in the BusyBox program.

{ *

{7FRRRRRIIRIOIOOO IOI TOR III IR RIOR IO TOK RKKKIK Y

UNIT uWindow;

INTERFACE

USES

types,

GSOS,

locator,

quickdraw,

fonts,

MEMORY,

intMath,

events,

controls,

windows,

lineedit,

dialogs,

menus,

DESK,

STDFILE,

resources,

TextEdit,

G-92 Apple IlGs Toolbox Reference, Volume3

uGlobals,

uUtils;

var

TheMainWindow,

ButtonsWindow,

StatTextWindow,

LineEditWindow,

PicturesWindow,

PopUpsWindow,

TextEditWindow,

ListsWindow : GrafPortPtr;

procedure SetUpWindows;

{Initialize variables for stacking windows}

procedure DrawThisWindow;

procedure DoCloseTop;

procedure OpenThisWindow (CtlID : integer);

IMPLEMENTATION

{$R-}

const

MainWindowID = $2000;

{HRKKKKKK KKK EKER KKK KKK KKK KKK KK EKK KE KKK KKK KEK KEKE K KEKE KK EKKKKEKEKKKEKKEKE }

{

{ DrawThisWindow

{
{ This routine draws the contents of all the windows.

{
{*

{* Warning: Do not make any calls that use the libraries or use

{* short addressing without setting the dbr to ~globals.

{*

(aKRKHHRRK KK RR KK RRR KER KKKKKK KEK KKK KR KK KARR KK KKK KKK KK KK }

Appendix G Toolbox Code Example G-93

procedure DrawThisWindow;

begin

DrawControls (GetPort);

END;

(Rie ie ee tee ee oe tee te ee ekkkItaIKIRKKKKKKaRIK KR KK RK KKIK KR KICK |

{

{ DoCloseTop

{

{ This routine closes the topmost window. We do a little work to

{ prevent the main window from being closed.

{
{ RRR KK KKK KKK KK KKK IKK KK KKK ERK KKK KKK KKK KKK KEKE RRR KEKE EEK KKKKKKKKKKKKKKEKE |}

procedure DoCloseTop;

var

k : integer;

TempWin : GrafPortPtr;

begin

{Get the front window into a local variable }

TempWin := FrontWindow;

{Start the count at 1 since we never close the main window }

k := 1;

{Find the window entry, close the window, and zero the }

{entry repeat}

if TempWin = WindowList(k] then

begin

CloseWindow (TempWin);

WindowList[k] := NIL;

k := NumWindows;

end

else

k := k+1;

until k >= NumWindows;

end;

G-94 Apple IIGS Toolbox Reference, Volume3

{7%Weki tekIKKKIKK I KK KK IKK KK IK HK KK KK IKKE KKK KKKKKKKKKK KKK KKK KK KKK

{
{

{

OpenThisWindow

This routine either opens the specified window or makes it active

if it is already open.

If it is not open, we open it with NewWindow2 invisibly, adjust the

window's location, and then show and select the window.

ID values for controls in the main window are assumed here to be from

1...n

{*XKK KK kK KKK KKK Kk kK kkk kkk kkk kkk kkk kkk kkkkkkKK RK KK RK KK KK KR RK KKK KKK}

procedure OpenThisWindow (CtlID : integer);

begin

if WindowList[(CtlID] = NIL then

begin

WindowList(CtlID] :=

NewWindow2 (NIL,

0,
@DrawThisWindow,

NIL,

2,

Ref (POINTER (MainWindowID+CtlID)),

rWindParaml) ;

if CtlID < ProglID then

begin

MoveWindow (50+8*StaggerCount,

50+8*StaggerCount,

WindowList (Ct1ID] ;

StaggerCount := StaggerCount+tl;

end;

ShowWindow (WindowList [CtlID));

SelectWindow (WindowList [CtlID]);

end

else SelectWindow (WindowList [(CtlLID]);

end;

Appendix G Toolbox Code Example 6-95

{ 1HKIHHHIKK IKK KKK KKK KK KKK KKKKEK EK KEK KEKE KKK KEK KKK EK KK KKK KKK KEKE }

{
{ SetUpWindows

{
{ Sets up WindowList record for use throughout the program.

{
{ RAKRK KKKK KK KEK KKK KKK KKK KKK KK KKK KKK KKK KKK RIK KKK KK EK KEKE KEKKKKKKKEKKEKE |}

procedure SetUpWindows;

END.

var

begin

end;

k : integer;

{of SetUpWindows}

{ Zero out the entries in the window list }

for k := 0 to NumWindows-1 do WindowList([k] := NIL;

{ Open the main window }

WindowList[0] := NewWindow2 (NIL,

0,

@DrawThisWindow,

NIL,

2,

ref (MainWindowID),

rWindParaml1) ;

{of SetUpWindows}

G-96 Apple IIGs Toolbox Reference, Volume3

Glossary

absolute: Characteristic of a load
segment or other program codethat

must be loaded at a specific address in
memory and never moved. Compare
relocatable.

accelerator card: An expansion card
that contains another processorthat

shares the work normally performed

only by the computer’s main
microprocessor. An accelerator card
speeds up processing time.

accessory: See desk accessory.

accumulator: The register in a
computer's central processor or

microprocessor where most

computations are performed.

ACIA: Abbreviation for Asynchronous

Communications Interface Adapter, a

type of communications IC used in

some Apple computers. An ACIA
converts data from parallel to serial
form andvice versa. It handles serial
transmission and reception and RS-232-
C signals underthe controlofits

internal registers, which can be set and

changedbyfirmware or software.

acronym: A word formed from the
initial letter or letters of the main parts
of a compound term, such as ROM

(from read-only memory) or Fortran

(from Formula Translator).

activate: To make a nonactive window

active by clicking anywhere insideit.

activate event: An event generated by

the Window Manager whenaninactive

window becomesthe active window.

active window:The frontmost
window on the desktop; the window

where the next action will take place.
An active window'stitle bar is
highlighted.

Adaptive Differential Pulse Code

Modulation (ADPCM): An algorithm
for digitizing audio samples. Used in
the Apple IIGsS Audio Compression and

Expansion Tool Set for compressing
audio samples.

ADB: See Apple Desktop Bus.

ADBdevice table: A structure in the

system heapthatlists all devices
connected to the Apple Desktop Bus.

GL-1

address: (1) A numberthatspecifies

the location of a single byte of
memory. Addresses can be given as

decimal or hexadecimalintegers. The

Apple Ics has addresses ranging from 0
to 16,777,215 (in decimal), or from $00

0000 to $FF FFFF (in hexadecimal). A
complete address consists of a 4-bit
bank number($00 to $FF) followed by
a 16-bit address within that bank
($0000 to $FFFF). (2) In data
transmission, a code for a specific

terminal. Multiple terminals on one
communication line, for example, must
have unique addresses.

ADPCM:See Adaptive Differential
Pulse Code Modulation.

ADSR:Acronym forattack, decay,

sustain, and release. These terms

describe the paradigm for representing
sounds in termsof a sound envelope.

alert: A warning or report of an errorin
the form of an alert box, a sound from
the computer's speaker, or both.

alert window:Similar to a modal
dialog box; usedto presenturgent or
important information to the user. You

create alert windows with the

AlertWindow Window Manager
tool call.

algorithm: A step-by-step procedure

for solving a problem or accomplishing
a task.

allocate: To reserve an area of memory

for use.

American Standard Code for

Information Interchange: See ASCII.

GL-2 Apple IIGS Toolbox Reference, Volume 3

amplitude: The maximum vertical

distance of a periodic wave from the
horizontalline about which the wave
oscillates.

AND:A logical operator that produces

a TRUEresult if both ofits operands
are true, and a FALSEresult if either or
both ofits operands arefalse.

Compare exclusive OR, NOT, OR.

ANSI: Acronym for American National

Standards Institute, whichsets

standards for manytechnical fields and

provides the most commonstandard
for computer terminals.

Apple Desktop Bus (ADB): A low-
speed, input-only serial bus with

connectors on the back panel of the
computer that you useto attach the

keyboard, mouse, and other Apple

Desktop Busdevices, such as graphics
tablets, hand controls, and specialized

keyboards.

Apple key: See Commandkey.

Apple menu: The menufarthestto the
left in the menubar, indicated by an
Apple symbol, from which you choose
desk accessories.

Apple I: Thefirst Apple computer.It
was built in a garage in California by
Steve Jobs and Steve Wozniak.

AppleTalk network system: The
system of network software and
hardware usedin various

implementations of Apple’s
communications network.

Apple Oi: A family of computers,
including the original AppleII, the
Apple II Plus, the Apple III, the Apple
IIe, the Apple IIc, and the Apple IIcs.

Compare standard Apple II.

AppleIIc: A transportable personal

computer in the AppleII family, with a
disk drive and 80-column display

capability built in.

Apple Ie: A personal computerin the

Apple II family with seven expansion

slots and an auxiliary memory slotthat

allow the user to enhance the

computer’s capabilities with peripheral
and auxiliary cards.

Apple ics: A personal computer in the
Apple II family; Gs stands for graphics
and sound. The AppleIIcs features

super high-resolution graphics, 15-
voice sound capabilities, and 256K of
RAM with a memory expansionslotfor

adding from 1 to 8 megabytes of RAM.

Apple lcs Interface Libraries: A set

of interfaces that enable you to access

Toolbox routines from C.

Apple lcs Programmer’s Workshop

(APW): The development environment
for the Apple IIGS computer. It

consists of a set of programsthat
facilitate the writing, compiling, and
debugging of Apple IIGs applications.

Apple lcstools: See toolbox.

Apple II Pascal: A software system for
the Apple II family that lets you create
and execute programs written in the

Pascal programming language. AppleII

Pascal was adapted by

Apple Computer from the University of
California, San Diego, Pascal Operating

System (UCSD Pascal).

Apple II Plus: A personal computerin

the Apple II family with eight
expansion slots and 48K of RAM,
expandable to 64K with a language card
in slot0.

Apple I: An Apple computer, part of
the AppleII family. The Apple III
offered a built-in disk drive and built-

in RS-232-C (serial) port. Its memory
was expandable to 256K.

application: On the Apple IIcs, a

program (such as the APW Shell) that

accesses ProDOS 16 and the Toolbox
directly, and that can becalled or

exited via the QUITcall. ProDOS 16
applications are file type $B3.

application software: A collective
term for application programs.

APW:see Apple lcs Programmer's
Workshop.

APW Debugger: A 65816 assembly-
language code debugger provided with
the Apple IIGs Programmer's
Workshop.

APW Editor: The program within the
Apple IIGS Programmer’s Workshop

that allows you to enter, modify, and

save sourcefiles for all APW languages.

Glossary GL-3

APW Linker: The linker supplied with
the Apple IIGS Programmer’s
Workshop.

APW Shell: The shell program ofthe
Apple IIGs Programmer’s Workshop.
The APW Shell provides the interface
between APW programs and ProDOS
and between the user and APW.

argument: (1) A value on which a

function or statement operates; it can
be a numberora variable. For example,

in the BASIC statement vTaB 10, the
number10 is the argument. (2) A piece
of information included on the

commandline in addition to the

command;the shell passes this

information to the command, which

then modifies its execution in some

particular way. Filenames, for example,

are Often supplied as arguments to

commands, so that a command will

operate on the namedfile.

argumentlist: All the arguments
passed to a program.

arithmetic expression: A
combination of numbers and

arithmetic operators (such as 3 + 5)

that indicates some operation to be
carried out.

arithmetic operation: Oneofthe five
actions computers can perform with
numbers: addition, subtraction,

multiplication, division, and

exponentiation.

arithmetic operator: An operator,

such as +, that combines numeric

values to produce a numeric result.
Compare Boolean operator.

GL-4_ Apple IIGs Toolbox Reference, Volume3

array: An ordered collection of
information of a given, defined type.

Each elementof the array can be
referred to by a numerical subscript.

arrow keys: The four directional keys
in the lower-right corner of the
keyboard. You can use the arrow keys
to move aroundin an application.

ASCII: Acronym for American

Standard Codefor Information
Interchange (pronounced “ASK-ee”). A

standardthat assigns a unique binary

numberto each text character and

control character. ASCII code is used

for representing text inside a computer
and for transmitting text between

computers or between a computer and
a peripheral device.

aspect ratio: The ratio of an image's

width to its height. For example,a

standard video display has an aspect
ratio of 4:3.

assembly code: A source file written
in a low-level programming language
that corresponds to a specific
computer's binary machine language.

assembly language:A low-level
programming language in which
individual machine-language
instructions are written in a symbolic
form that’s easier to understand than
machine languageitself. Each
assembly-language instruction
produces one machine-language
instruction. Because assembly-

language programsrequire very little

translation, they can be very fast.

Asynchronous Communications
Interface Adapter: See ACIA.

attack: That portion of a sound
envelope during which the sound

increases from silence to its peak
loudness. See also ADSR.

auto-key event: An event generated
repeatedly whenthe user presses and

holds down a character key on the

keyboard or keypad.

auto-repeat feature: A feature of keys
on computer keyboards; when a keyis

pressed down andheld, the computer
will automatically repeat that key’s
character until the key is released.

backgroundactivity: A program or
processthat runs while the useris
engaged with another application.

back panel: Therear surface ofthe

computer, which includes the power

switch, the power connector, and

connectors for peripheral devices.

backspace: To moveto theleft in a

line of text, erasing the character or
selection; thus synonymouswith delete.

bank: A 64K (65,536-byte) portion of
the Apple IIGs internal memory. An

individual bank is specified by the
value of one of the 65C816
microprocessor’s bank registers.

bank-switched memory: On AppleII

computers, the part of language card

memory in which two 4K portions of

memory have the same address range

($D000 to $DFFF).

BASIC: Acronym for Beginners All-
purpose Symbolic Instruction Code; a
high-level programming language

designed to be easy to learn. Two

versions of BASIC are available from
Apple Computerfor use withall Apple
II-family systems: Applesoft BASIC

(built into the firmware) and

Integer BASIC.

battery RAM: RAM onthe Macintosh
and Apple IIcs clock chips. A battery

preservesthe clock settings and the
RAM contents when the poweris off.

Control Panel settings are keptin
battery RAM.

binary: (adj.) Characterized by having
two different components or by having
only two alternatives or values
available; sometimes used

synonymously with binary system.

binary digit: The smallest unit of

information in the binary number
system; a 0 or a 1. Alsocalled a bit.

binary file format: The ProDOS8

loadable file format, consisting of one
absolute memory imagealong with its
destination address. A file in binary file

format has ProDOSfile type $06 andis
referred to as a BINfile. The System

Loader cannotload BINfiles.

Glossary GL-5

binary system: (1) A number system
that uses only 0 and 1 as digits.

Because computers can keep track of
only two states (on andoff), engineers

code data in termsof 0’s and 1’s. (2)
The representation of numbersin the
base-2 system, using only the two

digits 0 and 1. For example, the
numbers 0, 1, 2, 3, and 4 become0,1,
10, 11, and 100 in binary notation. The

binary system is commonly used in

computers because the values 0 and 1
can easily be represented in a variety of
ways, such as the presence or absence
of current, positive or negative
voltage, or a white or black dot on the
display screen. A single binary digit—a
0 or a 1—is called a bit. Compare

hexadecimal system.

bit: A contraction of binary digit. The

smallest unit of information that a
computer can hold. The valueofa bit
(1 or 0) represents a simple two-way

choice, such as yes or no, on oroff,

positive or negative, something or
nothing. See also binary system.

bit image: A collection of bits in

memory that represents a two-
dimensional surface. For example, the
screen is a visible bit image.

bitmap:(1) A setof bits that
represents the graphic image of an
original document in memory.(2) A set

of bits that represents the positions
andstates of a corresponding set of

items, such as pixels. In QuickDraw, a

pointer to a bit image, the row width

of that image, and its boundary
rectangle.

