&
TR

/
‘(O]

For Apple Ils and &
o o Apple Iles’ Toolbox Reference: Volume 3

by Apple Computer, Inc.

r

.

rramencsand Apple 1IGS™ Toolbox Reference
1 MB Apple IIGS

Volume 3

A
vy
Addison-Wesley Publishing Company, Inc.

Reading, Massachusetts Menlo Park, California New York
Don Mills, Ontario Wokingham, England Amsterdam Bonn
Sydney Singapore Tokyo Madrid San Juan

& APPLE COMPUTER, INC.

This manual is copyrighted by Apple
or by Apple’s suppliers, with all rights
reserved. Under the copyright laws,
this manual may not be copied, in
whole or in part, without the written
consent of Apple Computer, Inc. This
exception does not allow copies to be
made for others, whether or not sold,
but all of the material purchased may
be sold, given, or lent to another
person. Under the law, copying
includes translating into another
language.

The Apple logo is a registered
trademark of Apple Computer, Inc.
Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal and
state laws,

© Apple Computer, Inc., 1990
20525 Mariani Avenue
Cupertino, CA 95014-6299
(408) 996-1010

Apple, the Apple logo, AppleShare,
AppleTalk, Apple 1IGS, ImageWriter,
LaserWriter, MacPaint, and Macintosh
are registered trademarks of

Apple Computer, Inc.

APDA, Apple Desktop Bus, Finder,
GS/0S, MPW, and QuickDraw are
trademarks of Apple Computer, Inc.

ITC Zapf Dingbats is a registered
trademark of International Typeface
Corporation.

Microsoft is a registered trademark of
Microsoft Corporation.

NUBUS is a trademark of
Texas Instruments.

POSTSCRIPT is a registered trademark,
and Illustrator is a trademark, of
Adobe Systems Incorporated.

Simultaneously published in the
United States and Canada.

ISBN 0-201-55019-9
ABCDEFGHIJ-MU-943210
First printing, MAY 1990

LIMITED WARRANTY ON MEDIA
AND REPLACEMENT

ALL IMPLIED WARRANTIES ON
THIS MANUAL, INCLUDING
IMPLIED WARRANTIES OF
MERCHANTABILITY AND
FITNESS FOR A PARTICULAR
PURPOSE, ARE LIMITED IN
DURATION TO NINETY (90) DAYS
FROM THE DATE OF THE
ORIGINAL RETAIL PURCHASE OF
THIS PRODUCT.

Even though Apple has reviewed
this manual, APPLE MAKES NO
‘WARRANTY OR
REPRESENTATION, EITHER
EXPRESS OR IMPLIED, WITH
RESPECT TO THIS MANUAL, ITS
QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. AS
A RESULT, THIS MANUAL IS SOLD
“AS IS,” AND YOU, THE
PURCHASER, ARE ASSUMING
THE ENTIRE RISK AS TO ITS
QUALITY AND ACCURACY.

IN NO EVENT WILL APPLE BE
LIABLE FOR DIRECT, INDIRECT,
SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES
RESULTING FROM ANY DEFECT
OR INACCURACY IN THIS
MANUAL, even if advised of the
possibility of such damages.

THE WARRANTY AND REMEDIES
SET FORTH ABOVE ARE
EXCLUSIVE AND IN LIEU OF ALL
OTHERS, ORAL OR WRITTEN,
EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is
authorized to make any
modification, extension, or addition
to this warranty.

Some states do not allow the
exclusion or limitation of implied
warranties or liability for incidental
or consequential damages, so the
above limitation or exclusion may
not apply to you. This warranty gives
you specific legal rights, and you
may also have other rights which
vary from state to state.

For Apple 1iGs and
1 MB Apple 1IGs

s

.
Apple IIGs” Toolbox Reference

Volume 3
The Official Publication from Apple Computer, Inc.

The Apple IIGs Toolbox Reference is a comprehensive guide to the Apple
11GS Toolbox, which contains more than 1000 ready-to-use tool set
routines. These routinies enable programmers and developers to access
the powerful capabilities of the Apple 1IGS personal computer and write
programs that comply with the Apple desktop interface standards. Using
the Toolbox also frees programmers from much of the tedious
background “bookkeeping” that would otherwise be required to
maintain that interface.

The Apple IIGs Toolbox Reference consists of three volumes that together

provide a complete description of the Toolbox. This volume, Volume 3,

contains descriptions of hundreds of changes and additions to the

original set of programming tools, including:

m Complete documentation for the new Resource Manager and
TextEdit Tool Set

m Descriptions of the new sound-related tool sets (the Audio
Compression and Expansion Tool Set, the MIDI Tool Set, the Note
Sequencer, and the Note Synthesizer)

m Details on how to use the newly expanded support for controls

Volume 1 begins with a brief overview of the tool sets contained in the
Toolbox at the time of publication. Following this introduction, each of
the remaining chapters describes one of the tool sets. Arranged
alphabetically by tool set name, the chapters include the following
information:
= An overview of what routines are in the tool set and how they can
be used
m A complete description of each routine, with the parameters for
the programming languages, and possible errors. Examples, figures,
and tables give additional information about the routines.

= A summary of the constants, data structures, and error codes for
the tool set

Volume 2 follows the same format, describing the tool sets not covered
in the first volume. It also provides appendixes and a glossary , along
with an index covering the first two volumes.

The Apple IIGs Toolbox Reference is an indispensable resource for the
programmer writing programs that access the full range of capabilities of
the Apple IIGS.

Preface

26

27

Contents

Figures and tables / xxiii

What'’s in This Volume / xxix
Organization / xx
Typographical conventions / xxxi

Call format / xoxxii
ToolCallName $call number / xxxii

Apple Desktop Bus Tool Set Update / 26-1

Error corrections / 26-2
Clarification / 26-3

Audio Compression and Expansion Tool Set / 27-1

Error correction / 27-2

About Audio Compression and Expansion / 27-2
Uses of the ACE Tool Set / 27-4
How ADPCM works / 27-5

ACE housekeeping routines / 27-6
ACEBootInit $011D / 27-6
ACEStartUp $021D / 27-7
ACEShutDown $031D / 278
ACEVersion $041D / 279
ACEReset $051D / 27-10
AcEstatus $061D / 27-11
ACEInfo $071D / 27-12

Audio Compression and Expansion tool calls / 27-13
ACECompBegin $0B1D / 27-13
ACECompress $091D / 27-14
ACEExpand $0A1D / 27-16
ACEExpBegin $0C1D / 27-18

ACE Tool Set error codes / 27-19

28 Control Manager Update / 28-1
Error corrections / 28-2
Clarifications / 28-3
New features of the Control Manager / 28-4
Keystroke processing in controls / 28-4
The Control Manager and resources / 28-5
New and changed controls / 28-6
Simple button control / 28-7
Check box control / 28-7
Icon button control / 28-8
LineEdit control / 28-8
List control / 28-9
Picture control / 28-9
Pop-up control / 28-10
Radio button control / 28-11
Scroll bar control / 28-11
Size box control / 28-11
Static text control / 28-11
TextEdit control / 28-12
New control definition procedure messages / 28-13
Initialize routine / 28-14
Drag routine / 28-14
Record size routine / 28-14
Event routine / 28-14
Target routine / 28-16
Bounds routine / 28-17
Window size routine / 28-18
Tab routine / 28-19
Notify multipart routine / 28-20
Window change routine / 28-21
New Control Manager calls / 28-22
CallcCtlDefProc $2C10 / 28-22
CMLoadResource $3210 / 28-24
CMReleaseResource $3310 / 28-25
FindTargetctl $2610 / 28-26
GetCtlHandleFromID $3010 / 28-27
Getct1ID $2A10 / 28-28
GetCt1lMoreFlags $2E10 / 28-29
GetCtlParamPtr $3510 / 28-30

iv Apple IIGs Toolbox Reference, Volume 3

Invalctls $3710 / 28-31
MakeNextCtlTarget $2710 / 28-32
MakeThisCt1lTarget $2810 / 28-33
NewControl2 $3110 / 28-34
Notifyctls $2D10 / 28-36
SendEventToctl $2910 / 28-37
setct1ID $2B10 / 28-39
SetCt1MoreFlags $2F10 / 2840
SetCtlParampPtr $3410 / 2841
Control Manager error codes / 2842
New Control Manager templates and records / 28-43
NewControl2 input templates / 28-43
Control template standard header / 28-44
Keystroke equivalent information / 2847
Simple button control template / 28-48
Check box control template / 28-50
Icon button control template / 28-52
LineEdit control template / 28-55
List control template / 28-57
Picture control template / 28-G0
Pop-up control template / 28-62
Radio button control template / 28-67
Scroll bar control template / 28-69
Size box control template / 28-71
Static text control template / 28-73
TextEdit control template / 28-75
Control Manager code example / 28-81
New control records / 28-87
Generic extended control record / 28-87
Extended simple button control record / 28-93
Extended check box control record / 28-95
Icon button control record / 28-97
LineEdit control record / 28-100
List control record / 28-102
Picture control record / 28-104
Pop-up control record / 28-106
Extended radio button control record / 28-110

Contents

Extended scroll bar control record / 28-112
Extended size box control record / 28-114

Static text control record / 28-116
TextEdit control record / 28-119

29 Desk Manager Update / 29-1

New features of the Desk Manager / 29-2
Scrollable CDA menu / 29-2
Run queue / 29-3

Run queue example / 29-5

New Desk Manager calls / 29-6
AddToRunQ $1F05 / 296
RemoveCDA $2105 / 29-7
RemoveFromRunQ $2005 / 29-8
RemoveNDA $2205 / 299

30 Dialog Manager Update / 30-1

Error corrections / 30-2

31 Event Manager Update / 31-1

Error correction / 31-2

New features of the Event Manager / 31-2
Journaling changes / 31-2
Keyboard input changes / 31-3

New Event Manager calls / 31-5
GetKeyTranslation $1B06 / 315
SetAutoKeyLimit $1A06 / 31-6
SetKeyTranslation $1C06 / 31-7

32 Font Manager Update / 32-1
Error corrections / 32-2
New features of the Font Manager / 32-2

New Font Manager call / 324
InstallwWithStats $ICIB / 324

vi Apple 1IGs Toolbox Reference, Volume 3

33

34

35

36

37

Integer Math Tool Set Update / 33-1
Clarification / 33-2

LineEdit Tool Set Update / 34-1
New features of the LineEdit Tool Set / 34-2

New LineEdit call / 34-4
GetLEDefProc $2414 / 344

List Manager Update / 35-1
Clarifications / 35-2
List Manager definitions / 35-3
New features of the List Manager / 35-4
New List Manager calls / 35-5
DrawMember2 $111C / 35-5
NewList2 $161C / 35-6
NextMember2 $121C / 35-8
ResetMember2 $131C / 359
SelectMember2 $141C / 35-10
SortList2 $151C / 35-11

Memory Manager Update / 36-1

Error correction / 36-2

Clarification / 36-2

New features of the Memory Manager / 36-2
Out-of-memory queue / 36-2

Out-of-memory routine example / 36-6

New Memory Manager calls / 36-9
AddToOOMQueue $0C02 / 36-9
RealFreeMem $2F02 / 36-10
RemoveFromOOMQueue $0D02 / 36-11

Menu Manager Update / 37-1

Error corrections / 37-2

Clarifications / 37-2

New features of the Menu Manager / 37-4
Menu caching / 37-6

Contents

vii

Caching with custom menus / 37-7
Pop-up menus / 37-8

Pop-up menu scrolling options / 37-10

How to use pop-up menus / 37-12
New Menu Manager data structures / 37-15

Menu item template / 37-15

Menu template / 37-18

Menu bar template / 37-20

New Menu Manager calls / 37-21

GetPopUpDefProc $3BOF / 37-21
HideMenuBar $450F / 37-22
InsertMItem2 $3FOF / 37-23
NewMenu2 $3EQOF / 37-24
NewMenuBar2 $430F / 37-25
PopUpMenuSelect $3COF / 37-27
SetMenuTitle2 $400F / 37-29
SetMItem2 $410F / 37-30
SetMItemName2 $420F / 37-31
ShowMenuBar $460F / 37-32

38 MIDI Tool Set / 38-1

About the MIDI Tool Set / 38-2
Using the MIDI Tool Set / 38-5
Tool dependencies / 38-7
MIDI packet format / 38-7
MIDI Tool Set service routines / 38-9
Real-time command routine / 38-10
Real-time error routine / 38-11
Input data routine / 38-12
Output data routine / 38-13
Starting up the MIDI Tool Set / 38-14
Reading time-stamped MIDI data / 38-16
Fast access to MIDI Tool Set routines / 38-20
MIDI application considerations / 38-22
MIDI and AppleTalk / 38-22
Disabling interrupts / 38-22
MIDI and other sound-related tool sets / 38-23
The MIDI clock / 38-23
Input and output buffer sizing / 38-24

vili Apple IIGS Toolbox Reference, Volume 3

39

Loss of MIDI data / 38-25
Number of MIDI interfaces / 38-25
MIDI housekeeping calls / 38-26
MidiBootInit $0120 / 38-26
MidisStartUp $0220 / 38-27
MidiShutDown $0320 / 38-28
MidiVersion $0420 / 38-29
MidiReset $0520 / 38-30
MidiStatus $0620 / 38-31
MIDI tool calls / 38-32
MidiClock $0B20 / 38-33
MidiControl $0920 / 38-36
MidiDevice $0A20 / 38-43
MidiInfo $0C20 / 38-46
MidiReadPacket $0D20 / 38-49
MidiWritePacket $0E20 / 38-51
MIDI Tool Set error codes / 38-53

Miscellaneous Tool Set Update / 39-1

Error corrections / 39-2

Clarification / 39-2

New features of the Miscellaneous Tool Set / 39-3
Queue handling / 39-3
Interrupt state information / 39-4

New Miscellaneous Tool Set calls / 39-6
AddToQueue $2E03 / 39-6
DeleteFromQueue $2F03 / 39-7
GetCodeResConverter $3403 / 39-8
GetInterruptState $3103 / 39-9
GetIntStateRecSize $3203 / 39-10
GetROMResource $3503 / 39-10
ReadMouse2 $3303 / 39-11
ReleaseROMResource $3603 / 39-12
SetInterruptState $3003 / 39-12

Contents

ix

40 Note Sequencer / 40-1
About the Note Sequencer / 40-2
Using the Note Sequencer / 404
Sequence timing / 40-4
Using MIDI with the Note Sequencer / 40-5
The Note Sequencer as a command interpreter / 40-6
Error handlers and completion routines / 40-7
Note commands / 40-8
noteOff command / 40-9
noteon command / 40-9
Filler notes / 40-10
fillerNote command / 40-10
Control commands / 40-11
callRoutine command / 40-12
jump command / 40-13
pitchBend command / 40-14
programChange command / 40-15
tempo command / 40-15
turnNotesoff command / 40-16
setVibratoDepth command / 40-16
Register commands / 40-17
decRegister command / 40-18
ifGo command / 40-18
incRegister command / 40-19
setRegister command / 40-19
MIDI commands / 40-20
midiChnlPress command / 40-21
midiCt1Change command / 40-21
midiNoteOff command / 40-21
midiNoteOn command / 40-22
midiPitchBend command / 40-22
midiPolyKey command / 40-22
midiProgChange command / 40-23
midiSelChnlMode command / 40-23
midiSetSysExl command / 40-23
midiSysExclusive command / 40-24
midiSysCommon command / 40-24
midiSysRealTime command / 40-25
Patterns and phrases / 40-26

x Apple 1IGs Toolbox Reference, Volume 3

41

A sample Note Sequencer program / 40-28

Note Sequencer housekeeping calls / 40-37
SeqBootInit $011A / 40-37
SeqstartUp $021A / 40-38
SeqShutDown $031A / 40-41
SeqVersion $041A / 4042
Seqreset $051A / 4043
Seqstatus $061A / 40-44

Note Sequencer calls / 40-45
ClearIncr $0Al1A / 4045
GetLoc $0C1A / 4046
GetTimer $0B1A / 4047
SeqAllNotesOff $0D1A / 4048
SetIncr $091A / 4049
SetInstTable $121A / 40-50
SetTrkInfo $0E1A / 40-51
StartInts $131A / 40-52
StartSeq $0F1A / 40-53
StartSeqRel $151A / 40-55

Sample sequence with relative addressing / 40-58

stepseq $101A / 40-60
StopInts $141A / 40-61
Stopseq $111A / 40-62

Note Sequencer error codes / 40-63

Note Synthesizer / 41-1

About the Note Synthesizer / 41-2

Using the Note Synthesizer / 41-3
The sound envelope / 41-3

Note Synthesizer envelopes / 41-5

Instruments / 41-7
DOC memory / 41-10
Generators / 41-10

Note Synthesizer housekeeping calls / 41-13
NSBootInit $0119 / 41-13
Nsstartup $0219 / 41-14
NSShutDown $0319 / 41-15
NSVersion $0419 / 41-16
NSReset $0519 / 41-17

Contents

xi

NSStatus $0619 / 41-18
Note Synthesizer calls / 41-19
AllNotesoff $0D19 / 41-19
AllocGen $0919 / 41-20
DeallocGen $0A19 / 41-21
NoteOff $0C19 / 41-22
Noteon $0B19 / 41-23
NSSetUpdateRate $0E19 / 41-25
NSSetUserUpdateRrtn $0F19 / 41-26
Note Synthesizer error codes / 41-27

42 Print Manager Update / 42-1

Error corrections / 42-2

Clarifications / 42-2

New features of the Print Manager / 42-3

New Print Manager calls / 42-4
PMLoadDriver $3513 / 424
PMUnloadDriver $3413 / 42-5
PrGetDocName $3613 / 42-6
PrGetPgOrientation $3813 / 42-7
PrGetPrinterSpecs $1813 / 42-8
PrSetDocName $3713 / 429

Previously undocumented Print Manager calls / 42-10
PrGetNetworkName $2B13 / 42-10
PrGetPortDvrName $2913 / 42-11
PrGetPrinterDvrName $2813 / 42-12
PrGetUserName $2A13 / 42-13
PrGetZoneName $2513 / 42-14

Print Manager error codes / 42-15

43 QuickDraw II Update / 43-1
Error corrections / 43-2
Clarification / 43-3
New features of QuickDraw II / 43-4
QuickDraw II speed enhancement / 43-4
New font header layout / 43-5

xii Apple IIGs Toolbox Reference, Volume 3

44 QuickDraw II Auxiliary Update / 44-1
New feature of QuickDraw II Auxiliary / 44-2
New QuickDraw II Auxiliary calls / 44-3

CalcMask $0E12 / 44-3
SeedFill $0D12 / 44-8
SpecialRect $0C12 / 44-15

45 Resource Manager / 45-1
About the Resource Manager / 45-2
About resources / 45-5
Identifying resources / 45-5
Resource types / 45-6
Resource IDs / 45-6
Resource names / 45-7
Using resources / 45-8
Resource attributes / 45-9
Resource file format / 45-12
Resource file IDs / 45-12
Resource file search sequence / 45-13
Resource file layout and data structures / 45-14
Resource file header / 45-16
Resource map / 45-17
Resource free block / 45-19
Resource reference record / 45-20
Resource converter routines / 45-21
ReadResource / 45-22
WriteResource / 45-24
ReturnDiskSize / 45-26
Application switchers and desk accessories / 45-27
Resource Manager housekeeping routines / 45-29
ResourceBootInit $011E / 45-29
ResourceStartUp $021E / 45-30
ResourceShutDown $031E / 45-31
ResourceVersion $041E / 45-32
ResourceReset $051E / 45-33
ResourceStatus $061E / 45-34
Resource Manager tool calls / 45-35
AddResource $0CIE / 45-35
CloseResourceFile $0BIE / 45-37