GL-6 Apple IIcs Toolbox Reference, Volume 3

bitmapped character: A character
that exists in a computerfile or in

memory as a bitmap,is drawn as a pixel

pattern on the graphics screen, andis

sent to the printer as graphics data.

bitmapped display: A display whose

image is a representation of bits in an

area of RAM called the screen buffer.

With such a display, each dot, or pixel,

on the screen corresponds,oris
“mapped,” to a bit in the screen buffer.

board: See printed-circuit board.

Boolean operator: An operator, such

as AND, that combineslogical values to
producea logical result, such as true or
false. Named for mathematician and

logician George Boole. Also knownas a
logical operator. Compare arithmetic
operator.

boot: Another wayto say start up. A

computer boots by loading a program

into memory from an external storage
medium such as disk. Starting upis
often accomplished by first loading a

small program, which then reads a larger
program into memory. The program is

said to “pull itself up by its own
bootstraps”—hence the term
bootstrapping or booting.

boot device: The peripheral device
that reads an operating system’s initial
Startup instructions.

boot disk: See startup disk.

bootstrap: See boot.

branch:(v.) To pass program control

to a line or statement other than the
next in sequence. (n.) A statementthat
performs the act of branching.

buffer: (1) An area of memory set aside
for the specific purpose of holding
data until it is needed. (2) A “holding

area” of the computer’s memory where

information can be stored by one

program or device and then read at a
different rate by another; for example,
a print buffer. In editing functions, an
area in memory where deleted (cut) or

copied data is held. In some

applications, this area is called the

Clipboard. See also type-ahead buffer.

bug:An error in a program that causes
it not to work as intended. The
expression reportedly comes from the
early days of computing when an

itinerant moth shorted a connection
and caused a breakdownin a room-
sized computer.

button: (1) A pushbutton-like image in
dialog boxes where youclick to

designate, confirm, or cancel an
action. Compare mouse button.

byte: A unit of information consisting
of a fixed numberof bits. On AppleII
systems, one byte consists of a series
of eight bits and can take any value
between 0 and 255 ($0 and $FF
hexadecimal). The value can represent

an instruction, number, character, or

logical state. See also kilobyte,
megabyte.

C: A portable, high-level language that

also offers very low-level operations,
making it a flexible and efficient
language for both application and

system programming.

call: (n.) (1) A request from the

keyboard or from a procedure to
execute a named procedure. (2) A
request issued by the CPU or a program

to the SCSI card firmware. (v.) To
request the execution of a subroutine,

function, or procedure.

Cancel button: A button that appears

in a dialog box. Clicking it cancels

the command.

Caps Lockkey: A key that, when

engaged, causes subsequently typed
letters to appear in uppercase;its
effect is like that of the Shift key
except that it doesn’t affect numbers

and other nonletter symbols.

card: (1) A printed-circuit board that
plugs into one of the computer's
expansionslots, allowing the computer

to use one or more peripheral devices
such as disk drives. (2) A printed-

circuit board or card connected to the

bus in parallel with other cards. Also
called a peripheral card, a device,

or a module.

caret: A generic term meaning a symbol
that indicates where something should
be inserted in text. The specific

symbol used onscreenis a vertical
bar (|).

Glossary GL-7

carriage return (CR): A nonprinting
ASCII character (decimal 13,

hexadecimal $0D) thatordinarily

causes a printer or display device to

place the next character ontheleft
margin; that is, to end a line of text and
start a new one.It’s used to end

paragraphs. A carriage return, however,
does not movethe print head orcursor
downto the next line; the line feed (LF)

character does that. Even though you
can’t see Carriage returns, you can

delete them the same way you delete

other characters. In APW C, carriage

return (\r) is equal to newline (\n).

carry flag: A status bit in the

microprocessor, used as an additional

high-order bit with the accumulator

bits in addition, subtraction, rotation,
and shift operations.

case sensitive: Able to distinguish
between uppercase characters and

lowercase characters. Programming
languages are case sensitiveif they
require all uppercaseletters,all
lowercaseletters, or proper use of
uppercase and lowercase.Instant
Pascal, however, is not case sensitive;
you can use any combination of
uppercase and lowercaseletters
youlike.

cathode-ray tube (CRT): An
electronic device, such as a television
picture tube, that produces images on
a phosphor-coated screen. The
phosphorcoating emits light when
struck by a focused beam ofelectrons.
A CRT is a commondisplay device used
with personal computers.

GL-8 Apple IIGs Toolbox Reference, Volume 3

CCITT: Abbreviation for Consultative

Committee on International Telegraphy
and Telephony, an international

committee that sets standards and

makes recommendations for

international communication. The

CCITT interface standard is considered

mandatory in Europe;it is very similar
to the RS-232 standard used in the
United States.

central processing unit (CPU): The
“brain” of the computer; the
microprocessor that performs the
actual computations in machine
language.

channel: A queuethat’s used by an

application to send commands to the
sound Manager.

character: Any symbol that has a
widely understood meaning and thus
can convey information. Some
characters—suchasletters, numbers,
and punctuation—can bedisplayed on
the monitor screen and printed on
a printer.

character code: An integer
representing the character that a key or
key combination stands for.

character key: (1) Any ofthe keys on
a computer keyboard—suchasletters,
numbers, symbols, and punctuation
marks—used to generate textor to
format text; any key except Caps
Lock, Command,Control, Esc, Option,
and Shift. Character keys repeat when
you press and hold them down.(2) A
key that generates a keyboard event
whenpressed;that is, any key other
than a modifier key.

check box: A small box associated
with an option in a dialog box. When
you click the check box, you may

change the option oraffect
related options.

chip: See integrated circuit.

circuit board: A board containing

embeddedcircuits and an attached

collection of integrated circuits
(chips). Sometimescalled a printed-
circuit board or card.

circuitry: A network of wires, chips,

resistors, and other electronic devices

and connections.

clamp: A memory location that
contains the minimum and maximum

excursion positions of the mouse
cursor whenthe desktopis in use.

clear: (1) To erase information or

commands from memory. (2) To erase

data from memory orreset a control
register. Clearing is usually done by
loading the memory location or register

to be cleared with zeros.

click: (v.) To position the pointer on

something, and then press and quickly
release the mouse button. (n.) The act

of clicking.

Clipboard: Theholding place for what
youlast cut or copied; a buffer area in
memory. Information on the Clipboard

can be inserted (pasted) into
documents.

clipping region: The region to which
an application limits drawing within a
graphics port.

clock chip: A special chip in which
parameter RAM andthecurrentsetting
for the date and time are stored. This

chip is powered by a battery when the

system is off, thus preserving the
information.

close: (1) To turn a window backinto

the icon that represents it by choosing

the Close commandorbyclicking the

close box on theleft side of the
window's title bar. (2) To terminate

access to an openfile. Whena file is

closed, its updated version is written

to disk and all resources it needed

when open(suchasits I/O buffer) are
released. Thefile must be opened
before it can be accessed again.

close box: The small white box on the

left side of the title bar of an active

window.Clicking it closes the window.

code: (1) A numberor symbolused to
represent some piece of information.
(2) The statements or instructions that
make up a program.

command:(1) Aninstruction that
causes a device such as a computer or
printer to perform some action. A
command can be typed from a
keyboard, selected from a menu with a
hand-held device (such as a mouse), or

embedded in a program.(2) In the
Standard C Library, a parameter that
tells a function which of several actions
to perform. (3) In the APWShell, a
word tnattells APW which utility to

execute. (4) An instruction that causes

the target device to perform a specific

Operation. Commandsare passed to
the firmware in calls.

Glossary GL-9

command code: One or more

characters whosefunction is to change
the way a program or device acts (as

Opposedto text, which is simply
printed).

Commandkey: A key that, when held
down while anotherkeyis pressed,
causes a commandtotakeeffect.

Whenheld downin combination with

dragging the mouse, the Command key
lets you drag a window to a new

location without activating it. The

Command keyis marked with a
propeller-shaped symbol. On some

machines, the Commandkey has both

the propeller symbol and the Apple
symbolonit.

compact: To rearrangeallocated

memory blocks in order to increase the

amount of contiguous unallocated
(free) memory. The Memory Manager
compacts memory when needed.

compaction: The process of moving
allocated blocks within a heap zone to
collect the free spaceinto a
single block.

compatibility: The condition under
which devices can work with

each other.

compatible: Capable of running
without problems on the computer
system. Applications are normally

written to run on specific types of
computers; applications that run on a
computer system are said to be

“compatible” with the computer.

GL-10 Apple IIGS Toolbox Reference, Volume 3

compile: To convert a program written
in a high-level programming language

(source code) into a file of commands

in a lower-level language (object code)
for later execution.

component: A part; in particular, a
part of a computer system.

computer: An electronic device that

performs predefined (programmed)
computations at high speed and with

great accuracy; a machinethat is used
to store, transfer, and transform
information.

concatenate:Literally, “to chain

together.” (1) To combine two or more
strings into a single, longer string by

joining the beginning of oneto the end

of the other. (2) To combine two or
more files.

configuration: (1) A general-purpose
computer term that can refer to the
way you have your computerset up.(2)
The total combination of hardware
components—central processing unit,
video display device, keyboard, and
peripheral devices—that make up a
computer system. (3) The software
settings that allow various hardware
components of a computer system to
communicate with one another.

configure: To change software or
hardware actions by changingsettings.

For example, you give software the
necessary settings for communicating
with a printer. You can configure
hardware(a printer or interface card)
by resetting physical elements like DIP
switches or jumperblocks.
Configurations can also be set orreset
in software.

content region: The area of a window
that the application drawsin.

context sensitive: Able to perceive
the situation in which an event occurs.
For example, an application program
might present help information
specific to the particular task you’re

performing, rather than a generallist of
commands; such help would be context
sensitive.

control: (1) The order in which the

statements of a program are executed.

(2) An object in a window on the
screen with which the user, by using the

mouse, can cause instant action with
visible results or changesettings to
modify a future action. The controlis
internally represented in a control

record.

control character: A nonprinting
character that controls or modifies the

way information is printed or
displayed. In the Apple II computer

family, control characters have ASCII
values between 0 and 31, and can be

typed from a keyboard by holding
down the Control key while pressing

some otherkey.

control key: See modifier key.

Control key: A specific key on Apple
II-family keyboards that produces

control characters when used in

combination with other keys.

Control Manager: Thepart of the
toolbox that provides routines for
creating and manipulating controls

(such as buttons, check boxes, and

scroll bars).

Control Panel: A desk accessory that
lets you change the speaker volume,
the keyboard repeat speed and delay,

mouse tracking, color display, and
other features.

control register: A special register

that programs can read from and write

to; similar to soft switches. The

control registers are specific locations

in the I/O space ($Cxxx) in bank $E0.
They are accessible from bank $00 if
I/O shadowingis on.

control template: Structure
containing the information necessary

for the NewCont rol2 Control

Managertoolcall to create a new

control.

coordinate: One of a pair of numbers
that designates a position on a grid.
The numbers correspondto the
columns(vertical placement) and rows

(horizontal placement) in a

display grid.

CR: See carriage return.

crash: To cease to operate
unexpectedly, possibly destroying

information in the process.

Compare hang.

Glossary GL-11

CRT: See cathode-ray tube.

cursor: (1) A symbol displayed on the
screen marking wherethe user’s next
action will take effect or where the
next character typed from the

keyboard will appear. (2) A mark on

the screen that indicates your position
on the commandlineorinside file.

The cursoris usually a small box or an

underscore, andit usually blinks. (3)

The term used in technical manuals for
the pointer on the screen.

cut: To remove something byselecting

it and choosing Cut from a menu. What

you cut is placed on the Clipboard.In

other editing applications, “Delete”
serves the same function. See
also buffer.

cut and paste: To move something
from one place in a documentto
another in the same documentor a

different one. It’s the computer

equivalent of using scissors to clip
something andglue to paste the
clipping somewhereelse.

debug: A colloquial term that meansto
locate and correct an error or the cause
of a problem or malfunction in a
computer program. Often synonymous
with troubleshoot.See also bug.

debugger: A utility that allows you to

analyze a program for errors that cause
it to malfunction. For example, a
debugger mayallow youto step
through execution of the program one
instruction at a time.

GL-12 Apple IIGs Toolbox Reference, Volume 3

decay: That portion of a sound
envelope during which the soundfalls
off from its peak loudness to a
sustained level. See also ADSR.

default: A value, action, or setting that
a computer system assumes, unless the

user gives an explicit instruction to the
contrary. For example, unless told
otherwise, the ImageWriter LQ begins
printing with a left margin set to the
default value of 0. Default values
prevent a program from stalling or
crashingif no value is supplied by
the user.

default prefix: The pathnameprefix

attached by ProDOS16 to a partial
pathname when noprefix numberis
supplied by the application. The

default prefix is equivalent to prefix
number0/.

delete: To remove something, such as a

character or word from file, or a file

from a disk. Keys such as the
Backspace key and the Delete key can
remove one character at a time by
moving to the left. The Cut command
removes selected text and placesit on
the Clipboard; the Clear command

removes selected text without placing
it on the Clipboard. (The Undo

command canreverse the action of
Clear and of the Backspace or Delete

key if it is used immediately.)

delta: The difference from something

the program already knows. For

example, mouse movesare represented
as deltas compared to previous mouse
locations. The name comes from the
way mathematicians use the Greek
letter delta (A) to represent a
difference.

delta guide: A description of
something newin termsofits

differences from something the reader
already knows about. The name comes

from the way mathematicians use the
Greek letter delta (A) to represent a

difference.

deselect: A command to a device such

as a printer to placeit into a condition
in which it will not receive data. A

deselect command has an effect

Opposite to that of a select command.

desk accessory: A “mini-application”
that is available from the Apple menu
regardless of which application
you're using.

Desk Manager: The part ofthe
Toolbox that supports the use of desk

accessories from an application.

desk scrap: See Clipboard.

desktop: Your working environment
on the computer—the menubar and
the gray area on the screen. You can

have a numberof documents on the

desktop at the same time. At the
Finder level, the desktop displays the
Trash and the icons (and windows) of
disks that have been accessed.

desktop environment: A set of

program features that make user

interactions with an application

resemble the way people work on a

desktop. Commands appearas
options in pull-down menus, and
material being worked on appears in

areas of the screen called windows.
The user selects commands orother
material by using the mouse to move a

pointer around onthe screen or by
using keyboard equivalents.

device address: A value in the range

$00 through $0F assigned to each
device connected to the Apple

Desktop Bus.

device driver: A program that

managesthe transfer of information
between the computer and a peripheral
device. See also resource.

dialog: See dialog box.

dialog box: (1) A box that contains a

message requesting more information
from you. Sometimes the message
warns you that you’re asking your

computer to do somethingit can’t do

or that you’re about to destroy some

of your information. In these cases, the
message is often accompanied by a

beep. (2) A box that a Macintosh
application displays to request
information or to report that it is
waiting for a process to complete. A
dialog boxis internally represented in a

dialog record.