Contents

CountResources $221E / 45-38
CountTypes $201E / 45-39
CreateResourceFile $091E / 45-40
DetachResource $181E / 4541
GetCurResourceApp $141E / 4542
GetCurResourceFile $121E / 45-43
GetIndResource $231E / 45-44
GetIndType $211E / 4546
GetMapHandle $261E / 4547
GetOpenFileRefNum $1F1E / 4549
GetResourceAttr $1BIE / 45-51
GetResourceSize $1DIE / 45-52
HomeResourceFile $151E / 45-53
LoadAbsResource $271E / 45-54
LoadResource $0EIE / 45-56
MarkResourceChange $101E / 45-58
MatchResourceHandle $1EIE / 45-59
OpenResourceFile $0AIE / 45-61
ReleaseResource $171E / 45-63
RemoveResource $0F1E / 45-64
ResourceConverter $281E / 45-65
SetCurResourceApp $131E / 45-67
SetCurResourceFile $111E / 45-68
SetResourceAttr $1CIE / 45-69
SetResourceFileDepth $251E / 45-70
SetResourceID $1AIE / 45-71
SetResourceload $241E / 45-72
UniqueResourceID $191E / 45-73
UpdateResourceFile $0DI1E / 45-75
WriteResource $161E / 45-76
Resource Manager summary / 45-77

46 Scheduler / 46-1

47 Sound Tool Set Update / 47-1

Error corrections / 47-2
Clarification / 47-3

xiv Apple IIGs Toolbox Reference, Volume 3

FFStartSound / 47-3
Moving a sound from the Macintosh computer to the Apple 1IGs
computer / 47-4
Sample code / 47-5
New information / 47-6
Introduction to sound on the Apple IIGS computer / 47-7
Note Sequencer / 47-7
Note Synthesizer / 47-8
Sound general logic unit (GLU) / 47-8
Vocabulary / 47-8
Oscillator / 47-8
Generator / 47-9
Voice / 47-9
Sample rate / 47-9
Drop sample tuning / 47-10
Frequency / 47-10
Sound RAM / 47-10
Waveform / 47-10
DOC registers / 47-10
Frequency registers / 47-11
Volume register / 47-12
Waveform Data Sample register / 47-12
Waveform Table Pointer register / 47-12
Control register / 47-12
Bank-Select/Table-Size/Resolution register / 47-13
Oscillator Interrupt register / 47-15
Oscillator Enable register / 47-15
A/D Converter register / 47-15
MIDI and interrupts / 47-16
New Sound Tool Set calls / 47-17
FFSetUpSound $1508 / 47-17
FFStartPlaying $1608 / 47-18
ReadDOCReg $1808 / 47-19
SetDOCReg $1708 / 47-21

48 Standard File Operations Tool Set Update / 48-1

New features of the Standard File Operations Tool Set / 48-2
New filter procedure entry interface / 48-4
Custom item-drawing routines / 48-5

Contents XV

Standard File data structures / 48-6
Reply record / 48-6
Multifile reply record / 48-8
File type list record / 48-9
Standard File dialog box templates / 48-11
Open File dialog box templates / 48-12
Save File dialog box templates / 48-18
New or changed Standard File calls / 48-27
SFAllCaps $0D17 / 48-27
SFGetFile2 $0E17 / 48-28
SFMultiGet2 $1417 / 48-30
SFPGetFile2 $1017 / 48-32
SFPMultiGet2 $1517 / 48-34
SFPPutFile2 $1117 / 48-36
SFPutFile2 $0F17 / 48-38
SFReScan $1317 / 4840
SFshowInvisible $1217 / 4841
Standard File error codes / 48-42

49 TextEdit Tool Set / 49-1
About the TextEdit Tool Set / 49-2
TextEdit call summary / 49-4
How to use TextEdit / 49-6
Standard TextEdit key sequences / 49-11
Internal structure of the TextEdit Tool Set / 49-14
TextEdit controls and the Control Manager / 49-14
TextEdit filter procedures and hook routines / 49-15
Generic filter procedure / 49-16
doEraseRect $0001 / 49-17
doEraseBuffer $0002 / 49-18
doRectChanged $0003 / 49-18
Keystroke filter procedure / 49-19
Word wrap hook / 49-22
Word break hook / 49-24
Custom scroll bars / 49-26
TextEdit data structures / 49-27
High-level TextEdit structures / 49-28
TEColorTable / 49-28
TEFormat / 49-31

xvi Apple IIGs Toolbox Reference, Volume 3

TEParamBlock / 49-33
TERuler / 49-39
TEStyle / 49-41
Low-level TextEdit structures / 49-42
TERecord / 4942
KeyRecord / 49-53
StyleItem / 49-55
SuperBlock / 49-56
SuperHandle / 49-57
SuperItem / 49-58
TabItem / 49-59
TextBlock / 49-60
TextList / 49-61
TextEdit housekeeping routines / 49-62
TEBootInit $0122 / 49-62
TEStartUp $0222 / 49-63
TEShutDown $0322 / 49-64
TEVersion $0422 / 49-65
TEReset $0522 / 49-66
TEStatus $0622 / 49-67
TextEdit tool calls / 49-68
TEActivate $0F22 / 49-68
TEClear $1922 / 49-69
" TEClick $1122 / 49-70
TECompactRecord $2822 / 49-72
TECopy $1722 / 49-73
TECut $1622 / 49-74
TEDeactivate $1022 / 49-75
TEGetDefProc $2222 / 49-76
TEGetInternalProc $2622 / 49-77
TEGetLastError $2722 / 49-78
TEGetRuler $2322 / 49-79
TEGetSelection $1C22 / 49-81
TEGetSelectionStyle $1E22 / 49-82
TEGetText $0C22 / 49-85
TEGetTextInfo $0D22 / 49-89
TEIdle $0E22 / 49-92
TEInsert $1A22 / 49-93
TEKey $1422 / 49-96
TEKill $0A22 / 49-98

Contents

TENew $0922 / 49-99
TEOffsetToPoint $2022 / 49-101
TEPaintText $1322 / 49-103
TEPaste $1822 / 49-106
TEPointToOffset $2122 / 49-107
TEReplace $1B22 / 49-109
TEScroll $2522 / 49-112
TESetRuler $2422 / 49-114
TESetSelection $1D22 / 49-116
TESetText $0B22 / 49-117
TEStyleChange $1F22 / 49-120
TEUpdate $1222 / 49-123

TextEdit summary / 49-124

50 Text Tool Set Update / 50-1
New features of the Text Tool Set / 50-2

51 Tool Locator Update / 51-1

Error correction / 51-2

Clarification / 51-2

New features of the Tool Locator / 51-2
Tool set startup and shutdown / 51-3
Tool set numbers / 51-6
Tool set dependencies / 51-8

New Tool Locator calls / 51-13
MessageByName $1701 / 51-13
SetDefaultTPT $1601 / 51-16
ShutDownTools $1901 / 51-17
StartUpTools $1801 / 51-18

52 Window Manager Update / 52-1
Error corrections / 52-2
Clarifications / 52-3
New features of the Window Manager / 52-3
Alert windows / 52-6
Special characters / 52-10
Alert window example / 52-11

xviii Apple IIGs Toolbox Reference, Volume 3

TaskMaster result codes / 52-13
Window Manager data structures / 52-15
Window record / 52-15
Task record / 52-17

New Window Manager calls / 52-21
AlertWindow $590E / 52-21
CompileText $GO0E / 52-23
DrawInfoBar $550E / 52-26
EndFrameDrawing $5BOE / 52-27
ErrorWindow $620E / 52-28
GetWindowMgrGlobals $580E / 52-30
NewWindow2 $610E / 52-31
ResizeWindow $5COE / 52-34
StartFrameDrawing $5A0E / 52-35
TaskMaster $1DOE / 52-36
TaskMasterContent $5DOE / 52-46
TaskMasterDA $5FOE / 52-48
TaskMasterKey $5EOE / 52-49
GDRPrivate $540E / 52-52

Error messages / 52-53

Resource Types / E-1
Resource type numbers / E-2
rAlertString $8015 / E-3
rClInputString $8005 / E4
rCloutputString $8023 / E-5
rControlList $8003 / E-6
rControlTemplate $8004 / E-7
Control template standard header / E-7
Keystroke equivalent information / E-12
Simple button control template / E-13
Check box control template / E-15
Icon button control template / E-17
LineEdit control template / E-21
List control template / E-23 N
Picture control template / E-26
Pop-up control template / E-28
Radio button control template / E-32
Scroll bar control template / E-34

Contents

Xix

Size box control template / E-36
Static text control template / E-38
TextEdit control template / E-40
rCString $801D / E-46
rCtlColorTbl $800D / E-46
rErrorString $8020 / E47
rIcon $8001 / E48
rKTransTable $8021 / E-49
rListRef $801C / E-51
rMenu $8009 / E-52
rMenuBar $8008 / E-55
rMenuItem $800A / E-56
rPicture $8002 / E-58
rPString $8006 / E-59
rResName $8014 / E-60
rStringList $8007 / E-61
rStyleBlock $8012 / E-62
rTERuler $8025 / E-G4
rText $8016 / E-66
rTextBlock $8011 / E-67
rTextForLETextBox2 $800B / E-68
rToolStartup $8013 / E-09
rTwoRects $801A / E-71
rWindColor $8010 / E-72
rWindParaml $800E / E-74
rWindParam2 $800F / E-78

F Delta Guide / F-1

Apple Desktop Bus / F-2
Error corrections / F-2
Clarification / F-3
Audio Compression and Expansion Tool Set / F-4
Error correction / F-4
Control Manager / F-5
Error corrections / F-S
Clarifications / F-6
Dialog Manager / F-7
Error corrections / F-7

XX Apple IIGs Toolbox Reference, Volume 3

Event Manager / F-8

Error correction / F-8
Font Manager / F-9

Error corrections / F-9
Integer Math Tool Set / F-10

Clarification» / F-10
List Manager / F-11

«Clarifications- / F-11

List Manager definitions / F-12
Memory Manager / F-13

Error correction / F-13

«Clarification- / F-13
Menu Manager / F-14

Error corrections / F-14

<Clarifications» / F-15
Miscellaneous Tool Set / F-16

Error corrections / F-16

Clarification / F-17
Print Manager / F-18

Error corrections / F-18

«Clarifications» / F-18
QuickDraw II / F-19

Error corrections / F-19

Clarification / F-20
Sound Tool Set / F-21

Error corrections / F-21

Clarification / F-22

FFStartSound / F-22

Moving a sound from the Macintosh computer
to the Apple IIGS computer / F-24

Sample code / F-24
Tool Locator / F-25
Error correction / F-25
Clarification / F-25
Window Manager / F-26
Error corrections / F-26
Clarifications / F-27

Contents

xxi

G Toolbox Code Example / G-1
The Busy .p module / G-2
The busybox . r module / G4
The uEvent .p module / G-78
The uGlobals.p module / G-83
The uMenu.p module / G-86
The wUtils.p module / G-89
The uWindow.p module / G-92

Glossary / GL-1

Index / X-1

xxii Apple IIGS Toolbox Reference, Volume 3

Figures and tables

Audio Compression and Expansion Tool Set / 27-1

Table 27-1 ACE Tool Set error codes / 27-19

Control Manager Update / 28-1

Figure 28-1

Figure 28-2

Figure 28-3

Figure 28-4

Figure 28-5

Figure 28-6

Figure 28-7

Figure 28-8

Figure 28-9

Figure 28-10
Figure 28-11
Figure 28-12
Figure 28-13
Figure 28-14
Figure 28-15
Figure 28-16
Figure 28-17
Figure 28-18
Figure 28-19
Figure 28-20
Figure 28-21
Figure 28-22
Figure 28-23
Figure 28-24
Figure 28-25
Figure 28-26
Figure 28-27
Figure 28-28
Figure 28-29
Figure 28-30

Table 28-1

Control template standard header / 28-44
Keystroke equivalent record layout / 28-47

Item template for simple button controls / 28-48
Control template for check box controls / 28-50
Control template for icon button controls / 28-52
Control template for LineEdit controls / 28-55
Control template for list controls / 28-57

Control template for picture controls / 28-60
Control template for pop-up controls / 28-62
Unselected pop-up menu / 28-66

Selected pop-up menu with left-justified title / 28-66
Selected pop-up menu with right-justified title / 28-66
Control template for radio button controls / 28-67
Control template for scroll bar controls / 28-69
Control template for size box controls / 28-71
Control template for static text controls / 28-73
Control template for TextEdit controls / 28-75
Generic extended control record / 28-88
Extended simple button control record / 28-93
Extended check box control record / 28-95

Icon button control record / 28-97

LineEdit control record / 28-100

List control record / 28-102

Picture control record / 28-104

Pop-up control record / 28-106

Extended radio button control record / 28-110
Extended scroll bar control record / 28-112
Extended size box control record / 28-114

Static text control record / 28-116

TextEdit control record / 28-119

Control Manager error codes / 28-42

Figures and tables

xxiii

29 Desk Manager Update / 29-1
Figure 29-1 Run item header / 29-4

31 Event Manager Update / 31-1

Figure 31-1 Journal record for mouse event / 31-2
Figure 31-2 Keystroke translation table / 31-3

34 LineEdit Tool Set Update / 34-1
Figure 34-1 LineEdit edit record (new layout) / 34-3

36 Memory Manager Update / 36-1
Figure 36-1 Out-of-memory routine header / 36-4

37 Menu Manager Update / 37-1

Figure 37-1 Scrolling menus with indicator at bottom / 37-5
Figure 37-2 Menu record layout for cached menu / 37-7
Figure 37-3 Window with pop-up menus / 379

Figure 37-4 Dragging through a pop-up menu / 37-10

Figure 37-5 Type 1 pop-up menu / 37-11

Figure 37-6 Type 2 pop-up menu / 37-12

Figure 37-7 MenuItemTemplate layout / 37-15

Figure 37-8 MenuTemplate layout / 37-18

Figure 379 MenuBarTemplate layout / 37-20

Table 37-1 Menu Manager calls that work with pop-up menus / 37-13

38 MIDI Tool Set / 38-1
Figure 38-1 MIDI application environment / 38-5

Table 38-1 MIDI Tool Set error codes / 38-53
39 Miscellaneous Tool Set Update / 39-1

Figure 39-1 Queue header layout / 39-4
Figure 39-2 Interrupt state record layout / 39-5

xxiv Apple IIGs Toolbox Reference, Volume 3

Note Sequencer / 40-1

Figure 40-1
Figure 40-2
Figure 40-3
Figure 40-4
Figure 40-5

Table 40-1

Format of a seqltem / 40-6

Note command format / 40-8
Control command format / 40-11
Register command format / 40-17
MIDI command format / 40-20

Note Sequencer error codes / 40-63

Note Synthesizer / 41-1

Figure 41-1
Figure 41-2
Figure 41-3
Figure 414

Table 41-1

Sound envelope, showing attack, decay, sustain, and
release / 414

Typical Note Synthesizer envelope / 41-5

Instrument data structure / 41-7

Generator control block layout (GCBRecord) / 41-12

Note Synthesizer error codes / 41-27

Print Manager Update / 42-1

Table 42-1

Print Manager error codes / 42-15

QuickDraw II Update / 43-1

Figure 43-1
Figure 43-2
Figure 43-3

Pen state record / 43-2
QuickDraw picture header / 43-3
New font header layout / 43-5

QuickDraw II Auxiliary Update / 44-1

Figure 44-1
Figure 44-2
Figure 44-3
Figure 44-4
Figure 44-5
Figure 44-6

Mask generation with CalcMask / 44-3

Implementing a lasso tool with calcMask / 44-4

Mask generation with seedFill / 44-8

Implementing a paint bucket tool with seedrill / 44-9
Paint bucket tool with undo / 44-10

Implementing a “from-the-inside” lasso tool with
SeedFill / 44-11

Figures and tables

XXxv

45 Resource Manager / 45-1

Figure 45-1 A resource file search chain / 45-13

Figure 45-2 Resource file internal layout / 45-15

Figure 45-3 Resource file header (ResHeaderRec) / 45-16
Figure 45-4 Resource map (MapRec) / 45-17

Figure 45-5 Resource free block (FreeBlockRec) / 45-19
Figure 45-6 Resource reference record (ResRefRec) / 45-20

Table 45-1 Resource Manager constants / 45-77
Table 45-2 Resource Manager data structures / 45-78
Table 45-3 Resource Manager error codes / 45-80

47 Sound Tool Set Update / 47-1
Figure 47-1 DOC registers / 47-14

48 Standard File Operations Tool Set Update / 48-1

Figure 48-1 New-style reply record / 48-6
Figure 48-2 Multifile reply record / 48-8
Figure 48-3 File type list record / 48-9

Table 48-1 Standard File error codes / 48-42

49 TextEdit Tool Set / 49-1

Figure 40-1 TEColorTable layout / 49-28
Figure 40-2 TEFormat layout / 49-31
Figure 49-3 TEParamBlock layout / 49-33
Figure 494 TERuler layout / 49-39
Figure 49-5 TEstyle layout / 4941
Figure 49-6 TERecord layout / 49-42
Figure 49-7 KeyRecord layout / 49-53
Figure 49-8 styleItem layout / 49-55
Figure 499 superBlock layout / 49-56
Figure 49-10 superHandle layout / 49-57
Figure 49-11 superItemlayout / 49-58
Figure 49-12 TabItemlayout / 49-59
Figure 49-13 TextBlock layout / 49-60
Figure 49-14 TextList layout / 49-61

Table 49-1 TextEdit constants / 49-124

Table 49-2 TextEdit data structures / 49-126
Table 49-3 TextEdit error codes / 49-134

xxvi Apple IIGS Toolbox Reference, Volume 3

51 Tool Locator Update / 51-1
Figure 51-1 Tool set startStop record / 51-4

Table 51-1 Tool set numbers / 51-6
Table 51-2 Tool set dependencies / 51-8

52 Window Manager Update / 52-1

Figure 52-1 AlertWindow input string layout / 52-6

Figure 52-2 An alert string / 52-11

Figure 52-3 An alert string defining a custom rectangle / 52-12
Figure 52-4 Window record definition / 52-15

Figure 52-5 Task record definition / 52-17

Table 52-1 Standard alert window sizes / 52-8
Table 52-2 Substitution string array / 52-11
Table 52-3 TaskMaster result codes / 52-13
Table 52-4 Error messages / 52-53

E Resource Types / E-1

Figure E-1 Alert string, type rAlertString ($8015) / E-3

Figure E-2 GS/OS class 1 input string, type rC1InputString
($8005) / E-4

Figure E-3 GS/OS class 1 output string, type rC1OutputString
($8023) / E-5

Figure E-4 Control list, type rcontrolList ($8003) / E-6

Figure E-5 Control template standard header / E-7

Figure E-6 Keystroke equivalent record layout / E-12

Figure E-7 Item template for simple button controls / E-13

Figure E-8 Control template for check box controls / E-15

Figure E-9 Control template for icon button controls / E-17

Figure E-10 Control template for LineEdit controls / E-21

Figure E-11 Control template for list controls / E-23

Figure E-12 Control template for picture controls / E-26

Figure E-13 Control template for pop-up controls / E-28

Figure E-14 Control template for radio button controls / E-32

Figure E-15 Control template for scroll bar controls / E-34

Figure E-16 Control template for size box controls / E-36

Figure E-17 Control template for static text controls / E-38

Figure E-18 Control template for TextEdit controls / E-40

Figure E-19 C string, type rcstring ($801D) / E-46

Figures and tables xxvii

Figure E-20 Icon, type xIcon ($8001) / E-48

Figure E-21 Keystroke translation table, type rkTransTable
($8021) / E-49

Figure E-22 List member reference array element, type rListRe£
($801C) / E-51

Figure E-23 Menu template, type rMenu ($8009) / E-52

Figure E-24 Menu bar record, type rMenuBar ($8008) / E-55

Figure E-25 Menu item template, type rMenuItem ($800A) / E-56

Figure E-26 QuickDraw picture, type rPicture ($8002) / E-58

Figure E-27 Pascal string, type rPString ($8006) / E-59

Figure E-28 Resource name array, type rResName ($8014) / E-60

Figure E-29 Pascal string array, type rStringList ($8007) / E-61

Figure E-30 TextEdit style information, type rstyleBlock
(§8012) / E-62

Figure E-31 TextEdit ruler information, type rTERuler ($8025) / E-G4

Figure E-32 Text block, type rText ($8016) / E-66

Figure E-33 Text block, type rTextBlock ($8011) / E-67

Figure E-34 LETextBox2 input text, type rText ForLEText Box2
($800B) / E-68

Figure E-35 Tool set start-stop record, type rToolStartup
($8013) / E-69

Figure E-36 Two rectangles, type rTwoRects ($8014) / E-71

Figure E-37 Window color table, type rwindcolor ($8010) / E-72

Figure E-38 Window template, type rWwindParaml ($800E) / E-75

Figure E-39 Window template, type rwindParam2 ($800F) / E-78

Table E-1 Resources listed by resource type number / E-2

F Delta Guide / F-1

Figure F-1 Pen state record / F-20
Figure F-2 QuickDraw picture header / F-20

xxviii Apple IIGS Toolbox Reference, Volume 3

Preface What’s in This Volume

This third volume of the Apple IIGS Toolbox Reference contains new
material describing numerous changes to the Apple 1IGs® Toolbox. It
contains six previously undocumented tool sets, many new tool calls, and
numerous corrections and additions. This document comprises both new
material and information issued in a previous update that was available
only from the Apple Programmers and Developers Association (APDA™),

xxix

Organization

Like the first two volumes of the Apple IIGS Toolbox Reference, this book contains chapters
that are devoted to individual tool sets or managers. The chapters are arranged
alphabetically by tool set name. Chapters documenting the six new tool sets appear in
alphabetical order among the other chapters. Chapters that discuss previously existing
tool sets or managers carry the same titles as before, with the addition of the word
Update. Note that chapters in this book have been numbered sequentially following the
last chapter in Volume 2 of the Apple IIGS Toolbox Reference.