Glossary GL-13

digit: (1) One of the characters 0

through 9, used to express numbersin

decimal form. (2) One ofthe

characters used to express numbersin

someother form, such as 0 and 1 in
binary or 0 through 9 and A throughF in

hexadecimal.

Digital Oscillator Chip (DOC): An

integrated circuit in the Apple IIGs that

contains 32 digital oscillators, each of
which can generate a sound from
stored digital waveform data.

dimmed: Used to describe words or

icons that appearin gray. For example,
menu commands appear dimmed when
they are unavailable; folder icons are

dimmed whenthey are open.

dimmedicon: An icon that represents

an opened disk or folder or a disk that
has been ejected. Double-clicking a

dimmeddisk or folder icon causes the
window for the disk or folderto

becomethe frontmost, active window.
You can select and open a dimmed

icon representing an ejected disk, but
you cannot openthe folders or
documents onit unless youinsert

the disk.

GL-14 Apple IIGs Toolbox Reference, Volume 3

direct page: A page (256 bytes) of
bank $00 of Apple IIGs memory, any
part of which can be addressed with a
short (one-byte) address becauseits

high-order address byte is always $00
and its middle address byte is the value

of the 65C816 direct register. Co-
resident programsorroutines can have

their own direct pages at different
locations. The direct page corresponds

to the 6502 processor’s zero page. The
term direct page is often used
informally to refer to any part of the
lower portion ofthe direct-

page/stack space.Seealso direct
register, zero page.

direct-page/stack space: A portion

of bank $00 of Apple IIGs memory
reserved for a program’s direct page

and stack. Initially, the 65C816
processor's direct register contains the

base address of the space, andits

stack register contains the highest

address. In use, the stack grows

downward from the top ofthe direct-
page/stack space, and the lower part
of the space contains direct-page
data. See also direct page, direct

register, stack, stack register.

direct register: A hardware register in
the 65C816 processor that specifies the
start of the direct page.

disabled: Describes a menu item or

menu that cannot be chosen; the menu

item or menutitle appears dimmed. A
disabled item in a dialog or alert box
has no effect when clicked.

display: (1) A general term to describe
whatyou see on the screen of your
display device when you're using a

computer; from the verb form, which

means “to place into view.” (2) Short
for display device.

display color: The color currently
being used to draw high-resolution or
low-resolution graphics on the
display screen.

display device: A device that displays

information, such as a television set or

video monitor.

display rectangle: A rectangle that
determines where an item is displayed

within a dialogor alert box.

display screen: The screenof the
monitor; the area where you view text
and pictures when using the computer.

Also called simply the screen.

dispose: To permanently deallocate a

memory block. The Memory Manager

disposes of a memory block by

removing its master pointer. Any

handle to that pointer will then be
invalid. Compare purge.

disposition: An attribute of the data

set where the host components reside.

dithering: A technique for alternating
the values of adjacent dots or pixels to
create the effect of intermediate
values.In printing color or displaying

color on a computerscreen, the
technique of making adjacent dots or

pixels different colors to give the
illusion of a third color. For example, a

printed field of alternating cyan and

yellow dots appears to be green.

Dithering can give the effect of shades
of gray on a black-and-white display,

or more colors on a color display.

dither pattern: The matrix of
threshold values used to represent gray

shades in a black-and-white
electronic image.

DOC:See Digital Oscillator Chip.

double click: (n.) Two clicks in quick
succession, interpreted as a single
command. The action of a doubleclick
is different from that of a single click.
For example,clicking an icon selects the
icon; double-clicking an icon opensit.

double-click: (v.) To position the
pointer where you wantan action to

take place, and then press and release

the mouse button twice in quick
succession without moving the mouse.

double-click time: The greatest
interval between a mouse-up event and
a mouse-downeventthat would qualify

two mouseclicks as a double click.

Glossary GL-15

drag: To position the pointer on
something, press and hold the mouse
button, move the mouse, and release

the mouse button. When you release

the mouse button, you either confirm a

selection or move an object to a new

location.

drag region: A region in a window
frame; usually the title bar. Dragging
inside this region moves the window to

a new location and makesit the active

window unless the Command key

was down.

drop sample tuning: A technique for

changingthe pitch of a played sound
that relies on skipping (or dropping)
sound samples on playback. When
samples are droppedat a fixedrate,
the pitch of a sound can beraised in

octave increments.

echo: To send an input character back

to the originating device for display or
verification; for example, to send each
character of your message back to your

monitor so you knowit’s been sent to
another computeror to a printer.

edit: To change or modify. For
example, to insert, remove, replace, or

move text in a document.

editor: A program that helps you create

and edit information of a particular
form; for example, a text editor or a

graphics editor.

GL-16 Apple IIGs Toolbox Reference, Volume3

edit record: A complete editing
environment in TextEdit, which

includes the text to be edited, the

GrafPort and rectangle in which to

display the text, the arrangement of
the text within the rectangle, and other

editing and display information.

e flag: Oneof three flag bits in the
65C816 processor that programs use to
control the processor’s operating

modes. Thesetting ofthe e flag
determines whetherthe processoris in

native mode or emulation mode.See
also m flag, x flag.

eject: (1) To remove a disk from a disk
drive. (2) To move paperoutofthe
printer. You can eject paper by
pressing the Form Feed button or by
turning the platen knob clockwise.

embedded: Contained within. For

example, the string "HUMPTY

DUMPTY' is said to contain an
embedded space.

end-of-file (EOF): (1) In A/UX, the

position of one byte past the last byte
in a file (also knownasthe Jogical end-

of-file); this is equal to the actual
numberofbytesin thefile. If a
program calls a routine that uses the

physical end-of-file convention, the

logical end-of-file is used instead. (2)

The logical size of a ProDOS16file;it
is the numberof bytes that may be
read from or written to thefile. See
also logical end-of-file, physical end-
of-file.

Enter key: A key that confirms an
entry or sometimes a command.

envelope: A graphic representation of
a sound’s loudness over time. The

envelope typically consists of

segments identified as attack, decay,

sustain, and release, or ADSR.

error code: A numberor other symbol

representing a typeoferror.

event: A notification to an
application of some occurrence, such
as an interrupt created by a keypress,

that the application may want to
respond to.

exclusive OR: A logical operator that
producesa true result if oneofits
operands is true andthe otherfalse,
and false result if its operands are

both true or both false. Sometimes
written as XOR. Compare AND,

NOT, OR.

extended controls: Controls created

with the NewContro12 Control

Managertoolcall, rather than the

NewControl call. Extended controls

have new-style control records that

contain more information than those

created by NewCont rol.

fatal error: An error serious enough
that the computer must halt execution.

field: (1) A data item separated from
other data by blanks,tabs, or other

specific delimiters. A particular type or

category of information in a database

management program. (2) A specific

set of data thatis related. A field is

always defined byits size, given in bits

or bytes, and usually has a name.(3) A
string of ASCII characters or a value

that has a specific meaning to some
program.Fields maybeoffixed length,

or may be separated from otherfields

by field delimiters. For example, each
parameter in a segment header
constitutes a field. (4) In a BASICfile,

a string of characters preceded by a
return character and terminated by a

return character. A field is written to a

file by each PRINT statement not

terminated by a semicolon. The INPUT

commandreads an entire field from

a file.

filename:The namethatidentifies a

file. The maximum character length of a

filename andtherules for naminga file
vary underdifferent operating systems.

filter: A program or “mask”thatalters
data in accordance with specific

criteria, a formula, or an algorithm.

firmware: Programs stored
permanently in read-only memory
(ROM). Such programs (for example,
the Applesoft Interpreter and the

Monitor program) are built into the

computerat the factory. They can be
executed at any time but cannot be

modified or erased from main memory.

Glossary GL-17

fixed: Describes blocks that are not

movable in memory onceallocated,
also called unmovable. Program
segments that must not be moved are
placed in fixed memory blocks.
Opposite of movable.

flag: A variable whosevalue indicates
whether some condition holds or

whether someeventhas occurred. A

flag is used to control the program’s

actions at a later time. The value of a
flag is usually 0 or1.

flush: To update an openfile (write all

information in the I/O buffer to a

disk) withoutclosingit.

font: A complete set of characters in

one design, size, andstyle. In
traditional typography usage, font may
be restricted to a particular size and
style or may comprise multiple sizes, or
multiple sizes and styles, of a
ypeface design.

fontclass: A group offonts thatall use
the same method of implementing

different font styles, such as italic or
bold.

font family: A complete set of
characters for one typeface design,

includingall styles and sizes of the

characters in that font. For example,
the Geneva font family includes 9-

point to 36-point characters in italic,
bold, outlined, and otherstyles.

font number: The numberby which
you identify a font to QuickDraw or
the Font Manager.

GL-18 Apple IIGS Toolbox Reference, Volume 3

format: (n.) (1) The form in which

information is organized or presented.

(2) The general shape and appearance
of a printer’s output, including page
size, character width and spacing,line

spacing, and so on. (v.) To divide a

disk into tracks and sectors where

information can be stored. Blank disks

must be formatted before you can save

information on them forthefirst time;

synonymous with initialize.

free block: A memory block

containing space available for
allocation.

free-form synthesizer: The part of the
Sound Tool Set used to make complex
music and speech.

garbage:A string of meaningless
characters that bears no resemblance
to your document.It’s an indication

that your computer and peripheral

device are using different transmission
rates or data formats.

GB: See gigabyte.

gigabyte (GB): A unit of measurement

equal to 1024 (2!°) megabytes.

Compare byte, kilobyte, megabyte.

GrafPort record: A data record used

by QuickDraw to establish a
graphics port.

graphics port: A complete drawing

environment in QuickDraw (data type
GrafPort), including such elements as a
bitmap, a character font, patterns for
drawing and erasing, and other graphics
characteristics. Sometimes called

a GrafPort.

handle: A pointer to a masterpointer,
which designates a relocatable block in

the heap by double indirection. See

also memory handle.

hang: To cease operation because

either an expected condition is not

satisfied or an infinite loop is

occurring. A computer that’s hangingis
called a hung system. Compare crash.

heap: The area of memory in which

space is dynamically allocated and
released on demand, using the Memory
Manager.

hertz (Hz): The unit of frequency of
vibration or oscillation, defined as

the numberof cycles per second.

Namedfor the physicist Heinrich
Hertz. The 6502 microprocessor used
in the Apple II systems operates at a

clock frequency of about 1 million
hertz, or 1 megahertz (MHz). The
68000 microprocessorusedin the
Macintosh operates at 7.8336 MHz.

hexadecimal system: The
representation of numbers in the base-
16 system, using the ten digits 0
through 9 andthesix letters A through
F, For example, the decimal numbers0,
1, 2, 3,4,... 8,9, 10, 11,...15, 16, 17

would be shownin hexadecimal

notation as 00, 01, 02, 03, 04, . . . 08,
09, OA, OB, ... OF, 10, 11. Hexadecimal

numbers are easier for people to read

and understand than are binary
numbers, and they can be converted
easily and directly to binary form. Each

hexadecimal digit corresponds to a

sequenceof four binary digits, or bits.

Hexadecimal numbersare usually

preceded by a dollar sign ($).

highlight: To make something visually

distinct. For example, when youselect
a block of text using a word processor,

the selected text is highlighted—it

appears as light letters on a dark

background,rather than dark onlight.

Highlighting is accomplished by

inverting the display.

high-order: (adj.) Describes the most

significant part of a numerical
quantity. In normal representation, the

high-orderbit of a binary valueis in the
leftmost position; likewise, the high-
order byte of a binary word or longword
quantity consists of the leftmost eight
bits. Compare low-order.

high-order byte: The moresignificant

half of a memory addressor other two-

byte quantity. In the 6502
microprocessor used in the Apple II

family of computers, the low-order

byte of an addressis usually stored
first, and the high-order byte second.

In the 68000 microprocessors used in
the Macintosh family, the high-order
byte is stored first. Compare low-
order byte.

horizontal blanking interval: The
time between the display of the

rightmost pixel on oneline and the

leftmost pixel on the nextline.

Hz: See hertz.

IC: See integrated circuit.

Glossary GL-19

icon: An image that graphically
represents an object, a concept, or a
message. Icons on the outside of the
computer can be used to show you
whereto plug cables, such as the disk
drive icon on the back panelthat
marks the disk drive connector. Screen

icons in mouse-based applications
represent disks, documents,

application programs, or other things

you can select and open.A screen icon
is a 32-by-32-bit image.

index register: A register in a

computer processor that holds an

index for use in indexed addressing.

The 6502 and 65C816 microprocessors
used in the AppleII family of
computers have two index registers,
called the X register and the Yregister.
The 68000 microprocessorused in
Macintosh-family computers has 16
registers that can be used as index
registers.

information window: The window
that appears when youselect an icon
and choose GetInfo from the File

menu. It supplies information such as
size, type, and date, andit includes a

comment box for adding information.

insertion point: (1) The place ina

documentwhere somethingwill be
added, represented bya blinking

vertical bar. You select the insertion

point byclicking where you wantto
make the change in the document. (2)
An empty selection range.

Installer: A utility program thatlets
you choose anInstallation script for

updating your system software or
adding resources.

GL-20 Apple IIGS Toolbox Reference, Volume 3

integrated circuit (IC): An electronic

circuit—including components and
interconnections—entirely contained

in a single piece of semiconducting
material, usually silicon. Often referred
to as a chip.

interface: (n.) (1) The point at which

independent systems or diverse groups

interact. The devices, rules, or

conventions by which one component
of a system communicates with
another. Also, the point of

communication between a person and

a computer. (2) The part of a program

that defines constants, variables, and

data structures, rather than procedures.

In C, the compile-time and run-time
linkage between your program and
Toolbox routines. (3) The equipment
that accepts electrical signals from one
part of a computer system and renders
them into a form that can be used by
another part. (4) Hardware or software

that links the computerto a device.

(v.) To convert signals from one form

to another and pass them between two
pieces of equipment.

interrupt: (1) An electronic attention-

getter; a signal sent to the

microprocessorthat is intended to

force the microprocessorto stop its
current activity and accept input from

the device that sent the interrupt.
(2) A temporary suspension in the
execution of a program that allows the
computer to perform someothertask,
typically in response to a signal from a
peripheral device or other source

external to the computer.
(3) An exception that’s signaled to the
processor by a device, to notify the

processor of a change in condition of
the device, such as the completion of

an I/O request.

IRQ: A 65C816signal line that, when
activated, causes an interrupt request

to be generated.

item: In dialog and alert boxes, a

control, icon, picture, or piece oftext,
each displayed inside its own display
rectangle. See also menu item.

item list: A list of information about
all the items in a dialog oralert box.

IWM:“Integrated Woz Machine”; the

custom chip that controls the Apple
3.5-inch disk drives.

job: A process that can be stopped,
restarted, and moved between

foreground and background processing

from the C shell.

job dialog: A dialog box that sets
information about one printing job;
associated with the Print command.

journaling mechanism: A mechanism

that allows a program to feed events to
the Toolbox Event Manager from some

source other than theuser.

justification: The horizontal
placementoflines of text relative to
the edgesofthe rectangle in which the
text is drawn.

K: See kilobyte.

Kbit: See kilobit.

Kbyte: See kilobyte.

kern: To draw part of a character so
that it overlaps an adjacent character.

kernel: (1) The central part of an
operating system. ProDOS16is the

kernel of the Apple IIGS operating

system. (2) A program that manages
the system hardware. For example, the
kernel managesfiles, communicates

with peripherals, and handles other low-
level resource managementtasks.

keyboard event: An event generated
whenthe user presses a character key
on the keyboard. A key-down eventis

generated whenthe userpresses a

character key; a key-up eventis
generated when the userreleases a
character key. Auto-key events are
repeatedly generated when the user
holds down a character key.

key-down event: An event generated
whentheuserpresses a character key
on the keyboard or keypad. Compare

key-up event.

keystroke equivalent: A keystroke

that activates a control just as if the

user hadclicked in the control.

Glossary GL-21

key-up event: An event generated

whenthe user releases a character key

on the keyboard or keypad. Compare

key-down event.

kHz: See kilohertz.

kilobit (Kbit): A unit of measurement,
1024 bits, commonly used in specifying

the capacity of memory integrated

circuits. Not to be confused with
kilobyte.

kilobyte (K): A unit of measurement

consisting of 1024 (2!°) bytes. Thus,
64K memory equals 65,536 bytes. The
abbreviation K can also stand for the

number 1024, in which case Kbyte is

used for kilobyte. See also megabyte.

kilohertz (kHz): A unit of

measurementof frequency, equal to

1000 hertz. See also megahertz.

language card: Memory with

addresses between $D000 and $FFFF on
any Apple II-family computer.It
includes two RAM banks in the $Dxxx

space, called bank-switched
memory. The language card was
originally a peripheral card for slot 0 of

the 48K Apple II or Apple II Plus that
expanded memory capacity to 64K and
provided space for an additional
dialect of BASIC. The language card
was also necessary for these machines

to use ProDOS.

least significant bit: The binary digit

in a numberor data byte that
contributes the smallest quantity to
the value of the number; usually written

at the right end of the number.

Compare most significant bit.

GL-22 Apple IIGs Toolbox Reference, Volume 3

list record: The internal
representation ofa list, where the List

Managerstoresall the information it

requires for its operations onthatlist.

load: To transfer information from a

peripheral storage medium (such as a
disk) into main memory for use; for

example, to transfer a program into

memory for execution.

local coordinate system: The

coordinate system local to a GrafPort,

imposed by the boundary rectangle

defined in its bitmap.

lock: (1) To prevent a memory block
from being movedor temporarily

purged. A block may belocked or
unlocked by the Memory Manager.(2)
To temporarily prevent a relocatable
block from being moved during heap

compaction.

logical end-of-file: The position of
one byte pastthe last byte in file;
equal to the actual numberofbytes in

the file. Compare physical end-of-file.

logical operator: An operator, such as

AND,that combineslogical values to
producea logical result, such as true or
false; sometimes called a Boolean

operator.

low-order: (adj.) Describes the least
significant part of a numerical
quantity. In normal representation, the
low-order bit of a binary numberis in

the rightmost position; likewise, the

low-order byte of a binary word or
longword quantity consists of the
rightmost eight bits. Compare
high-order.

low-order byte: Theless significant
half of a memory address or other two-

byte quantity. In the 6502
microprocessor used in the Apple II

family of computers, the low-order
byte of an addressis usually stored
first, and the high-order byte second.
The opposite is true for Macintosh
computers. Compare high-orderbyte.

Macintosh:A family of Apple
computers, including the Macintosh
128K, Macintosh 512K, Macintosh 512K

enhanced, Macintosh Plus, Macintosh

SE, and Macintosh II. Macintosh

computers have high-resolution screens
and use mouse devices for choosing

commands andfor drawing pictures.

Macintosh Programmer's
Workshop (MPW): Apple’s software
development environmentfor the
Macintosh family.

macro: (1) A user-defined command
that tells an application to carry out a
series of commands whenyoutype the

macro. (2) A recorded sequence of
characters and commands,identified

by a name andpossibly triggered by a

keystroke. (3) A single keystroke or

command that a program replaces with

several keystrokes or commands.For

example, the APW Editor allows you to

define macros that execute several

editor keystroke commands; the APW

Assembler allows you to define macros

that execute instructions and

directives. Macros are almostlike

higher-level instructions, making

assembly-language programseasier to

write and complex keystrokes easier

to execute.

MB: See megabyte.

Mbit: See megabit.

megabit (Mbit): A unit of
measurement equal to 1,048,576 (2!6)
bits, or 1024 kilobits, commonly used

in specifying the capacity of memory

ICs. Not to be confused with

megabyte.

megabyte (MB): A unit of

measurement equal to 1024 kilobytes,
or 1,048,576 bytes. See also kilobyte.

megahertz (MHz): One million hertz.

See also kilohertz.

memory handle: Theidentifying

numberofa particular block of
memory. It is a pointer to the master

pointer to the memory block. A handle

rather than a simple pointer is needed

to reference a movable memory block.

menu:A list of choices presented by a
program, from which you canselect an

action. In the desktop interface,

menus appear when you point to and
press menutitles in the menu bar.

Dragging through the menu and
releasing the mouse button while a

commandis highlighted chooses that

command.

menubar: The horizontalstrip at the

top of the screen that contains

menutitles.

menudefinition procedure: A
procedure called by the Menu Manager

whenit needs to perform type-

dependent operations on a particular
menu (for example, whenit needs to

draw the menu).

Glossary GL-23

menu item: A choice in a menu,usually

a commandto the current application.

See also item.

Menu Manager: The part ofthe

toolbox that deals with setting up
menusandletting the user choose

from them.

menurecord: The internal

representation of a menu, where the
Menu Managerstores all the

information it needs for its operations
on that menu.

menu template: Data structure used

to define menus, menu commands, and
menu bars to the Menu Manager.

menutitle: A word, phrase, or icon in

the menu barthat designates one

menu. Pressing on the menutitle causes

the title to be highlighted and its menu
to appear belowit.

m flag: Oneofthreeflag bits in the

65C816 processor that programs use to
control the processor's operating

modes. In native mode,the setting of
the m flag determines whetherthe

accumulatoris 8 bits wide or 16bits
wide. See also e flag, x flag.

GL-24 Apple IIGS Toolbox Reference, Volume 3

microprocessor: An integrated circuit

on the computer’s main circuit board.

The microprocessor carries out

software instructions by directing the

flow of electrical impulses through the

computer. The microprocessoris the

central processing unit (CPU) ofthe
microcomputer. Examples are the 6502
or 65C02 microprocessorusedin the
Apple Ile, the 65C816 microprocessor
used in the Apple IIGs, and the 68000
microprocessorused in the
Macintosh Plus.

MIDI: Acronym for Musical Instrument

Data Interface, a standard interface for
electronically created music.

millisecond (ms): One-thousandth of

a second.

mnemonic: A type of abbreviation
consisting of a series ofletters and/or
numbersthat represent a longer or more

complicated nameortitle. A

mnemonic is characterized by being
relatively easy to remember.

modifier key: A general term for a key
that generates no keyboard events of

its own but changes the meaning of
other keys or mouseactions; for
example, Caps Lock, Command,
Control, Apple, Option, and Shift.

Whenyou hold downor engage a
modifier key while pressing another
key, the combination makes that other
key behave differently. Sometimes
called a control key. Compare
character key.

most significant bit: The binary digit
in a numberordata byte that

contributes the largest quantity to the

value of the number; usually written at

the left end of the number. For
example, in the binary number 10110

(decimal value 22), the leftmost bit has

the decimal value 16 (24). Compare
least significant bit.

mouse: A small device you move
around ona flat surface next to your

computer. The mousecontrols a
pointer on the screen whose
movements correspond to those of the

mouse. You use the pointerto select
Operations, to move data, and to draw

with in graphics programs.

mouse button: The button on the top

of the mouse. In general, pressing the
mouse button initiates some action on

whateveris under the pointer, and
releasing the button confirms the

action. Compare button.

mouse-downevent: An event
generated whenthe userpresses the
mouse button.

mouse event: An event generated
whenthe userpresses andreleases the
mouse button. A mouse-down eventis
generated whenthe user presses the

mouse button. A mouse-up eventis
generated whenthe userreleases the

mouse button.

mouse-up event: An event generated
whentheuserreleases the mouse

button.

movable: A memory block attribute,

indicating that the Memory Manageris

free to move the block. Opposite of

fixed. Only position-independent

program segments maybe in movable
memory blocks. A block is made

movable orfixed through Memory

Managercalls.

move: To changethe location of a
memory block. The Memory Manager
may moveblocksto consolidate

memory space.

MPW: See Macintosh Programmer’s
Workshop.

nanosecond (ns): One-billionth of

a second.

native mode: The 16-bit operating
configuration of the 65C816
microprocessor.

nibble: A unit of data equal to half a

byte, or fourbits. A nibble can hold any
value from 0 to 15.

NOT:A unary logical operator that
produces a TRUEresultif its operandis
false, and a FALSEresultif its operand
is true. Compare AND, exclusive OR,

OR.

Glossary GL-25

null: (1) An undefined value. Null is

different from 0; 0 is a value just like

other numbers, whereas null means no
value at all (of the expected type). A

null string does not contain anything.
For example, ' ' is nota null string

because it contains a space character;
'' represents a null string. (2) Any
character or character code that has no

meaning to the operating system or
program interpreting it. (3) A type of
attention cycle.

null event: An event reported when
there are no other events to report.

open: To makeavailable. You open

files or documents in order to work

with them.A file may not be read from

or written to until it is open. In the
desktop interface, opening an icon

causes a window with the contents of

that icon to come into view. You may
then perform furtheractions in the
window whenit’s active.

option: (1) Something chosen or
available as a choice; for instance, one

of several check box or radio button
options. (2) An argument whose
provision is optional.

Option key: A modifier key that gives
a different meaning or action to

key you press or to mouse
actions you perform. For example, you

can useit to type foreign characters or
special symbols contained in the
optional character set. On the Apple

IIGS and some models of the AppleIle,
the Option key replaces the Solid

Apple key.

GL-26 Apple IIGS Toolbox Reference, Volume 3

OR:A logical operator that produces a

TRUEresult if either or both ofits
operands are true, and a FALSEresult if

both of its operandsare false.
Compare AND, exclusive OR, NOT.

out-of-memory queue: A queue
maintained by the Memory Manager.

Queue elements (out-of-memory
routines) refer to code to be executed

when the Memory Managerdetects an
out-of-memory condition.

out-of-memory routines: Code
executed by the Memory Manager when
it detects an out-of-memory

condition. The out-of-memory queue

consists of a list of these routines.

override: To modify or cancel an
instruction by issuing another one. For

example, you might override a DIP

switch setting on a printer with an
escape sequence.

page: (1) The text and/orgraphics that
fits on a sheet of paper whenprinted,

depending on the page format. (2) A

screenful of information on a video
display. In the AppleII family of
computers, a page consists of 24 lines

of 40 or 80 characters each. (3) (usually
Page) An area of main memory
containing text or graphic information

being displayed on the screen.(4) A
segment of main memory 256 bytes
long and beginning at an addressthatis
an even multiple of 256. Memory
blocks whosestarting addresses are an
even multiple of 256 are said to be
page-aligned.

page zero: See zero page.

parameter: (1) A value passed to or
from a function or other routine. (2) An
argument that determines the outcome

of a command. For example,in the

command write (n,msg),nandmsg

are parameters.

parameter block: (1) A data structure

used to transfer information between
applications and certain Operating

System routines. (2) A set of

contiguous memory locations, set up

by a calling program to pass parameters

to and receive results from an

Operating-system function thatit calls.

Every call to ProDOS16, to the APW
Shell, or to SmartPort must include a

pointer to a properly constructed

parameter block.

parameterlist: Thelist of
characteristics whose value or

condition determines the precise

execution of a SCSI command.

Pascal: A high-level programming
language with statements that resemble
English phrases. Pascal was designed to
teach programming as a systematic
approach to problem solving. Named

for the philosopher and mathematician
Blaise Pascal.

Pascal-compatible function: A
function written in Pascal that can be
declared in C using the pascal

specifier.

password:(1) A secret word that gives

you, but no one else, access to your
data or to messages sent to you

through an information service.

(2) A unique wordor set of characters
that must be entered before a
registered user at a workstation can

access a volume ona server.

passwordfield: A field that does not
echo user input, allowing protected

data entry. Your program can specify

the echo character; the default echo

characteris the asterisk (*).

paste: To place the contents of the

Clipboard—whateverwas last cut or

copied—at the insertion point.

pattern: An 8-by-8-bit image used to

define a repeating design (such as
stripes) or tone (such as gray).

physical end-of-file: The position of
one byte past the last allocation block
of a file; equal to one more than the
maximum numberofbytesthefile can

contain. Compare logical end-of-file.

picture: (1) In HyperCard, any graphic

or part of a graphic created with a
Paint tool. Also, an imported MacPaint
document or part of a MacPaint®
document. (2) A saved sequence of
QuickDraw drawing commands (and,
optionally, picture comments) that
you can play backlater with a single
procedurecall. Also, the image resulting
from these commands.

Glossary GL-27

pixel: Short for picture element; the

smallest dot you can draw on the
screen. Also a location in video
memory that corresponds to a point on
the graphics screen when the viewing
window includesthat location. In the
Macintosh monochromedisplay, each

pixel can be either black or white, so it
can be represented bya bit; thus, the
displayis said to be a bitmap. For

color or gray-scale video, severalbits in
RAM mayrepresentthe image;in the

Super Hi-Res display on the Apple IIGs,

each pixel is represented by either two
or four bits. Thus, the display is not a

bitmap but rather a pixel map.

pointer: (1) A small shape on the screen

that follows the movementofthe

mouse or shows where your next action

will take place. The pointer can be an
arrow,an I-beam, a crossbar, or a

wristwatch. (2) An item of information
consisting of the memory address of
someotheritem. For example,

Applesoft BASIC maintains internal

pointers to the most recently stored
variable, the most recently typed

program line, and the mostrecently
read data item, amongotherthings.
The 6502 uses oneofits internal
registers as a pointer to the top ofthe

pop-up menu: A menuthat “pops” out
of its display rectangle whenselected
by the user. The two types of pop-up

menus, type 1 and type 2 pop-up
menus, have different maximum sizes.

GL-28 Apple IIGs Toolbox Reference, Volume 3

prefix: (1) The first part of a

pathname—the nameof the disk and,
if you like, the name of a subdirectory.
Applications that ask you to type a

pathnameusually let you set a prefix so
you don’t have to type the complete
pathnameevery time you want to work

with a documenton a particular disk or

in a particular subdirectory. Once the

prefix is set, all you dois typetherest
of the pathname. (2) A designation for
a place that an application can store

files. Many applications require the

prefix to be the sameasthe pathname.
Some applications allow you to set the

prefix from within the application.

prefix number: A code used to

represent a particular prefix. Under

ProDOS16, there are nine prefix
symbols, consisting of the numerals 0
through 7 and the asterisk followed by
aslash: 0/,1/,...7/, and */.

press: (1) To position the pointer on

something on the screen and then hold
downthe mouse button without
moving the mouse. (2) To push a key
downandthenreleaseit; you hold a
key downonly if you wantto repeata

characterorif you are using a modifier
key with anotherkey.

printed-circuit board: A hardware

component of a computer or other
electronic device, consisting ofa flat,

rectangular piece of rigid material,

commonlyfiberglass, to which
integrated circuits and other electronic
components are connected.

purge: To temporarily deallocate a
memory block. The Memory Manager

purges a block bysetting its master

pointer to NIL(0). All handles to the

pointer are still valid, so the block can
be reconstructed quickly. Compare
dispose.

purgeable: A memory blockattribute,
indicating that the Memory Manager
may purgethe blockif it needs
additional memory space. Purgeable
blocks have different purge levels, or

priorities for purging; these levels are

set by Memory Managercalls.

purgeable block: A relocatable block

that can be purged from the heap.

purge level: An attribute of a memory

block that sets its priority for purging.