Each chapter contains a brief introductory note, which indicates whether the chapter

updates existing material or describes a new tool set or manager. Update chapters contain
one or more of these sections:

Error corrections Corrects errors in the previous toolbox documentation

Clarifications Provides additional information about previously documented
toolbox features, including bug fixes

New features Describes new tool set features

New tool calls Defines new tool calls

New chapters follow the organizational style of the first two volumes.

In addition to the chapters that discuss the various tool sets and managers, this book
contains several appendixes.

Appendix E, “Resource Types” Contains format and content information for all
defined Apple 1IGS resource types
Appendix F, “Delta Guide” Collects all corrections to and clarifications of

the previous volumes of the Toolbox Reference
in a single location

Appendix G, “Toolbox Code Example” Presents a sample program, BusyBox, which
illustrates the use of many of the new features
of the Apple IIGs Toolbox

Xxx Apple IIGs Toolbox Reference, Volume 3

Typographical conventions

This update largely follows the typographical conventions of the first two volumes of the
Apple IIGS Toolbox Reference. New terms appear in boldface when they are introduced.
Tool call parameter names appear in italics. Record field names, routine names, and code

listings appear in the Courier font.

Preface xxxi

Call format

This book documents tool calls for all the new tool sets and several of the existing tool
sets in the following format.

Certain elements of this format may not appear in all calls. For example, stack diagrams
are omitted from those calls that do not affect the stack.

ToolCallName $callnumber

A description of the call’s function.

Parameters

Stack before call

Previous contents
- longParmName - Long—Description of longParmName parameter
wordParmName Word—Description of wordParmName parameter
<—3P

Stack after call

Previous contents

- Result - Long—Description of call result value (if any)
<—SP
Errors $x00cx Error name Description of the error code.
C C code. The C language function declaration for the call.

stackParameter Detailed description of stack input or output parameter, where
appropriate.

xxxii Apple IIGs Toolbox Reference, Volume 3

Chapter 26 Apple Desktop Bus Tool Set Update

This chapter contains new information about the Apple Desktop Bus™
Tool Set. The complete reference to this tool set is in Volume 1,
Chapter 3 of the Apple IIGS Toolbox Reference.

261

Error corrections

The parameter table for the ReadkeyMicroData tool call ($0A09) in Volume 1 of the
Toolbox Reference incorrectly describes the format for the readConfig command ($0B).

The description should be as follows:
Command datalength Name

$0B 3

readConfig

Action

Read configuration; dataPtr refers to a
3-byte data structure.
Byte ADB keyboard and mouse
addresses.
Low nibble = keyboard
High nibble = mouse
Byte Keyboard layout and display
language.
Low nibble = keyboard layout
High nibble = display language
Byte Repeat rate and delay.
Low nibble = repeat rate
High nibble = repeat delay

The description of this configuration record is also wrong in the tool set summary. The
following list correctly describes ReadconfigRec, the configuration record for the

ReadKeyMicroData tool call.

Name Offset Type
rcADBAddr $0000 Byte
rcLayoutOrLang $0001 Byte
rcRepeatDelay $0002 Byte

262 Apple IIGs Toolbox Reference, Volume 3

Definition

ADB keyboard and mouse addresses.
Low nibble = keyboard

High nibble = mouse

Keyboard layout and display language.
Low nibble = keyboard layout

High nibble = display language

Repeat rate and delay.

Low nibble = repeat rate

High nibble = repeat delay

Clarification

This section presents new information about the AsyncADBReceive call.

You can call AsyncaADBReceive to poll a device using register 2, and it will return certain
useful information about the status of the keyboard. The call returns the following
information in the specified bits of register 2:

bit 5:

bit 3:

bit 2:

bit 1:

bit 0:

0 = Caps Lock key down
1 = Caps Lock key up

0 = Control key down

1 = Control key up

0 = Shift key down

1 = Shift key up

0 = Option key down

1 = Option key up

0 = Command key down
1 = Command key up

Chapter 26 Apple Desktop Bus Tool Set Update

263

Chapter 27 Audio Compression and
Expansion Tool Set

This chapter documents the features of the new Audio Compression and
Expansion (ACE) Tool Set. This is a new tool set not previously
documented in the Apple IIGS Toolbox Reference.

27-1

Error correction

An error exists in the Apple IIGS Toolbox Reference Update (distributed by APDA™). The
description of the ACEExpand tool call contains an incorrect parameter block. This book
contains a corrected description.

About Audio Compression and Expansion

The Audio Compression and Expansion (ACE) tools are a set of utility routines that
compress and expand digital audio data. The tool set is designed to support a variety of
methods of audio signal compression, but at present only one method is implemented.

With the present method of compression supported by the ACE tools, you can choose
either of two compression ratios. You can compress a digital audio signal to half its
original size or to three-eighths its original size. The ratio used is determined by a
parameter of the ACE call that does the compression or expansion.

The obvious advantages of compressing an audio signal are that it takes up less space on
the disk, and less time is needed to transfer the data. A digital sample that is compressed
to half its original size occupies only half the space and takes only half as long to transfer.
Such a sample can load from the disk twice as fast as the uncompressed version and is
much more economical to upload to or download from a commercial computer network.
Note, however, that data compression and expansion require significant processor
resources, and therefore take some time.

The following list summarizes the capabilities of the ACE Tool Set. The tool calls are
grouped according to function. Later sections of this chapter discuss audio compression
and expansion in greater detail and define the precise syntax of the tool calls.

Routine Description

Housekeeping routines

ACEBootInit Called only by the Tool Locator—must not be called by
an application

ACEStartUp Initializes the ACE Tool Set for use by an application

ACEShutDown Informs the ACE Tool Set that an application is finished
using its tool calls

ACEVersion Returns the ACE Tool Set version number

272 Apple IiGs Toolbox Reference, Volume 3

ACEReset Called only when the system is reset—must not be called
by an application
ACEStatus Returns the operational status of the ACE Tool Set

ACEInfo Returns information about the ACE Tool Set operating
environment

Audio compression and expansion tool calls

ACECompBegin Prepares the ACE tools to compress an audio sequence
ACECompress Compresses an audio sequence

ACEExpand Expands a previously compressed audio sequence
ACEExpBegin Prepares the ACE tools to expand a previously

compressed audio sequence

Chapter 27 Audio Compression and Expansion Tool Set ~ 27-3

Uses of the ACE Tool Set

Software often includes sound effects, music, or speech. The problem with digitized
sound is that it requires considerable storage space. A faithful monophonic digitization
of 30 seconds of an FM radio signal occupies nearly a megabyte (MB) of disk space. A user
might be somewhat reluctant to use a program that occupies so much space only to
achieve sound effects. The ACE Tool Set provides you with the means to compress
digitized sound signals to minimize this problem.

ACE presently supports Adaptive Differential Pulse Code Modulation (ADPCM). This
compression method assumes that audio signals tend to be relatively smooth and
continuous. If the amplitude (loudness) of a typical audio signal is plotted against time,
the graph is relatively smooth compared to a spreadsheet, a text document, or other
typical files that may contain arbitrarily distributed byte values. As a result, it is possible
to compute the probable value of the next sample in the signal. ADPCM uses a static
model of what the change between any given value and the next is likely to be and a
dynamic model of what the next actual change should be, based on the values last
observed. ADPCM examines the next signal to compare its predictions against the
observed value and then encodes the difference between its prediction and the actual
value.

ADPCM relies on the relative predictability of audio signals. If the changes in an audio
signal are too great or sudden, ADPCM records an erroneous value. In general, a certain
statistically predictable amount of error appears in any signal that is compressed by this
method. The errors appear not as distortions of the quality of the sound but as pink
noise, or hiss, much like the hiss on ordinary cassette recordings. Thus, although ADPCM
compression is suitable for many sound-compression tasks, particularly for sound effects
or speech in games or business software, it is not the best choice for very high-fidelity
reproduction. A signal compressed by the ADPCM method is likely to be too noisy for use
in professional audio, such as film soundtrack recording,

274 Apple IIGs Toolbox Reference, Volume 3

How ADPCM works

The ADPCM method assumes that any particular digital sample in a block of audio data
has a value that is relatively close to the values on either side of it. ADPCM predicts what
the next value will be, and compares it with the value that is actually there. The difference
is encoded in a value that is some number of bits in size, which is specified by the
application code. With ADPCM the programmer can specify encoded values either 3 or 4
bits wide. Because the original data is stored in 8-bit samples, the compression rate is
either 8 to 3 or 8 to 4, depending on which size a particular program specifies.

Errors result when the difference between the original signal and the value that ADPCM
predicts is greater than can be encoded in the specified number of bits. The encoded
value then effectively becomes a random value, and so is perceived as audio noise. If the
target code is 3 bits wide, then the difference observed by the compression algorithm is
more likely to be out of range than if the code size is 4 bits. Greater compression,
therefore, results in greater loss of fidelity.