A purge level of 0 meansthat the block

cannot be purged.

Quagmire register: On the AppleIIcs,

the namegiven tothe eightbits
consisting of the speed control bit and
the shadowing bits. Although Quagmire
is not a real register, the Monitor
program allows you to access those

bits as if they were in a single register.

queue:A list in which entries are
added at one end and removedat the
other, causing entries to be removed

in first-in, first-out (FIFO) order.

Compare stack.

QuickDraw: Thepart of the toolbox
that performsall graphic operations on
the Macintosh screen.

quoting mechanism:Special syntax

in the commandlinethattells the shell

to interpret metacharacters literally, or

to control the type of substitution
allowed in the command.

RAM:See random-access memory.

random-access memory (RAM): The

part of the computer’s memory that
stores information temporarily while
you're working on it. A computerwith

512K RAM has 512 kilobytes of memory
available to the user. Information in

RAM canbereferred to in an arbitrary

or random order, hence the term
random-access. (As an analogy, a book

is a random-access storage device in
that it can be opened andread at any

point.) RAM can contain both
application programs and your own

information. Information in RAM is
temporary, goneforeverif you switch
the poweroff without saving it on a

disk or other storage medium. An

exception is the battery RAM, which

stores settings such as the time and
which is powered bya battery.
(Technically, the read-only memory

[ROM]is also random access, and what's
called RAM should correctly be termed

read-write memory.) Compare read-

only memory.

read-only memory (ROM): Memory

whose contents can be read but not
changed;usedfor storing firmware.

Information is placed into read-only
memory once, during manufacture.It

remains there permanently, even when

the computer’s poweris turned off.

Compare random-access memory.

Glossary GL-29

read-write memory: Memory whose

contents can be both read and changed

(or written to). The information
contained in read-write memory is
erased when the computer's poweris
tumedoff and is permanentlylost

unless it has been saved on a disk or
other storage device. Used
synonymously with random-access
memory. Compare read-only
memory.

reference type: Indicates whether a

storage location contains a pointer, a

handle, or a resource ID for an object.

release: That portion of a sound

envelope during which the note dies

awayto silence. See also ADSR.

relocatable: Characteristic of a load

segment or other OMF program code

that includes no references to specific
address and so can berelocated at load
time. A relocatable segment can be

static, dynamic, or position
independent. It consists of a code
image followed by a relocation
dictionary. Compare absolute.

relocatable block: A block that can be
moved within the heap during
compaction.

resource: Collection of data managed
by the Resource Managerfor other

applications.

resource compiler: A program that
creates resources from a textual
description. The MPW Resource

Compileris named Rez.

GL-30 Apple Ics Toolbox Reference, Volume3

resource file: A collection of one or

more resources. The Resource

Managerprovides routines for
accessing and updating resources in a

resourcefile.

resource fork: The part ofa file that
contains data used by an application,
such as menus, fonts, and icons.

Sometimescalled a resourcefile.

resource ID: A numberthat uniquely
identifies a resource within the

context of its resource type. The

Resource Manager providesfacilities

to assign unique resource IDs. Compare

resource name.

resource map:In a resource file, data

that is read into memory whenthefile

is opened andthat, given a resource

specification, leads to the

corresponding resource data.

resource name:A series of characters

that uniquely identify a resource
within the context ofits resource
type. Note that resource namesare not
maintained by the system;it is your
program’s responsibility to assign and
manage them. Compare resource ID.

resource type:A class of resources

that share a commondata layout.
Individual instances of resources

of a given type are identified by
their unique resource ID or
resource name.

ROM:See read-only memory.

run item: An element in the run
queue. Run items specify program
code to be executed by the Desk

Managerat regular intervals.

run queue: A queue maintained by the
Desk Managerthat contains elements
(run items) that specify code to be

executed at regularintervals.

sample rate: The number of sound

samples the Apple IIGs Digital

Oscillator Chip plays per second.

scroll: (1) To move a documentor

directory in its window so that a

different part ofit is visible. (2) To

moveall the text on the screen upward

or downward, and in some cases

sideways.

scroll arrow: An arrow at either end of
a scroll bar. Clicking a scroll arrow
moves a documentor directory one

line. Pressing a scroll arrow moves a
documentcontinuously.

scroll bar: A rectangular bar that may
be along the right or bottom of a
window.Clicking or dragging in the

scroll bar causes your view ofthe

document to change.

scroll box: The white boxin a scroll
bar. The position of the scroll box in

the scroll bar indicates the position of

what’s in the windowrelative to the
entire document.

select: (v.) To designate where the
next action will take place. To select
using a mouse, youclick an icon or drag

across information. In some
applications, you can select items in

menusbytyping letter or numberat a

prompt, by using a combination

keypress,or by using arrow keys.(n.) A

commandto a device such as a printer

to place it into a condition to

receive data.

selection: (1) The information or
items that will be affected by the next
command.Theselection is usually
highlighted. (2) A series of characters,
or a character position, at which the
next editing operation will occur.
Selected characters in the active
windowareinversely highlighted. Also
called selection range.

shadowing: (1) The process by which

any changes madeto onepart of the
Apple IIGS memory are automatically

and simultaneously copied into

another part. When shadowingis on,

information written to bank $00 or $01
is automatically copied into equivalent
locations in bank $E0 or $E1. Likewise,
any changes to bank $E0 or $E1 are
immediately reflected in bank $00 or
$01. (2) A process through which the

SCSI card takes over an additionalslot
to work with ProDOSin supporting

four external device ports.

6502: The microprocessor used in the
Apple II, the Apple II Plus, and early

models of the Apple IIe. The 6502is a
MOSdevice with 8-bit data registers
and 16-bit address registers.

Glossary GL-31

65C02: A CMOSversion of the 6502;
the microprocessor used in the Apple
IIc and Apple Ile.

65C816: The microprocessor usedin
the Apple IIGs. The 65C816 is a CMOS
device with 16-bit data registers and
24-bit address registers.

64K Apple II: Any standard AppleII
that has at least 64K of RAM. That
includes the Apple IIc, the Apple Ile,

and an Apple II or Apple II Plus with
48K of RAM andthe language
card installed.

size box: A box in the lower-right
comer of some active windows.

Dragging the size box resizes
the window.

slot: A narrow socket inside some
models of Apple computers for

connecting circuit boards known as

interface cards; each card handles
communication between the computer
and a peripheral device, sending and
receiving data through a port or

connector on the outside of
the computer.

slot number: A way anapplication
might ask you to describe the location
of a peripheral device. In some models
of the AppleII, there are seven general-
purposeslots on the main circuit board
for connecting peripheral devices to
the computer. They are numbered from
1 to 7 with 1 on theleft as you face the
front of the computer. If your deviceis
connected to a port instead of a slot,

you canstill use the application by
typing the slot numberthat
corresponds to the port.

GL-32 Apple IIGS Toolbox Reference, Volume 3

soft switch: A meansof changing
some feature of the computer from
within a program. For example, DIP

switch settings on ImageWriter printers
can be overridden with soft switches.
Specifically, a soft switch is a location
in memory that produces somespecial
effect wheneverits contents are read
or written. Also called a software switch.

software pirate: A person who copies

applications without the permission of
the author. To copy software without
permissionisillegal.

soundbuffer: A block of memory
from which the sound generator reads

the information to create an audio
waveform.

stack: In a computer,a portion of
memory thatis used for temporary
storage of operating data during
operation of a program. The data on
the stack are added (pushed) and
removed(pulled or popped)inlast-in,
first-out (LIFO) order. The stack usually
refers to the particular stack pointed
to by the 65C816's stack register.
Compare queue.

stack register: A hardware register in
the 65C816 processorthat contains the
address of the top of the
processor’s stack.

standard Apple I: Any computerin
the Apple II family except the Apple
IIGS. That includes the Apple II, the
Apple II Plus, the Apple Ile, and the
Apple Ilc.

start up: To get the system running.

Starting up is the process offirst
reading an operating-system program
from the disk and then running an
application program. Synonymous
with boot.

startup disk: A disk with all the
necessary program files—such as the

Finder and System files contained in

the System Folder for the Macintosh—
to set the computer into operation.
Sometimescalled a boot disk.

startup drive: The disk drive from
which you started your application.

sustain: That portion of a sound
envelope during which the note

maintains a fairly constant loudness,

before it dies away. See also ADSR.

synthesizer: (1) A hardware device

capable of creating sound digitally and
converting it into an analog waveform
that you can hear. (2) A program that
interprets Sound Tool Set commands
and produces sound.

system software: The componentof
a computer system that supports
application programs by managing

system resources such as memory and
I/O devices.

tab: (1) Short for tabulator; on

typewriter keyboards, a key that

allows you set automatic stops (tab

stops) or margins for columns,as in a
table of figures. (2) An ASCII character

that commands a device such as a
printer to start printing at a preset

location (a tab stop). There are two such
characters: horizontal tab (hex 09) and

vertical tab (hex 0B). The horizontal
tab character gives the same action as
pressing the tab key on a typewriter.

Tab key: A key that, when pressed,
generates the horizontal tab character.
The key’s action is to move the

insertion point or cursor to the next

tab marker, or, in a dialog box with

more than oneplace to enter
information, to the next rectangle. The

Tab key thus worksessentially like a

typewriter tab key.

target control: That control thatis

currently the recipient of user actions

(keystrokes and menuitems).

tear-off menu: Any menu that you can

detach from the menu barby pressing

the menutitle and dragging beyond the
menu's edge. The torn-off menu

appears in a window or a mini-window
on the desktop.

TextEdit record: Describes a

TextEdit user session, whether or not

that session is managed as a control.

toolbox: A collection of built-in
routines that programscan call to

perform many commonly needed
functions. Functions within the Apple

IIGS Toolbox are grouped into

tool sets.

Glossary GL-33

tool set: A group ofrelated routines
(usually in firmware) that perform
necessary functions or provide
programming convenience. They are

available to applications and system
software. The Memory Manager,the

System Loader, and QuickDrawII are

Apple IIGS tool sets.

type 1 pop-up menu: A pop-up

menu that does not becomelarger
than its window. Compare type 2 pop-

up menu.

type 2 pop-up menu: A pop-up

menuthat becomeslarger than its

windowif necessary to displayits

menu items. Compare type 1

pop-up menu.

type-ahead buffer: A buffer that
accepts and holds characters that are
typed faster than the computer can
process them.

unload: To remove a load segment
from memory. To unload a segment,

the System Loader does notactually

“unload” anything; it calls the Memory
Managerto either purge or dispose of
the memory block in which the code

segmentresides. The loader then
modifies the Memory SegmentTable
to reflect the fact that the segmentis

no longer in memory.

unlock: To allow a relocatable block

to be moved during heap compaction.
Compare lock.

unmovable: See fixed.

GL-34 Apple IIGs Toolbox Reference, Volume 3

unpurgeable: Having a purgelevelof
0. The Memory Manageris not
permitted to purge memory blocks
whose purge levelis 0.

unpurgeable block: A relocatable

block that can’t be purged from

the heap.

update event: An event generated by
the Window Manager whena window's
contents need to be redrawn.

User ID: An identification number

that specifies the owner of every

memory block allocated by the

Memory Manager.

version: A numberindicating the
release edition of a particular piece of
software. Version numbers for most

system software (such as ProDOS 16
and the System Loader) are available
through functioncalls.

void: In C, a data type used to declare
a function that does not return a value.

waveform: The shape of a wave (a

graph of a wave’s amplitude
over time).

waveform description: A sequence of
bytes describing a waveform.

wildcard character: A character that

may be used as shorthandto represent
a sequence of characters in a

pathname. A commonwildcard

character is the asterisk (*). As an
example, if you were to request a
listing of * .TExT files in a particular
application, you would see list ofall

files ending with the suffix TEXT. In
APW,the equal sign (=) and the
question mark (?) can be used as

wildcard characters.

window:(1) The area that displays
information on a desktop; you view a
documentthrough a window. You can
open or close a window, moveit
around on the desktop, and sometimes
changeits size, scroll throughit, and
edit its contents. (2) The portion of a
collection of information (such as a

document, picture, or worksheet) that

is visible in a viewport on the display

screen. Each windowis internally

represented in a windowrecord.

window definition function: A
function called by the Window
Managerwhenit needs to perform
certain type-dependent operations on
a window (for example, drawing the
window frame).

Window Manager:Thepart of the

toolbox that provides routines for
creating and manipulating windows.

Window Managerport: A GrafPort
that has the entire screen asits
PortRect and is used by the Window
Manager to draw window frames.

word: (1) The computer’s native unit
of data. The MacintoshII uses a 32-bit
word. A NuBus™ wordis 32 bits long; a

half-word is 16 bits. An SE Bus or 68000
word is 16 bits long; a half-wordis 8
bits. For the AppleIIGs, a wordis 16
bits (2 bytes) long. (2) For the shell and

other programs,a string of nonblank

characters bounded by the space
character, the tab character, or the

beginning orthe endofthe inputline.

word wrap: The automatic
continuation of text from the end of

oneline to the beginning of the next.
Word wraplets you avoid pressing the

Return keyatthe endofeachlineas

you type.

x flag: One of three flag bits in the

65C816 processor that programs use to
control the processor's operating

modes. In native mode,thesetting of

the x flag determines whetherthe index
registers are 8 bits wide or 16 bits wide.
See also e flag, m flag.

zero page: Thefirst page (256 bytes)
of memory in a standard AppleII
computer(or in the Apple IIGs when
running a standard Apple II program);
also called page zero. Because the high-
order byte of any address in this page

is zero, only the low-orderbyte is
needed to specify a zero-page address.
This makes zero-page locations more
efficient to address, in both time and

space, than locations in any other page
of memory. Compare direct page.

Glossary GL-35

zoom box: A small box with a smaller
box enclosed in it found on the right
side ofthe title bar of some windows.

Clicking the zoom box expands the
windowto its maximumsize; clicking

it again retums the windowtoits

original size.

GL-36 Apple IIGs Toolbox Reference, Volume 3

Index

A

absolute tabs 49-3

accelerator card GL-1

Accept button, multifile dialog boxes

48-3
accumulator GL-1

ACE (Audio Compression and
Expansion) Tool Set 27-1 to

27-19

direct page memory 27-7
error codes 27-19

error correction 27-2, F-4

housekeeping routines 27-2, 27-6
to 27-12

tool calls 27-3, 27-13 to 27-18

ACEBoot Initcall 27-4

ACECompBegin call 27-13

ACECompress Call 27-14 to 27-15

ACEExpandcall 27-2, 27-16 to 27-17,

F-4

ACEExpBeginCall 27-18

ACEInfo call 27-12

ACEResetCall 27-10

ACEShutDownCall 27-8

ACEStartUp call 27-7

ACEStatusCall 27-11

ACEVersion call 27-9

ACIA (Asynchronous
Communications Interface

Adapter) 38-6, GL-1
A/D Converter register 47-15
Adaptive Differential Pulse Code

Modulation (ADPCM) 27-4,

GL-1

how it works 27-5
AddResourcecall 45-35 to 45-36

AddTooOoMQueue call 36-9

AddToQueuecall 39-6

AddToRungcall 29-6

ADSR(attack, decay, sustain, and

release) 41-3 to 41-6, GL-1

alert GL-2

alert strings 52-11 to 52-12
rAlertString resource type

E-3
AlertWindow call 52-6 to 52-12,

§2-21 to 52-22
inputstring layout 52-6 to 52-9

alert windows 52-6 to 52-12, GL-2

example of 52-11 to 52-12
special characters in 52-10
standard sizes of 52-8
substitution strings 52-11 to 52-12

AllNotesoOffcall 41-19
AllocGencall 41-20

ANSI GL-2
Apple character, displaying 37-4
Apple Desktop Bus Tool Set 26-1 to

26-3, GL-2

device table GL-1
error corrections 26-2, F-2 to F-3

Apple menu GL-2
AppleTalk

and MIDI 38-22
network system GL-2
port driver auxiliary file type 42-2,

F-18

Apple III GL-3
Apple IIGS Interface Libraries GL-2
Apple IIGS Programmer's Workshop

(APW) GL-2

Debugger GL-3

Editor GL-3

Linker GL-3
Shell GL-3

Apple II Pascal GL-2
Apple II Plus GL-2

application-switching routines 45-4,
45-27 to 45-28

AsyncADBReceivecall 26-3, F-3

Asynchronous Communications
Interface Adapter (ACIA) 38-6,
GL-1

attributes word, resource 45-9 to

45-11

audio compression. See also ACE
expanding a compressed sample

27-16 to 27-17

of long samples 27-13
sizing resulting data 27-15
and sound quality 27-4 to 27-5
storing resulting data 27-14

Audio Compression and Expansion.
See ACE

auto-key events 31-6, GL4
auto-repeat feature GL-4

B

background activity GL-4
Bank-Select/Table-Size/Resolution

register (DOC) 47-13 to 47-15
bank-switched memory GL-4
battery RAM GL4
bit image GL-5
bitmap GL-5
bitmapped display GL-5
Boolean operator GL-5
bounds control definition procedure

routine 28-17

box, check. See check box; check box

control
box, dialog. See dialog box; dialog

box templates

box, size. See size box; size box

control

buffer sizing for MIDI I/O 38-24 to

38-25
Busy Box program G-1 to G-96

busybox.xr module G-4 to G-77
Busy-p module G-2 to G-3

uEvent.p module G-78 to G-82

uGlobals.p module G-83 to

G-85

uMenu.p module G-86 to G-88

uUtils.p module G-89 to G-91

uWindow.p module G-92 to

G-96
button control, icon. See icon button

control

button control, simple. See simple
button control

C

caching, menu 37-6 to 37-7

CalcMask Call 44-3 to 44-7

CalcMenuSizecall 37-3, F-15

CallCt1DefProc call 28-22 to

28-23

call format used in this book xxxii

callRoutine command 40-12

Cancel button GL6

Caps Lock key GL
carry flag GL4
case sensitive GL4
CCITT GL4

character code GL-6

check box GL-7

check box control 28-7

record (for extended) 28-95 to

28-96

template 28-50 to 28-51, E-15 to
E-16

ChooseFontcall 32-2

Choose Font dialog box 32-2
classic desk accessory (CDA) 29-2 to

29-3

class 1 calls, Standard File ToolSet

48-2

ClearIncrcall 40-45

clipboard GL-7
clipping region GL-7

clock, MIDI 38-6 to 38-7, 38-23 to

38-24

clock chip GL-7

close box GL-7

CloseResourceFilecall

45-37

CloseWindow call 52-2, F-26

ClrHeartBeatcall 39-2 to 39-3,

F-17

X-2

CMLoadResourcecall 28-24

CMReleaseResourceCall

28-25
colon (:), as path separator character

48-3
colors, item text 35-2, F-11

color tables
Apple IIGS standard 43-2, F-19
menu bar 37-2, F-15

scroll bar 28-3, F-6
size box control 28-2, F-5

xrWindColor resource type

E-72 to E-73
use of four bits in 28-4

command interpreter, Note

Sequencer as 40-6
Command key GL-7
CompileText call 52-23 to 52-25
completion routines, Note Sequencer

40-7
concatenate GL-8

content region GL-8

context sensitive GL-8
control command format, Note

Sequencer 40-11
control commands, Note Sequencer

40-11 to 40-16

control definition procedure
messages 28-13 to 28-21

control definition procedures
bounds routine 28-17

drag routine 28-14
event routine 28-14 to 28-15

for icon buttons 28-6
initialize routine 28-14

notify multipart routine 28-20
record size routine 28-14

tab routine 28-19

target routine 28-16
window changeroutine 28-1

windowsize routine 28-18

Control key GL-8
controllist, rcontrolList resource

type E-6

Control Manager 28-1 to 28-128, GL-8

code example 28-81 to 28-86

control types supported 28-6
error codes 28-42
error corrections 28-2, F-5

Apple IIGS Toolbox Reference, Volume 3

new and changed controls 28-6 to
28-12

newfeatures of 28-4 to 28-21

reference types for data 28-5
and resources 28-5 to 28-6
templates and records 28-43 to

28-128

and TextEdit controls 49-14 to

49-15

tool calls 28-22 to 28-41

Control Panel GL-9

control records

created by NewControl2 28-87
to 28-128

extended check box 28-95 to

28-96

extended radio button 28-110 to

28-111

extended scroll bar 28-112 to

28-113

extended simple button 28-93 to
28-94

extended size box 28-114 to

28-115

generic extended 28-87 to 28-92
icon button 28-97 to 28-99

LineEdit 28-100 to 28-101

list 28-102 to 28-103
picture 28-104 to 28-105
pop-up 28-106 to 28-109
Static text 28-116 to 28-118
TextEdit 28-119 to 28-128

Control register (DOC) 47-12 to 47-13,
GL-9

control templates 28-7, GL-9

check box 28-50 to 28-51, E-15 to

E-16

icon button 28-52 to 28-54, E-17 to

E-20
keystroke equivalents 28-47 to

28-48
LineEdit 28-55 to 28-56, E-21 to

E-22

list 28-57 to 28-59, E-23 to E-25
picture 28-60 to 28-61, E-26 to

E-27

pop-up 28-62 to 28-66, E-28 to
E-31

radio button 28-67 to 28-68, E-32
to E-33

scroll bar 28-69 to 28-70, E-34 to

E-35

simple button 28-48 to 28-49, E-13
to E-14

size box 28-71 to 28-72, E-36 to
E-37

standard header 28-43 to 28-47,

E-7 to E-11

Static text 28-73 to 28-74, E-38 to

E-39

TextEdit 28-75 to 28-80, E-40 to

E-45

CountResourcesCall 45-38
CountTypesCall 45-39

CreateResourceFile call 45-40

C string, rcString resource type

E-46
ctlChangeBounds message 28-17
ctlChangeTarget message 28-16,

28-19
ctlFlagfield, menu bar record

37-2, F-14
ctlHandleEvent message

28-14

ctlHandleTab message 28-19
ctlHilite field, menu bar record

37-2, F-14
ctlNotifyMultiPart message

28-20

ctlWindChangeSize message

28-18
ctlWindStateChange message

28-21

custom item-drawing routines 48-5 to
48-6

custom menus, caching with 37-7
custom scroll bars 49-26
cut and paste 49-3

D

data structures

file typelist record 48-9 to 48-10
Menu Manager 37-15 to 37-20

multifile reply record 48-8 to 48-9
new-style reply record 48-6 to 48-7
Resource Manager 45-78 to 45-79

Standard File 48-6 to 48-10
Window Manager 52-15 to 52-20

dead key sequences 31-3 to 31-4

DeallocGencall 41-21

decRegister command 40-18

default prefix GL-9
DeleteFromQueuecall 39-7

DeleteHeartBeatcall 39-3

dependencies, tool set 51-8 to 51-12
desk accessories 45-27 to 45-28, 52-4,

GL-10

Desk Manager GL-10
DeskMessagecall 52-4

desk scrap GL-10

desktop environment GL-10
DetachResourcecall 45-41

device drivers, MIDI 38-6
dialog box GL-10
dialog box templates

Standard File 48-11 to 48-26
Static text in 48-3

dialog item type values 30-2, F-7
Dialog Manager, error corrections

30-2, F-7
Digital Oscillator Chip (DOC) 38-2,

41-2, GL-10

registers 47-10 to 47-15
sample rate 47-9

dimmed icon GL-10
direct page GL-11
direct page memory, ACEtools use of

27-7
direct-page/stack space GL-11
direct register GL-11

disabled list items 35-2
disabling interrupts

and MIDI 38-22

and the Note Sequencer 40-4
dithering GL-11
dither pattem GL-11

DOC.See Digital Oscillator Chip (DOC)
documents, printing multiple copies

42-3
doEraseBuffer routine 49-18

doEraseRectroutine 49-17

doRectChangedroutine 49-18

double click GL-11
double-click time GL-12

drag GL-12

control definition procedure
routine 28-14

drag region GL-12

DragWindow call 52-3

DrawInfoBarCall 52-26

drawing modes 43-2, F-19
DrawMember2call 35-5

drop sample tuning 47-10, GL-12

E

echo GL-12

edit record GL-12

editing calls 49-5
editing keys, TextEdit 49-11 to 49-13
editor GL-12

empty menus 37-4
EMShutDownCall 31-2, F-8

EndFrameDrawingCall 52-27

Enter key GL-12
envelope, sound 41-3 to 41-6, GL-12
error codes GL-12

ACE 27-19

Control Manager 28-42
MIDI 38-53

Note Sequencer 40-63
Note Synthesizer 41-27
Print Manager 42-15
Resource Manager 45-80
Standard File 48-42

TextEdit 49-134
error corrections for Volumes 1 and 2

F-1 to F-27

error handling, Note Sequencer 40-7
error messages 52-53 to 52-56
ExrrorWindow Call 52-28 to 52-29,

52-53 to 52-56

event control definition procedure
routine 28-14 to 28-15

Event Manager 31-1 to 31-7

error correction 31-2, F-8

startup 51-3
extended check box control record

28-95 to 28-96
extended controls 28-7, GL-12

extended radio button control record

28-110 to 28-111

extended scroll bar control record

28-112 to 28-113

extended simple button control

record 28-93 to 28-94

extended size box control record

28-114 to 28-115

Index X-3

F

FASTFONT file 43-4
FFGeneratorStatusCall 47-2,

F-21

FFSetUpSoundcall 47-17

FFSoundDoneStatusCall 47-2,

F-2]

FFStartPlaying call 47-18

FFStartSoundcall 47-3 to 47-5,

F-22 to F-24

field GL-13

file format, resource 45-12

file IDs, resource 45-12

filenames 48-2, GL-13

file type list record data structure 48-9
to 48-10

fillerNote command 40-10
filler notes 40-10

filter GL-13

filter procedures
generic 49-16 to 49-18
Standard File 48-4

TextEdit 49-15 to 49-21
FindTargetCtl call 28-26

flag GL-13
f1ag field, control template standard

header 28-45

flush GL-13

FMSet SysFontcall 32-2, F-9
FMStartUp call 32-2

font class GL-13

font family GL-13
font header layout 43-5 to 43-6
FONT.LISTS file 32-2

Font Manager 32-1 to 32-5

and QuickDraw II Auxiliary 51-10
error corrections 32-2, F-9

font namedisplay 32-3

font number GL-13

fonts GL-13

PostScript 42-3
scaled 32-2

Shaston 32-2, 43-4, F-9

free block GL-13

free-form synthesizer GL-13
FreeMenmcall, compared with

RealFreeMem 36-10

frequency 47-10

X-4

frequency registers (DOC) 47-11

G

GCB (Generator Control Blocks)

41-11 to 41-12

GCBRecord 41-12

GDRPrivate call 52-52

generallogic unit (GLU) 47-8
Generator Control Blocks (GCB)

41-11 to 41-12

generators, sound 41-10 to 41-12, 47-9

active 47-2, F-21

generic filter procedure 49-16 to 49-18
GetCodeResConvertercall 39-8

GetCtlHandleFromIDcall 28-27

GetCtlip call 28-28

GetCtlMoreFlagscall 28-29

GetCtlParamPtrcall 28-30

GetCurResourceAppcall 45-42

GetCurResourceFilecall 45-43

GetIndResourcecall 45-44 to

45-45

GetIndTypecall 45-46

GetInterruptStatecall 39-9

GetIntStateRecSize call 39-10

GetKeyTranslationcall 31-5,

31-7

GetLEDefProc call 344

GetLoc call 40-46

GetMapHandlecall 45-47 to 45-48
GetMasterSCB call 43-4

GetMenuTitle call 374

GetMItem call 37-6
GetOpenFileRefNumcall 45-12,

45-49 to 45-50

GetPopUpDefProccall 37-21

GetResourceaAttrcall 45-51

GetResourceSize call 45-52

GetROMResourcecall 39-10

GetSoundvolumecall 47-2,

F-21

GetTimercall 40-47

GetVectorcall 39-3
GetWindowMgrGlobalscall 52-30
GetWTitlecall 52-5
glossary of terms GL-1 to GL-26
GLU (generallogic unit) 47-8
GrafPort record 35-2, F-11, GL-14

fontFlags 44-2

Apple IIcs Toolbox Reference, Volume 3

graphics port GL-14
GS/OS

Standard File support for 48-2
class 1 input string E-4
class 1 outputstring E-5

H

handle GL-14

heap GL-14

HideMenuBarcall 37-22

high-order byte GL-14

HomeResourceFile call 45-53

hook routines, TextEdit 49-15, 49-22
to 49-25

horizontal blanking interval GL-14

I

icon button control 28-8

record 28-97 to 28-99

and the system resourcefile 28-6
template 28-52 to 28-54, E-17 to

E-20
icons GL-14

rIconresource type E-48
ifGo command 40-18
images, shadowing 43-4

incRegister command 40-19

index register GL-15
information window GL-15

initialize control definition procedure
routine 28-14

InitPalette call 37-2, F-15

input data routine, MIDI Tool Set
38-12

input templates, and NewContro12
28-43 to 28-80

insertion point GL-15
and selection range calls 49-4

InsertMenu Call 37-2, F-15
InsertMItem2 call 37-23

Installer GL-15

InstallwithStatecall 32-4 to

32-5
Instrumentdata structure 41-7 to

41-10

instruments, Note Synthesizer 41-7 to
41-10

Integer Math Tool Set 33-1 to 33-2

intelligent cut and paste 49-3

interrupt state information 394 to

39-5
interrupts, disabling

and MIDI 47-16
and the Note Sequencer 40-4

interrupt state record layout 39-5

InvalCtlscall 28-31

InvalRgn Call 52-2, F-26

I/O buffer sizing, MIDI 38-24 to 38-25
IRQ GL-15
item,list 35-2 to 35-3, F-11 to F-12
item-drawing routines, custom 48-5

to 48-6
item list GL-15
item numbers, passinglist 35-4
item template, simple button controls