As stated earlier, the fidelity loss sounds like hiss, not like a gross distortion of the audio
signal. Even using inaccurate predictive models, ADPCM tends to produce hiss rather than
more offensive forms of distortion. The technique tracks the gross characteristics of
audio signals well even when the rate of errors is high. At worst, an expanded signal sounds
faithful to the original, though muffled by noise.

A Important The noisier a sampled signal is, the noisier the sample compressed by
using ADPCM will be. Any noise that is introduced into the signal
produces discontinuities in the audio data and causes errors in the
compression and expansion process. For this reason, any editing,
equalization, or other sound-processing effects should be applied to
the original signal before it is compressed. ADPCM compression
should be the last process applied to an audio signal before it is stored
on the final disk. a

Chapter 27 Audio Compression and Expansion Tool Set

275

ACE housekeeping routines

These routines allow you to start and stop the ACE tools and to obtain status information
about the tool set.

ACEBootInit $011D

Performs any initializations of the ACE tools that are necessary at boot time.

A Warning Applications must not make this call. a

Parameters This call has no input or output parameters. The stack is unaffected.
Errors None
C extern pascal void ACEBootInit ();

276 Apple IIGs Toolbox Reference, Volume 3

ACEStartUp $021D

Initializes the ACE tools for use by an application. The ACESt artUp routine sets aside a
region of bank $00, specified by dPageAddr, for use as the ACE tools’ direct page. At
present, ACE uses one 256-byte page of bank $00 memory as its direct page. Because
future versions of the ACE tools may use a different amount of memory for the direct
page, applications should determine the correct size for the direct page with a call to
ACEInfo. The tool set's direct page should always begin on a page boundary.

Parameters
Stack before call
Previous contents

dPageAddr Word—Beginning of direct-page space
<—SP

Stack after call

I Previous contents |

| | s
Errors $1D01 aceIsActive ACE Tool Set already started up.
$1D02 aceBadDP Requested direct-page location
invalid.
C extern pascal void ACEStartUp (dPageAddr):;
Word dPageAddr;

Chapter 27 Audio Compression and Expansion Tool Set

ACEShutDown $031D

Performs any housekeeping that is required to shut down the ACE Tool Set. Applications
that use the ACE tools should always make this call before quitting. The application, not
the ACE Tool Set, must allocate and deallocate direct-page space in bank zero.

Parameters This call has no input or output parameters. The stack is unaffected.
Errors $1D03 aceNotActive ACE Tool Set not started up.
C extern pascal void ACEShutDown () ;

278 Apple IIGs Toolbox Reference, Volume 3

ACEVersion $041D

Returns the version number of the currently installed ACE Tool Set. This call can be made
before a call to AcEstartUp. The versioninfo result will contain the information in the
standard format defined in Appendix A, “Writing Your Own Tool Set,” in Volume 2 of the
Toolbox Reference.

Parameters

Stack before call

Previous contents

Space Word—Space for result
<—SP

Stack after call

Previous contents

versioninfo Word—Version number of ACE Tool Set
<—SP
Errors None
C extern pascal Word ACEVersion():

Chapter 27 Audio Compression and Expansion Tool Set ~ 27-9

ACEReset $051D

Resets the ACE Tool Set. This call is made by a system reset.

A Warning Applications should never make this call because it performs tool set
initializations appropriate to a machine reset. a

Parameters This call has no input or output parameters. The stack is unaffected.
Errors None
C extern pascal void ACEReset ();

2710 Apple 11Gs Toolbox Reference, Volume 3

ACEStatus $061D

Returns a Boolean flag, which is TRUE (nonzero) if the tool set has been started up and
FALSE (zero) if it has not. This call can be made before a call to ACEStartUp.

& Note: If your program issues this call in assembly language, initialize the result space on
the stack to NIL. Upon return from ACEStatus, your program need only check the
value of the returned flag. If the ACE Tool Set is not active, the returned value will be

FALSE (NIL).

Parameters

Stack before call

Previous contents

Space

Stack after call

Previous contents

Word—Space for result
<—SP

activeFlag Word—Boolean value indicating whether tool set is active
<—SP
Errors None
C extern pascal Boolean ACEStatus();

Chapter 27 Audio Compression and Expansion Tool Set

27-11

ACEInfo $071D

Returns certain information about the currently installed version of the ACE tools. This call
can be made before a call to ACEStartUp. The infoltemCode parameter specifies what
information the call is to return. At present, the only valid value is 0. This value specifies
that the call will return the size in bytes of the direct page that ACE requires.

Parameters

Stack before call

Previous contents
- Space - Long—Space for result
infoltemCode Word—What type of information to return
<—SP

Stack after call

Previous contents

- infoltemValue - Long—Requested information
<—SP
Errors $1D04 aceNoSuchParam Requested information type not
supported.

extern pascal LongWord ACEInfo(infoltemCode) ;

Word infoltemCode;

2712 Apple 1IGs Toolbox Reference, Volume 3

Audio Compression and Expansion tool calls

The Audio Compression and Expansion tool calls are all new calls, added to the Apple IIGs®
Toolbox since the first two volumes of the Toolbox Reference were published.

ACECompBegin $0B1D

Prepares the ACE tools to compress a new audio sequence. After ACECompress
completes the process of compression and returns, the ACE tools normally save certain
relevant state information so that subsequent calls to ACECompress can be used on
succeeding parts of the same audio sequence. It is often desirable to break a long audio
signal into smaller parts for compression. The preservation of appropriate state variables
allows a call to ACECompress to compress part of such a signal and then, for a
subsequent call, to continue the compression process where the previous call left off.

Just before a program calls ACECompress to process a new audio sample, it should call
ACECompBegin to ensure that all saved state information is cleared and that
ACECompress is starting with a “clean slate.” When an application is compressing a long
audio sample as a number of smaller pieces, it should call ACECompBegin only before the
first subsequence. Thereafter, the application should not make this call until all parts of
the sequence have been processed. The state information that ACE preserves between
calls allows ACECompress to process subsequent blocks, using appropriate information
from previous ones.

Call AcECompBegin only before compressing the first sequence of a series of sub-
sequences, or before compressing a single sequence that is not part of a longer sequence.

Parameters This call has no input or output parameters. The stack is unaffected.
Errors $1D03 aceNotActive ACE Tool Set not started up.
C extern pascal void ACECompBegin () ;

Chapter 27 Audio Compression and Expansion Tool Set

2713

ACECompress $091D

Compresses a number of blocks of digital audio data and stores the compressed data at a
specified location. Each input block contains 512 bytes of data to be compressed. Your
program also specifies the compression method, using the method parameter.

Before issuing the ACECompress tool call, your program should call ACECompBegin to
prepare the ACE Tool Set for audio compression.

& Note: Because ACECompress is guaranteed to reduce the size of every byte of source
data, the resulting data can be stored in the same place as the source data. That is, the
source and destination locations in RAM can be the same.

Parameters

Stack before call

Previous contents

- src - Long—Handle to the source data
- srcOffset - Long—Offset from src to the actual storage location
- dest - Long—Handle to storage for the resulting data
- destOffset - Long—Offset from dest to the actual storage location
nBlks Word—Number of 512-byte blocks of source data
method Word—Method of compression
<—SP

Stack after call

I Previous contents |

| | <—SP
Errors $1D05 aceBadMethod Specified compression method
not supported.
$1D06 aceBadsrc Specified source invalid.
$1D07 aceBadbDest Specified destination invalid.
$1D08 aceDataOverlap Specified source and destination

areas overlap in memory.

27-14 Apple 1IGs Toolbox Reference, Volume 3

src, dest

srcOffset, destQffset

nBlks

method

extern pascal void ACECompress(src, srcOffset, dest,

destOffset, nBlks, method);

Handle src, dest;
Long srcOffset, destOffset;
Word nBlks, method;

Contain handles to source and destination data locations,
respectively.

Contain byte offsets from locations specified by src and dest,
respectively. These parameters allow your program to set a starting
location within an input sample or output buffer.

Specifies the number of 512-byte blocks of audio data to be
compressed.

Specifies the compression method to be used by ACECompress
when processing the data. A value of 1 causes each byte of input data
to be compressed to a 4-bit quantity; a value of 2 yields 3 bits per
byte of input data.

Clearly, the value of the method parameter helps determine the size of
the resulting data that ACECompress stores at destOffset bytes
beyond the location specified by dest. When using method 1 (4-bit
compression), you can calculate the number of bytes ACECompress
will produce by multiplying the contents of the nBlks parameter by the
number of bytes in a data block (512), multiplying that result by the
number of result bits per input byte (4), and then dividing by the

number of bits in a byte (8), as in this formula:
((nBlks*512)*4) /8

For method 2, the same basic calculation applies, except that each
input byte results in 3 output bits.

((nBlks*512)*3)/ 8

Chapter 27 Audio Compression and Expansion Tool Set

2715

ACEExpand $0A1D

Expands a previously compressed audio sample, using the method specified by the
method parameter, and stores it at the specified location. Unlike ACECompress,
ACEExpand cannot store its results in the same location as its source because the
resulting data is 2 to 2.67 times as large as the source.

Parameters

Stack before call

Previous contents

- src - Long—Handle to the source data

- srcOffset - Long—Offset from src to the actual storage location

- dest - Long—Handle to storage for the resulting data

- destOffset - Long—Offset from dest to the actual storage location

nBlks Word—Number of 512-byte blocks to be stored at dest
method Word—Method of compression
<—S§P

Stack after call

| Previous contents

| <—SP
Errors $1D05 aceBadMethod Specified compression method
not supported.
$1D06 aceBadSrc Specified source invalid.
$1D07 aceBadbDest Specified destination invalid.
$1D08 aceDataOverlap Specified source and destination

areas overlap in memory.

2716 Apple 1IGs Toolbox Reference, Volume 3

src, dest

srcOffset, destOffset

nBlks

method

extern pascal void ACEExpand(src, srcOffset, dest,

destOffset, nBlks, method):

Handle src, dest;
Long srcOffset, destOffset;
Word nBlks, method;

Contain handles to source and destination data locations,
respectively.

Contain byte offsets from locations specified by src and dest,
respectively. These parameters allow your program to set a starting
location within the input compressed data or output buffer.

Specifies the number of 512-byte blocks of expanded data to be
returned at the location destOffset bytes beyond dest.