E-13 to E-14
IWM GL-15

J
job dialog GL-15
job subrecord £F romUsrx field

42-2, F-18

journaling 31-2

journaling mechanism GL-15
journal record for mouse event 31-2
jump command 40-13
justification, text 49-3, GL-16

K

kern GL-16
kernel GL-16
keyboard event GL-16
keyboard inputtranslation 31-3 to

31-4,31-7
keyboard status information 26-3, F-3
KeyRecordstructure 49-53 to

49-54
keystroke equivalents 28-4 to 28-5,

GL-16
record layout 28-47 to 28-48, E-12
in StandardFile dialog boxes 48-4

keystrokefilter procedure 49-19 to
49-21

keystroke translation table 31-3 to

31-4, 31-7
rKTransTableresource type

E-49 to E-50

L

language card GL-16
lasso tool

implementing with calcMask
44-4

implementing with SeedFill
44-11

LineEdit control record 28-100 to

28-101

LineEdit controls 28-8 to 28-9

LineEdit control template 28-55 to
28-56, E-21 to E-22

LineEdit edit record

layout 34-3
lepwcharfield 34-2

LineEdit Tool Set 34-1 to 34-4

LineTo call 43-2, F-19

list control record 28-102 to 28-103
list controls 28-9
list control template 28-57 to 28-59,

E-23 to E-25

list item

text colors 35-2, F-11

valid states 35-3, F-12

list item numbers, passing 35-4
List Manager 35-1 to 35-11
list member reference array element,

rListRef resource type E-51
list record GL-16
list record fields 35-2, F-11

listTypefield scroll barflag 35-4

LoadAbsResourcecall 45-54 to

45-55

LoadResourcecall 45-56 to 45-57

local coordinate system GL-16
Long2Dec call 33-2, F-10

M

Macintosh Programmer's Workshop

(MPW) GL-17

macro GL-17

mainIDfield 36-2, F-13

MakeNextCtlTarget Call 28-15,

28-19, 28-32

MakeThisCtlTargetcall 28-33
MarkResourceChangecall 45-58

mask generation

with CalcMask 44-3

with SeedFill 448
MatchResourceHandlecall 45-59

to 45-60
memory handle GL-17

Memory Manager 36-1 to 36-11
error correction 36-2, F-13

menu bar GL-17

default coordinates of 37-4
menu bar record

ctlFlagfield 37-2, F-14

ctlHilitefield 37-2, F-14
rMenuBarxr resource type E-55

MenuBarTemplatelayout 37-20

menu caching 37-6 to 37-7
menu definition procedure GL-17
menu item GL-17

menu item template, rMenultem

resource type E-56 to E-57
MenuItemTemplate layout 37-15 to

37-17

MenuKeyCall 37-2, F-14

Menu Manager 37-1 to 37-32, GL-17

calls for pop-up menus 37-13
data structures 37-15 to 37-20
error corrections 37-2, F-14
toolcalls 37-21 to 37-32

menu record GL-17

fields and flags 37-6
layout for cached menu 37-7

menus, empty 37-4
menuscrolling 37-5
MenuSelectCall 37-2, F-14

MenuShutDownCall 374

menu template GL-18
rMenuresource type E-52 to E-54

MenuTemplate layout 37-18 to

37-19
menutitles GL-18

positioning of 374
space characters in 37-3, F-15

MessageByNamecall 51-13 to 51-15

MessageCentercall 51-2, F-25

message control definition procedure
28-13 to 28-21

m flag GL-18
MidiBootInit call 38-26
midiChnlPress command 40-21
MIDI clock 38-6 to 38-7, 38-23 to

38-24

MidiClock call 38-33 to 38-35

Index X-5

MidiControl call 38-9, 38-16, 38-36

to 38-42, 40-5

MidiDevice call 38-43 to 38-45

MidiInfocall 38-46 to 38-48
MidiInputPollcall 38-22 to 38-23

MIDI (Musical InstrumentDigital
Interface) 38-2, GL-18. See also

MIDI Tool Set and AppleTalk
38-22

application considerations 38-22
to 38-25

application environment 38-5
device drivers 38-6
housekeeping routines 38-3 to

38-4

V/O buffer sizing 38-24 to 38-25
interfaces 38-25

and interrupts 47-16
loss of data 38-25

Note Sequencer command format

40-20

Note Sequencer commands 40-20
to 40-25

packet format 38-7 to 38-8
reading time-stamped data 38-16

to 38-19

Starting up 38-14 to 38-19
using with the Note Sequencer

40-5

midiNoteOff command 40-21

midiNoteOn command 40-22

midiPitchBend command

40-14, 40-22

midiPolyKey command 40-22

midiProgChange command 40-23

MidiReadPacketcall 38-23,

38-49 to 38-50
t call 38-30

midiSelChnlMode command

40-23

midiSetSysEx1 command

40-23 .

MidiShutDowncall 38-28

MidiStartUpcall 38-14, 38-27
MidiStatuscall 38-31

midiSysCommon command

40-24

midiSysExclusive command

40-24

X-6

midiSysRealTime command

40-25

MIDI Tool Set 38-1 to 38-53. See also
MIDI (Musical Instrument

Digital Interface)
calls 38-3 to 38-4, 38-32 to 38-52

dependencies 38-7
error codes 38-53

fast access to routines 38-20 to

38-21

housekeeping calls 38-26 to 38-31
input data routine 38-12
and other sound tool sets 38-23

output data routine 38-13
real-time command routine 38-10

real-time error routine 38-11

service routines 38-9 to 38-13

using 38-5 to 38-25
MidiVersioncall 38-29

MidiWritePacketcall 38-20 to
38-21, 38-23, 38-51 to 38-52

Miscellaneous Tool Set 39-1 to 39-12

calls 39-6 to 39-12
error corrections 39-2, F-16

Modifier key GL-18
moreFlagsfield, control template

standard header 28-46
mouse event GL-18

MoveToCall 43-2, F-19

MPW (Macintosh Programmer's
Workshop) GL-17

multifile calls 48-3

multifile dialog boxes 48-3
multifile reply record data structure

48-8 to 48-9

Musical InstrumentDigital Interface

See MIDI

music tools, required versions 47-6

N

names
assigning to documents 42-3

resource 45-7

NewControl2call 28-34 to 28-35
control records created by 28-87

to 28-128

creating a pop-up control with

37-13
check box control 28-7

Apple IIs Toolbox Reference, Volume3

code example 28-81 to 28-86
control templates 28-7

and data reference types 28-5
icon button control 28-8

input templates 28-43 to 28-80
and keystroke equivalents 28-5
LineEdit control 28-8 to 28-9

list control 28-9

picture control 28-9 to 28-10
pop-up menucontrol 28-10 to

28-11
radio button control 28-11

scroll bar control 28-11

simple button control 28-7
size box control 28-11
Static text control 28-11 to 28-12

TextEdit control 28-12

new desk accessory (NDA), dialog box
support 29-2

NewList2 call 35-6 to 35-7
NewMenuBar call 37-4

NewMenuBar2 Call 37-25 to 37-26

NewMenu2 Call 37-24

new-style reply record 48-6 to 48-7
NewWindow2 call 52-31 to 52-33

NextMember2 call 35-8

note commands 40-8 to 40-10

format 40-8 to 40-9
NoteOff call 41-3, 41-22

noteOff command 40-9

NoteOncall 41-3, 41-23 to 41-24

noteOn command 40-9

Note Sequencer 40-1 to 40-63
callRoutine command

40-12
as a commandinterpreter 40-6
completion routines 40-7
control commands 40-11 to 40-16
decRegister command

40-18
error codes 40-63
error handling 40-7
housekeepingcalls 40-37 to 40-44
housekeeping routines 40-2
ifGo command 40-18

incRegister command

40-19
introduction to 47-7

jump command 40-13
MIDI commands 40-20 to 40-25

midiChnlPress command

40-21

midiCtlChange command

40-21

midiNoteOff command
40-21

midiNoteOn command
40-22

midiPitchBend command
40-14, 40-22

midiPolyKey command

40-22

midiProgChange command

40-23

midiSelChn1Mode command

40-23

midiSetSysExl command

40-23

midiSysCommon command

40-24

midiSysExclusive command

40-24

midiSysRealTime command

40-25

patterns and phrases 40-26 to
40-27

programChange command

40-15

register commands 40-17 to 40-19

sample program 40-28 to 40-36
setRegister command

40-19
setVibratoDepth command

40-16
Startup 51-3
tempo command 40-15

tool calls 40-3, 40-45 to 40-62

turnNotesOff command 40-16

using 40-4 to 40-7
using with MIDI 40-5

Note Synthesizer 38-7, 41-1 to 41-27
error codes 41-27

generators 41-10 to 41-12
housekeepingcalls 41-13 to 41-18
housekeeping routines 41-2
instruments 41-7 to 41-10
introduction to 47-8
sound envelope 41-5 to 41-6
timer oscillator 40-7

tool calls 41-3, 41-19 to 41-26

notify multipart control definition
procedure routine 28-20

NotifyCtlscall 28-36, 52-5
NSBoot Initcall 41-13

NSResetCall 41-17

NSSetUpdateRatecall 41-25

NSSetUserUpdateRtncall 41-26

NSShutDown call 41-15

NSStartUpcall 41-14
NSStatuscall 41-18

NSVersion call 41-16

null event GL-19

O

Open Apple key GL-19
Open button, multifile dialog boxes

48-3
OpenFile dialog box templates 48-12

to 48-17
320 mode 48-15 to 48-17
640 mode 48-12 to 48-14

OpenResourceFilecall 45-12,

45-61 to 45-62

Option key GL-19
organization of this book xxx
oscillator 47-8
Oscillator Enable register 47-15
Oscillator Interrupt register 47-15
outline text style 37-5
out-of-memory queue 36-2 to 36-8,

GL-19

out-of-memory routines 36-2 to 36-8,

GL-19
code example 36-6 to 36-8
header 36-4

output data routine, MIDI Tool Set

38-13
override GL-19

PackBytesCall 39-2, F-16

packetformat, MIDI 38-7 to 38-8
page GL-19
paint buckettool

implementing with SeedFill

44-9
implementing with Undo 44-10

parameter GL-20

parameter block GL-20

parameterlist GL-20
Pascal, Apple II GL-2
Pascal string, rPString resource

type E-59
Pascal string array, rStringList

resource type E-61
passwordfields 34-2

pathnames, Standard File 48-2

path separator character (:) 48-3
pattem filling 43-4
patterns GL-20

Note Sequencer 40-26 to 40-27
pen modes 43-2, F-19
pen state record 43-2, F-20
phrase doneflag 40-26
phrases, Note Sequencer 40-26 to

40-27
picture GL-20

picture control record 28-104 to
28-105

picture controls 28-9 to 28-10
picture control template 28-60 to

28-61, E-26 to E-27
picture data 43-3
picture header, QuickDraw 43-3, F-20

PinRectcall 52-2, F-26
pixel GL-20
PMLoadDrivercall 42-4

PMStartup call 42-3

PMUnloadDriver call 42-5
pointer GL-20

PointiInRectcall 434
pop-up control record 28-106 to

28-109
pop-up control template 28-62 to

28-66, E-28 to E-31
pop-up menu controls 28-10 to 28-11
pop-up menus 37-8 to 37-14, GL-21

how to use 37-12 to 37-14
Menu Managercalls for 37-13

scrolling options 37-10 to 37-12
PopUpMenuSelectcall 37-12,

37-14, 37-27 to 37-28
port driver auxiliary file type,

AppleTalk 42-2, F-18
PostScriptfonts, LaserWriter support

for 42-3
PrChoosePrintercall 42-3

prefix number GL-21

PrGetDocNamecall 42-6

Index X-7

PrGetNetworkName Call 42-10

PrGetPgOrientation Call 42-7

PrGetPortDvrNameCall 42-11

PrGetPrinterDvrNameCall 42-12
PrGetPrinterSpecs call 42-8

PrGetUsexrName Call 42-13

PrGetZoneNamecall 42-14

PRINTER.SETUP file 42-3

printing multiple document copies
42-3

Print Manager 42-1 to 42-15
error codes 42-15

efror corrections 42-2, F-18

tool calls 42-4 to 42-14

PrJobDialog call 42-2, F-18

procRef field, control template

standard header 28-45
programChange command

40-15

PrPicFile call 42-2, F-18

PrPixelMapCall 42-2, F-18

PrSetDocNameCall 42-9

purgeable block GL-21
purge statusofinstalled fonts 32-4 to

32-5

Q
QDStartUp call 43-4 to 43-5
Quagmire register GL-21

queue GL-21

queue handling 39-3 to 39-4
queue headerlayout 39-4
QuickDraw GL-21
QuickDrawpicture, rPicture

resource type E-58
QuickDraw picture header 43-3, F-20
QuickDraw II 43-1 to 436

efror corrections 43-2, F-19
speed enhancement 43-4 to 43-5
Startup 51-3

QuickDraw II Auxiliary 44-1 to 44-15
and the Font Manager 51-10
Startup 51-3

quoting mechanism GL-21

R

radio button control 28-11

record (extended) 28-110 to

28-111

X-8

template 28-67 to 28-68, E-32 to
E-33

rAlertString resource type

E-3

RAM,battery GL-4
rClInputString resource type E-4

rC1loOutputString resource type

E-5

rControlList resource type

E-6

rControlTemplate resource type

E-7 to E-45

rCString resource type E-46
rCtlColorTbl resource type

E-46

ReadDOCcRegCall 47-19 to 47-20

ReadKeyMicroDataCall

ReadConfigRec 26-2,F-2

readConfig command 26-2,

F-2

ReadMouseMiscellaneouscall

31-2

ReadMouse2 Call 39-11

ReadResourcecall 45-22 to

45-23

RealFreeMem call 36-10

real-time command routine, MIDI

Tool Set 38-10

real-time error routine, MIDI Tool Set

38-11

record size control definition

procedure routine 28-14
records. See control records

record and text-managementcalls

49-4

reference types GL-22
for Control Manager data 28-5

register commands 40-17 to 40-19
format 40-17

registers, DOC 47-10 to 47-15
regular tabs 49-3
ReleaseResource call 28-6, 45-63

ReleaseROMResourceCall 39-12

relocatable block GL-22

RemovecCDACall 29-7

RemoveFromooMQueuecall 36-11

RemoveFromRungQcall 29-8

RemovenDAcall 29-9

RemoveResourcecall 45-64

Apple IIGs Toolbox Reference, Volume 3

reply record data structure 48-6 to
48-7

rErrorString resource type

E-47

ResetMember2 call 35-9

ResizeWindow call 52-5, 52-34

resource access routines 45-3

resource attributes 45-9 to 45-11

ResourceBootInit call 45-29

resource compiler GL-22
ResourceConverterCall

45-21, 45-65 to 45-66

resource converter routines 45-21 to

45-26

resource data structures 45-14 to
45-20

resource file routines 45-4

resource files 45-5, GL-22
file IDs 45-5 to 45-7, 45-12, GL-22
format 45-12

header 45-16
layout 45-14 to 45-20
search chain 45-13 to 45-14

search sequence 45-13 to 45-14

resource fork GL-22
resource free block 45-19

resource maintenance routines 45-3

Resource Manager 45-1 to 45-80
access routines 45-3

application-switching routines
45-4

constants 45-77

data structures 45-78 to 45-79

error codes 45-80

file routines 45-4

housekeeping routines 45-2, 45-29
to 45-34

maintenance routines 45-3

tool calls 45-35 to 45-76
resource map 45-17 to 45-18, GL-22
resource name afray, rResName

resource type E-60
resource names 45-7, GL-22
resource reference record 45-20
ResourceResetcall 45-33
resources 45-2, 45-5, GL-22

attributes word 45-9 to 45-11
and the Control Manager 28-5 to

28-6

identifying 45-5

using 45-8
ResourceShutDownCall 45-31

ResourceStartUp call 45-30

ResourceStatusCall 45-34

resource type numbers,table of E-2
resource types 45-5 to 45-6, E-1 to

E-78, GL-22

ResourceVersion Call 45-32

ReturnDiskSizecall 45-26
rIcon resource type E-48
rKTransTable resource type

E-49 to E-50
rListRef resource type E-51
xrMenuBarresource type E-55

rMenulItem resource type E-56 to

E-57
rMenuresource type E-52 to E-54
rPicture resource type E-58

rPString resource type E-59
rResName resource type E-60
rStringList resource type E-61
rStyleBlock resource type E-62 to