Specifies the method used when the sample was compressed. A value
of 1 indicates that ACEExpand is to expand each 4-bit quantity in the
compressed sample into an 8-bit byte. A value of 2 causes
ACEExpand to process 3-bit quantities in the compressed sample.

Chapter 27 Audio Compression and Expansion Tool Set

27-17

ACEExpBegin $0C1D

Prepares ACE to expand a new sequence. Like ACECompBegin, ACEExpBegin clears any
stored state information from previous calls before expanding compressed data. You can
expand a large compressed sample by processing it as a series of subsequences with
repeated calls to ACEExpand, because certain appropriate state variables are preserved
from call to call. If you are calling ACEExpand to work on a new sequence that bears no
relation to any other compressed sequence, or to expand a short sequence in just one call
to ACEExpand, you should make this call first to clear these state variables. If, however,
you are making a call to ACEExpand to expand a sequence that is a part of a longer
sequence and is not the first subsequence, you should not make this call first, because it
will throw away all information that ACE has recorded about the previous sequences.

Parameters This call has no input or output parameters. The stack is unaffected.
Errors $1D03 aceNotActive ACE Tool Set not started up.
C extern pascal void ACEExpBegin();

2718 Apple IiGs Toolbox Reference, Volume 3

ACE Tool Set error codes

Table 27-1 lists the error codes that may be returned by Audio Compression and Expansion Tool

Set calls.

u Table 27-1 ACE Tool Set error codes

Value Name Definition

$0000 aceNoError No error

$1D01 aceIsActive ACE Tool Set already started up

$1D02 aceBadDP Requested direct-page location invalid

$1D03 aceNotActive ACE Tool Set not started up

$1D04 aceNoSuchParam Requested information type not supported

$1D05 aceBadMethod Specified compression method not
supported

$1D06 aceBadSrc Specified source invalid

$1D07 aceBadDest Specified destination invalid

$1D08 aceDataOverlap Specified source and destination areas
overlap in memory

$1DFF aceNot Implemented The requested function has not been

implemented

Chapter 27 Audio Compression and Expansion Tool Set

27-19

Chapter 28 Control Manager Update

This chapter documents new features of and information about the
Control Manager. The complete Control Manager documentation is in
Volume 1, Chapter 4 of the Apple IIGS Toolbox Reference.

28-1

Error corrections

This section documents errors in Chapter 4, “Control Manager,” in Volume 1 of the Toolbox
Reference.

» The color table for the size box control in the Toolbox Reference is incorrect. The
correct table follows, with new information in boldface.

growOutline word
growNorBack word
growSelBack word

Outline color

bits 15-8 = zero

bits 7-4 = outline color
bits 3-0 = zero

Color of interior when not highlighted

bits 15-8 = zero

bits 7-4 = background color
bits 3-0 = icon color

Color of interior when highlighted
bits 15-8 = zero

bits 74 = background color
bits 3-0 = icon color

= A statement on page 4-76 of the Toolbox Reference, in the section that covers the
SetCtlParams call, is not strictly accurate. The statement that the call “sets new
parameters to the control's definition procedure” is misleading; the call does not set
the parameters directly. Rather, it sends the new parameters to the control’s definition

procedure, unlike setct 1value, which actually sets the appropriate value in the
control record and then passes the value to the definition procedure.

282

Apple IIGs Toolbox Reference, Volume 3

Clarifications

The following items provide additional information about features previously described
in Volume 1 of the Toolbox Reference.

s The barArrowBack entry in the scroll bar color table was never implemented as first
intended and is no longer used.

a The Control Manager preserves the current port across Control Manager calls, including
those that are passed through other tools, such as the Dialog Manager.

s The Control Manager preserves the following fields in the port of a window that

contains controls:

bkPat
pnLoc
pnSize
pnMode
pnPat
pnMask
pnVis
fontHandle
fontID
fontFlags
txSize
txFace
txMode
spExtra
chExtra
fgColor
bgColor

background pattern
pen location

pen size

pen mode

pen pattern

pen mask

pen visibility

handle of current font
ID of current font
font flags

text size

text face

text mode

value of space extra
value of character extra
foreground color
background color

» The control definition procedures for simple buttons, check boxes, and radio buttons
can now compute the size of their boundary rectangles automatically. The computed
size is based on the size of the title string of the button.

s To ensure predictable color behavior, you should always align color table-based
controls on an even pixel boundary in 640 mode. If you do not do so, the control will
not appear in the colors you specify, due to the effect of dithering.

Chapter 28 Control Manager Update

283

New features of the Control Manager

The Control Manager now supports a number of new features. This section discusses these
new features in detail.

Colors in control tables now use all four color bits in both modes; they formerly used
only 2 bits in 640 mode. This change affects all control color tables defined in the
Toolbox Reference. For any applications that use color controls in 640 mode, the effect

is that controls will be a different color. This change allows dithered colors to be used
with controls.

The scroll bar control definition procedure now maintains the required relationship
among the ct1vValue, viewSize, and datasize fields of a scroll bar record. Prior
to Apple IIGS system software 5.0, it was the responsibility of the application to
ensure that the ct 1value field never exceeded the difference between datasize
and viewsize (datasSize — viewsize). The scroll bar control definition procedure

now adjusts the ct 1value or datasize field if the other quantities are set to invalid
values.

For example, if viewsize = 30 and datasize = 100, then the maximum allowable value
of ct1value is 70. If an application set the ct 1value field to 80, the Control Manager
would adjust datasize to 110. In this same example, if ct 1value =70 and the

application set datasize to 90, the Control Manager would adjust ct 1value to 60.

Changes to the viewsize field can also invalidate the three settings. In the example
mentioned before, in which ct1value =70, viewsize =30, and datasize = 100,
setting viewsSize to 40 would cause the Control Manager to set ct 1vValue to 60.

Keystroke processing in controls

Apart from the normal use of keystrokes to enter data, the Control Manager now supports
two special uses for keyboard data: keystroke equivalents and switching between
certain types of controls.

284 Apple 1IGs Toolbox Reference, Volume 3

Many types of controls support keystroke equivalents, which allow the user to select the
control by pressing a keyboard key. You assign a keystroke equivalent for a control in its
control template (see “New Control Manager Templates and Records” later in this chapter
for specifics on control templates). When the user presses that key, TaskMaster will return
an event just as if the user had clicked in the control. Further, the system will automatically
highlight and dim the control. Note that this feature is available only to controls that have
been created with the NewCont ro12 tool call, and for which the fct 1WwantEvents bit
has been set to 1 in the moreF lags word of the control template. See “New and Changed
Controls” later in this chapter for information about which controls support keystroke
equivalents.

Edit field controls (LineEdit controls and TextEdit controls) accept keystrokes as part of
their normal function. Note, however, that more than one edit field control can be used in
a window. Under these circumstances, the user moves among these controls by pressing
the Tab key. In addition, the system must keep track of which control is meant to receive
user keystrokes. To do so, the Control Manager now supports the notion of a target
control. The target control is the edit field control that is the current recipient of user

actions (keystrokes and menu items).

The Control Manager and resources

You can now specify most data for the Control Manager using either pointers, handles, or
resource IDs (see Chapter 45, “Resource Manager,” in this book for complete information
on resources). Because the form of the specification may differ, the Control Manager (as
well as many other tool sets) also requires a reference type, which indicates whether a
particular reference is a pointer, handle, or resource ID. You set the reference type and the
reference as appropriate in the control template you pass to the Control Manager
NewControl2 tool call. Note further that the type of reference you use when you specify
data for the Control Manager governs how that data is later accessed. For example, if you
originally specify the color table for a control with a handle, then anytime the system
returns a reference to that color table, the reference is a handle; similarly, your application
must always refer to that color table with a handle.

You can use resources to store a wide variety of items for the Control Manager. For
example, the titles associated with simple buttons, radio buttons, and check boxes
created with the NewCont ro12 tool call may be stored as resources. As a result, your
application may free the space devoted to the title string after the control has been
created. Similarly, you can define control definition procedures as resources. The Control
Manager loads the code when it is needed.

Chapter 28 Control Manager Update

285

The Control Manager handles resources differently according to the relative permanence
of the data. For temporary information, the Control Manager loads the resource, uses the
data, and then frees the resource (using the ReleaseResource tool call). For permanent
information, the Control Manager loads the resource each time the resource is accessed.
Such resources should be unlocked and unpurgeable.

The current version of the Apple 1IGS system software keeps the control definition
procedure for icon button controls in the system resource file. In the future, the system
may store other definition procedures in this resource file. Consequently, you should
ensure that the Resource Manager can reach the system resource file in any resource search
path you set up (see Chapter 45, “Resource Manager,” for more information on the
resource file search path).

New and changed controls

The Control Manager now supports more standard control types. In addition to the
original standard controls (buttons, check boxes, radio buttons, size boxes, and scroll
bars), the Control Manager now supports the following controls:

m Static text controls display text messages in a rectangle that you define. The
displayed text supports word wrap and character styling. This text cannot be edited
by the user.

s Picture controls draw a picture into a defined rectangle.

= Icon button controls allow you to present an icon as part of a button control. A
defined icon is displayed within the bounds of the rectangle that represents the button
control on the screen. Icon buttons include support for keyboard equivalents.

s LineEdit controls allow the user to enter single-line items.

= TextEdit controls, supported by the new TextEdit tool set (see Chapter 49,
“TextEdit Tool Set,” in this book), allow the user to edit text within a defined
rectangle, which can extend beyond a single line.

= Pop-up menu controls support scrolling lists of possible selection options that
appear when the user selects the control.

s List controls display scrollable lists of items.

286 Apple IIGs Toolbox Reference, Volume 3

To create any of these new controls, you must set up the appropriate control template
and call NewCont ro12. Unlike the NewCont ro1l tool call, which accepts its control
definition on the stack, NewCont ro12 defines controls according to the contents of one
or more control templates. These templates contain all the information necessary for the
Control Manager to create controls. Your application fills each control template with the
data appropriate to the control you wish to create. The Control Manager uses this input
specification to construct the corresponding control record and create the control. You
can use this technique to create any control, not just the new control types. For complete
information on the format and content of these control templates, see “New Control
Manager Templates and Records” later in this chapter.