E-63
rTERuler resource type E-64 to

E-65
rTextBlock resource type E-67
rTextForLETextBox2 resource

type E-68
rText resource type E-66
rToolStartup resource type

E-69 to E-70
rTwoRects resource type E-71

run item header 29-4
run items 29-3 to 29-4, GL-22

run queue 29-3, GL-22

example 29-5
rWindColor resource type E-72 to

E-73
rWindParamlresource type E-74 to

E-77

rWindParam2 resource type E-78

S

sample rate (DOC) 47-9
Save File dialog box templates 48-18

to 48-26
320 mode 48-23 to 48-26
640 mode 48-19 to 48-22

SaveTextStatecall 51-2, F-25

scaling pictures 28-10
Scheduler 46-1
scroll arrow GL-23

scroll bars GL-23

control definition procedure 28-4
color table 28-3, F-6
control record (extended) 28-112

to 28-113

control template 28-69 to 28-70,
E-34 to E-35

controls 28-11

custom 49-26
scroll box GL-23

scrolling menus 37-5
search chain resourcefile 45-13 to

45-14
search sequenceresourcefile 45-13 to

45-14
SeedFill call 44-8 to 44-14

SelectMember2call 35-10

SendEventToCt1 call 28-37 to

28-38

and LineEdit controls 28-9

and pop-up menu controls 28-10
SeqAllNotesOffcall 40-48

SeqBoot Init call 40-37

seqltem format 40-6
seqltems, patterns of 40-26
SeqResetcall 40-43

SeqShutDowncall 40-41

SeqStartUp call 40-38 to 40-40

SeqStatuscall 40-44

sequence timing, Note Sequencer

40-4
SeqVersion call 40-42

SetAutoKeyLimitcall 3146
SetBarColorscall 37-2, F-15

SetcCt11zp call 28-39
SetCtlMoreFlags call 28-40

SetCtlParamPtrcall 28-41

SetCtlParams call 28-2, F-5

SetCurResourceApp Call

45-67
SetCurResourceFile call 45-68

SetDefaultTPTcall 51-2, 51-16
SetDItemType call 30-2, F-7

SetDOCReg call 47-21 to 47-22

SetHandleSize call 36-2, F-13

SetIncrcall 40-49

SetInstTablecall 40-50

SetInterruptStatecall

39-12
SetKeyTranslationcall 31-7

SetMenuBarCall 37-2, F-14

SetMenuTitle2call 37-29

SetMItemName2call 37-31

SetMItem2 call 37-30

SetOriginMaskcall 52-3

SetPenModecall 43-2, F-19

setRegister command 40-19

SetResourceattr call 45-69

SetResourceFileDepthcall

45-70
SetResourceID call 45-71

SetResourceLoad call 45-72

SetSysBar Call 37-2, F-14
SetTextMode Call 43-2, F-19

SetTrkInfo call 40-51

SetUserSoundIRQVcall 47-4

SetVectorcall 39-3

setVibratoDepth command

40-16
SetwTritle call 52-5

SetZoomRectcall 52-2, F-26

SFA11Capscall 48-27

SFGetFile2 call 48-28 to 48-29

SFMultiGet2 call 48-30 to 48-31

SFPGetFile2 call 48-32 to 48-33

SFPMultiGet2 call 48-34 to

48-35
SFPPutFile2 call 48-36 to 48-37
SFPutFile2 call 48-38 to 48-39

SFReScan Call 48-40

SFShowInvisible call 48-41

shadowing of screen images 43-4,

GL-23
shadowtext style 37-5
Shaston font 32-2, 43-4, F-9
ShowMenuBaxcall 37-32

ShutDownToolscall 51-3 to

51-7, 51-17
signature words, Miscellaneous data

structures 39-2, F-16
simple button control

record (extended) 28-93 to 28-94

template 28-48 to 28-49, E-13 to
E-14

size box GL-23

size box control 28-11

color table 28-2, F-5

Index X-9

record (extended) 28-114 to

28-115
template 28-71 to 28-72, E-36 to

E-37
SizeWindow call 52-5

Slot Arbiter 50-2

slot number GL-23

smart cut and paste 49-3
soft switch GL-24
SortList2 call 35-11

sound

introduction to 47-7
moving from Macintosh to Apple

IIGS 47-4, F-24

SoundBootInit call 47-6

sound buffer GL-24

sound compression. See audio
compression

sound envelope 41-3 to 416, GL-12
sound general logic unit (GLU) 47-8
sound generators, active 47-2, F-21

sound and music tools, required
versions 47-6

sound RAM 47-10

sound Tool Set 47-1 to 47-22
error corrections 47-2, F-21

tool calls 47-17 to 47-22
SpecialRectcall 44-15

stack GL-24

stack register GL-24

Standard File Operations ToolSet
48-1 to 48-42

data structures 48-6 to 48-10
dialog box templates 48-11 to

48-26
error codes 48-42
filenames and pathnames 48-2
filter procedures 48-4
keystroke equivalents in dialog

boxes 48-4

support for GS/OS 48-2
tool calls 48-27 to 48-42

use of prefixes 48-2
StartFrameDrawingcall

52-35
StartIntscall 40-52

StartSeq call 40-7, 40-53 to 40-54

StartSeqRel call 40-55 to 40-59

sample with relative addressing

40-58 to 40-59

X-10

StartStop record 51-3 to 51-5

StaxrtUpTools call 51-3, 51-6 to

51-7, 51-18 to 51-19

Static text

control record 28-116 to 28-118
controls 28-11 to 28-12

control template 28-73 to 28-74,
E-38 to E-39

in dialog box templates 48-3
StepSeq call 40-4, 40-60

StopIntscall 40-61

StopSeq call 40-62

StyleItem structure 49-55

SuperBlockstructure 49-56

SuperHandlestructure 49-57

SuperItem structure 49-58

T

tab control definition procedure
routine 28-19

TabItem structure 49-59

tabs, TextEdit 49-3

target control 28-5, GL-24
target control definition procedure

routine 28-16
target record 49-2

TaskMastercall, pseudocode for
52-36 to 52-45

TaskMasterContentcall

52-46 to 52-47

TaskMasterDA call 52-48

TaskMasterkKeycall 52-49 to 52-52
TaskMasterresult codes 52-13 to 52-14
task record structure 52-17 to 52-20
TEActivate call 49-68

tear-off menu GL-25

TEBoot Initcall 49-62

TEClearcall 49-69

TEClick call 49-70 to 49-7]
TEColorTableStructure 49-28 to

49-30

TECompactRecord call 49-72

TECopycall 49-73

TECut call 49-74

TEDeactivatecall 49-75

TEFormatstructure 49-3] to 49-32
TEGetDefProccall 49-76
TEGetInternalProccall

49-77

Apple IIcs Toolbox Reference, Volume 3

TEGetLastErrorCall 49-78

TEGetRulerCall 49-79 to 49-80
TEGetSelection call 49-81

TEGetSelectionStylecall 49-82

to 49-84

TEGetText call 49-85 to 49-88

TEGetTextInfo call 49-89 to 49-91

TEIdle call 49-92

TEInsert call 49-93 to 49-95

TEKey Call 49-96 to 49-97
TEKil1 call 49-98

templates. See control templates
tempo command 40-15

TENew Call 49-99 to 49-100

TEOffsetToPointcall 49-101 to

49-102

TEPaintText call 49-103 to

49-105

TEParamBlockstructure 49-33 to
49-38

TEPaste call 49-106
TEPointToOffsetcall 49-107 to

49-108

TERecord call 49-3

TERecordstructure 49-42 to 49-52
TEReplacecall 49-109 to 49-111

TEReset call 49-66

TERulerstructure 49-39 to 49-40

TEScroll call 49-112 to 49-113

TESetRulercall 49-114 to 49-115

TESetSelection call 49-116

TESetTextCall 49-117 to 49-119
TEShutDowncall 49-64
TEStartUp call 49-63
TEStatuscall 49-67

TEStyleChangecall 49-120 to
49-122

TEStyle structure 49-4]

TEUpdatecall 49-123

TEVersion call 49-65

text blocks

rText resource type E-66
rTextBlockresource type

E-67
TextBlock structure 49-60
text controls, static 28-11 to 28-12
text display and scrolling calls 49-5
TextEdit constants 49-124 to 49-125
TextEdit control record 28-119 to

28-128

TextEdit controls 28-12

pseudocode for 49-6 to 49-8
and the Control Manager 49-14 to

49-15
TextEdit control template 28-75 to

28-80, E-40 to E-45
TextEdit data structures 49-27 to 49-61

high-level 49-28 to 49-41
low-level 49-42 to 49-61

table of 49-126 to 49-133
TextEdit records 49-2, GL-25

creating and controlling 49-6 to
49-11

pseudocodefor creating 49-9 to
49-10

TextEdit ruler information,

rTERuler resource type

E-64 to E-65
TextEdit style information,

rStyleBlock resource type

E-62 to E-63
TextEdit Tool Set 49-1 to 49-134

calls 49-68 to 49-123
editing calls 49-5
error codes 49-134
filter procedures and hook

routines 49-15 to 49-25
housekeeping routines 49-4, 49-62

to 49-67
insertion point and selection range

calls 49-4
internal structure of 49-14 to 49-26
miscellaneous routines 49-5
record and text-managementcalls

49-4
tuler information E-64 to E-65
standard key sequences 49-11 to

49-13
style information E-62 to E-63
text display and scrolling calls 49-5

text justification 49-3
QuickDraw II Auxiliary 44-2

TextList structure 49-61
text substitution in static text display

28-11

Text Tool Set 50-1 to 50-2

timer oscillator, Note Synthesizer 40-7

time-stamped data, reading MIDI
38-16 to 38-19

timing, Note Sequencer 40-4 to 40-5

titles, window 52-3, F-27

TLShutDowncall 51-2

toolbox GL-25
toolbox code example G-1 to G-%%
tool call format used in this book

xxxii
Tool Locator 51-1 to 51-19

calls 51-13 to 51-19
error correction 51-2, F-25

tool sets GL-25
loading from disk 51-2
table of dependencies 51-8 to

51-12
table of numbers 51-6 to 51-7
StartStop record 51-3 to

51-5
Startup and shutdown 51-3 to 51-5

toolstart-stop record,
rToolStartup resource type

E-69 to E-70
turnNotesOff command 40-16

type-ahead buffer GL-25

typographical conventions used in
this book xxxi

type 1 pop-up menu 37-10, GL-25

type 2 pop-up menu 37-10, GL-25

U

UniqueResourcelIDcall 45-73 to

45-74

UnPackBytes call 39-2, F-16

update event GL-25
UpdateResourceFile call 45-75

user ID GL-25

V

voice 47-9
Volumeregister (DOC) 47-12

W, X, Y

waveform 47-10
Waveform Data Sampleregister

(DOC) 47-12
Waveform Table Pointer register

(DOC) 47-12

WindNewRescall 52-2, F-26
window change control definition

procedure routine 28-16

window color table, rWindColor

resource type E-72 to E-73
window definition function GL-26
Window Manager 52-1 to 52-56,

GL-26

data structures 52-15 to 52-20
error corrections 52-2, F-26
tool calls 52-21 to 52-52

window port control fields 28-3, F-6
window record structure 52-15 to

52-16
window size control definition

procedure routine 28-18
window template

rWindParaml resource type

E-75 to E-77

rWindParam2 resource type

E-78

windowtitles 52-3, F-27

word break hook routine 49-24 to

49-25

word wrap hook routine 49-22 to

49-23

WriteRAMBlock call 41-3

WriteResource call 45-24 to 45-25,

45-76

Z

zero page GL-26
zoom box GL-26

Index X-11

THE APPLE PUBLISHING SYSTEM

This Apple manual was written,
edited, and composed on a
desktop publishing system
using Apple Macintosh®
computers and
Microsoft® Word software.
Proof and final pages were
created on the Apple
LaserWriter® printers. Line art
was created using Adobe
Illustrator™. POSTSCRIPT®, the
page-description language for
the LaserWriter, was developed
by Adobe Systems
Incorporated.

Text type and display type are
Apple’s corporate font, a
condensed version of
Garamond. Bullets are ITC Zapf
Dingbats®. Some elements,
such as programlistings, are set
in Apple Courier.

The Official
Publicationfrom

Apple Computer, Inc.

e
>$39-95 FPT

USA

Apple Ics* Toolbox Reference: Volume 3

The Apple Ucs Toolbox Reference is a comprehensive guide to the Apple Ics
Toolbox, which contains more than 1,000 ready-to-use tool set routines. These
routines enable programmers and developersto easily access the powerful
capabilities of the Apple Ilcs personal computer, andhelp themwrite programs
that comply with the Apple desktop interface standards, Using the toolbox also
frees programmers from muchofthe tedious background “bookkeeping”that
wouldotherwise be required to maintain thatinterface.

The Apple Ics Toolbox Reference consists of three volumes that combineto
provide a complete description of the toolbox. This volume, Volume 3, contains
descriptions of hundreds of changes andadditionsto the original set of
programmingtools, including:

= complete documentation for the new Resource Managerand TextEdit toolsets

= descriptions of the new sound-relatedtool sets (Audio Compression and
Expansion ToolSet, the MIDIToolSet, the Note Sequencer, and the
Note Synthesizer)

= details on howto use the newly expandedsupportfor controls

Volume1 begins with a brief overviewofthe tool sets containedin the toolbox at
the time of publication. Followingthis introduction, eachofthe remaining
chapters describes one ofthe toolsets. Arranged alphabetically by tool set name,
the chapters includethe following information:

m an overviewofall the routines in the tool set, and how they can be used

m acomplete description of each routine, with the parameters for the C and
assembly programming languages, andpossible errors

= asummary ofthe constants, data structures, anderrors for the tool set

Volume 2 follows the same format, describing the tool sets not covered in thefirst
volume.It also provides appendixes and a glossary of terms, along with an index
covering thefirst two volumes.

For the programmerwriting programsthat access the full range of capabilities of
the AppleIcs, the Apple Ics Toolbox Referenceis indispensable.

Apple Computer, Inc.
20525 Mariani Avenue

Cupertino, California 95014
408-996-1010

TLX 171 576

Addison-Wesley Publishing Company,Inc.

Printed in U.S.A.

| 53995>

9 "780201550191
ISBN O-201-55019-4

55019