All controls created by NewCont ro12, rather than NewCont rol, are referred to as
extended controls. Functionally, extended controls do not differ from controls created
by NewControl. In fact, extended control records work with all Control Manager tool
calls. However, the control record for an extended control contains more data than the
old-style record. In addition, many new Control Manager calls and features are valid only
for extended controls. Note that all controls created by NewCont rol12, not just the new
control types, are extended controls. For complete information on the format and
content of extended control records, see “New Control Manager Templates and Records”
later in this chapter.

You may call NewCont ro12 directly or you may invoke it indirectly by calling
NewWindowz2. See Chapter 45, “Resource Manager,” and Chapter 52, “Window Manager
Update,” for details on new window calls.

The following sections discuss each type of control supported by the Control Manager.
For the original controls, these sections address new features provided by the Control
Manager. For new control types, these sections introduce you to the functionality now

provided.
Simple button control

Simple button controls created with the NewControl2 tool call can support keystroke
equivalents, which allow the user to activate the button by pressing an assigned key on the
keyboard. See “Keystroke Processing in Controls™ earlier in this chapter for details.

Check box control

Check box controls created with the NewContro12 tool call can support keystroke
equivalents, which allow the user to activate the box by pressing an assigned key on the
keyboard. See “Keystroke Processing in Controls” earlier in this chapter for details.

Chapter 28 Control Manager Update

287

Icon button control

This new type of control can display an icon as well as text in a defined window. You
specify the boundary rectangle for the window and a reference to the icon when you
create the control. See Chapter 17, “QuickDraw II Auxiliary,” in Volume 2 of the Toolbox
Reference for information about icons. You can create icon button controls only with the
NewControl2 tool call.

Icon button controls operate much as simple button controls do. Note, however, that
with icon controls, the control rectangle is inset slightly from its specified coordinates
before the button is drawn. As a result, outlined round buttons stay completely within the
specified control rectangle (this is not the case for an outlined round simple button

control). Icon button controls support keyboard equivalents. See “Keystroke Processing
in Controls” earlier in this chapter for details.

The icon is drawn each time the control is drawn. The icon and text are centered in the
specified control rectangle. If the control has no text, the icon is still centered. The icon is
not clipped to the control rectangle. If the icon is larger than the specified control
rectangle, the portion of the icon that lay outside the rectangle is not erased when you
erase the control.

Note that icon controls require the QuickDraw™ II Auxiliary and Resource Manager tool
sets. Note as well that the control definition procedure for icon buttons is kept in the
system resources file, so your application should ensure that the system disk is online
before defining an icon button control. Your application can prompt the user to insert the
system disk if it is not already online.

LineEdit control

This new control type lets your application manage single-line, editable items in a window.
You specify the boundary rectangle for the text, the maximum number of characters allowed,
and an initial value for the displayed text string when you create the control with the
NewControl2 tool call. The text is updated each time the control is drawn. LineEdit controls
also support password fields, which do not echo the characters entered by the user. Rather,
the control echoes each typed character as an asterisk (see Chapter 34, “LineEdit Tool Set
Update,” for information about the new features in the LineEdit Tool Set).

LineEdit controls respond to both mouse and keyboard events. If your application uses
TaskMaster, the system handles most events automatically. To take full advantage of
TaskMaster, set the tmContentCont rols, tmControlKey,and tmIdleEvents ﬂags
in the taskMask field of the task record to 1 (see Chapter 52, “Window Manager
Update,” for information about the new features of TaskMaster).

288 Apple IIGs Toolbox Reference, Volume 3

If your application does not use TaskMaster, your application must call TrackControl
to track the mouse and perform appropriate text selection when the user presses the
mouse button in a LineEdit control. TaskMaster does this automatically if you have set
the tmContentControls flagto 1 in the taskMask field of the task record.

Without TaskMaster, your application sends keyboard events to LineEdit controls using
the sendEventTocCt 1 tool call (see “New Control Manager Calls” later in this chapter).
First, your code must check for menu key equivalents. If none are found, then issue the
SendEventTocCt1 call, setting targetOonlyFlag to FALSE (all controls that want
events are searched), windowPtr to NIL (find the top window), and
extendedTaskRecPtr to refer to the task record containing the keystroke
information. Again, TaskMaster does all this for you if you have set the tmControlkey
flag to 1 in the taskMask field.

To keep the insertion point blinking, your application must send idle events to the
LineEdit control. To do this, issue a SendEventTocCt1 call, setting targetOnlyFlag
to TRUE (send event only to target control), windowPt r to NIL (use top window), and
extendedTaskRecPtr to refer to the task record containing the event information.
TaskMaster does this for you if you have set the tm1dleEvents flag to 1 in the
taskMask field.

The LineEdit tool set performs line editing in LineEdit controls. If you want to issue
LineEdit tool calls directly from your program, retrieve the LineEdit record handle from
the ct 1Data field of the control record for the LineEdit control.

List control

This new control type allows your program to display lists from which the user may select
one or more items. You have the benefit of full List Manager functionality with respect to
such features as selection window scrolling and item selection (single item, arbitrary
items, or ranges). You specify the parameters for the list as well as the initial conditions
for its display when you define the control. The Control Manager and the List Manager
take care of the rest. You can create list controls only with the NewCont ro12 tool call.

List controls use the List Manager tool set. To understand how to use this control in your
application, see Chapter 35, “List Manager Update,” in this book.

Picture control

This new control type displays a QuickDraw picture in a specified window. You specify
the boundary rectangle for the control and a reference to the picture when you create the
control. The picture is drawn each time the control is drawn. You can create picture
controls only with the NewContro12 tool call.

Chapter 28 Control Manager Update

289

Note that when the picture is drawn, the boundary rectangle for the control is used as the
picture destination rectangle (see Chapter 17, “QuickDraw II Auxiliary,” in Volume 2 of
the Toolbox Reference for details about picture drawing). As a consequence, the picture
may be scaled at draw time if the dimensions of the original picture frame are not the
same as those of the control rectangle. To force the picture to be displayed at its original
size, and thus avoid scaling, set the lower-right corner of the control rectangle to (0,0).
The Control Manager recognizes this value at control initialization time and sets the
control rectangle to be the same size as the picture frame.

In general, a click in a picture control is ignored. However, the Control Manager provides
facilities to inform your application if the user clicks in the control. To make a picture
control inactive, set the ct 1Hilite field to $FF; otherwise, the control is active and may
receive user events.

Note that picture controls require the QuickDraw II Auxiliary tool set.

Pop-up control

This new control type allows you to define and support pop-up menus inside a window.
You specify the boundary rectangle for the control, along with a reference to the menu
definition when you create the control with the NewContro12 tool call. The menu title

becomes the title of the control, and the current selection for the control is defined by the
initial value.

Pop-up controls respond to both mouse and keyboard events. If your application uses
TaskMaster, the system will handle most events automatically. To take full advantage of
TaskMaster, set the tmContentControls and tmControlKey ﬂags in the taskMask

field of the task record to 1 (see Chapter 52, “Window Manager Update,” for information
about the new features of TaskMaster).

If your application does not use TaskMaster, your application must call TrackControl
to track the mouse and present the pop-up menu to the user when the user presses the
mouse button inside a pop-up control. TaskMaster does this for you if you have set the
tmContentControls flag to 1 in the taskMask field.

Without TaskMaster, your program sends keyboard events to pop-up menu controls using
the sendEvent Toct 1 tool call (see “New Control Manager Calls” later in this chapter).
First, check for menu key equivalents. If none are found, then issue the
SendEventTocCt1 call, setting targetOnlyFlag to FALSE (all controls that want
events are searched), windowPtr to NIL (find the top window), and
extendedTaskRecPtr to refer to the task record containing the keystroke
information. TaskMaster does all this for you if you have set the tmControlKey flagto 1
in the taskMask field.

2810 Apple 11Gs Toolbox Reference, Volume 3

Note that the Control Manager places the current user selection value into ct 1value. If
you need to retrieve the user selection number, you may do so from this field.

Radio button control

Radio button controls created with the NewContro12 tool call can support keystroke
equivalents, which allow the user to select a button by pressing an assigned key on the
keyboard. See “Keystroke Processing in Controls” earlier in this chapter for details.

Scroll bar control

Scroll bar controls provide no new features.

Size box control

You can now set up size box controls that automatically invoke GrowWindow and
SizeWindow if you create the control with the NewContro12 tool call. When the user
drags the size box, the Control Manager calls GrowWindow and SizeWindow to track the
control and resize the window rectangle if the fCal1windowMgr bit in the f1ag field of
the size box control template is set to 1 (see the description of the size box control
template in “New Control Manager Templates and Records” later in this chapter). If this
flag is set to 0, then the control is merely highlighted.

Static text control

This new control type displays uneditable (hence, “static”) text in a specified window.
Static text controls accept initial text in the same format as the LETextBox2 LineEdit
tool call does. Consequently, you can place font, style, size, and color changes into the
displayed text, affording you great freedom to create a distinctive text display {see
“LETextBox2" in Chapter 11, “List Manager,” in Volume 1 of the Toolbox Reference for
information on the embedded change codes accepted by LEText Box2). In addition,
static text controls can accommodate text substitution. With this feature, you can
customize the displayed text to fit run-time circumstances. You can create static text
controls only with the NewCont ro12 tool call.

If you are going to use text substitution in your static text, your application must set up
the control template correctly (set £substituteText in £lag to 1) and tell the system
where the substitution array is kept (issue the setCt1Paramptr Control Manager tool
call). The text substitution array has the same format as that used by the Alertwindow
call (see Chapter 52, “Window Manager Update,” for information about AlertWindow
and for substitution array format and content).

Chapter 28 Control Manager Update

2811

In general, applications ignore clicks in static text controls. However, the Control
Manager provides facilities to inform your application if the user clicks in the control. To
make a static text control inactive, set the ct 1Hilite field to $FF; otherwise, the
control is active and may receive user events.

Note that static text controls require the LineEdit, QuickDraw II Auxiliary, and Font
Manager tool sets.

TextEdit control

This control lets the user create, edit, or view multiline items in a window. You specify the
boundary rectangle for the edit window, parameters governing the amount of text to be
entered, and, optionally, some initial text to display. The TextEdit control does the rest.
You can create TextEdit controls only with the NewControi2 tool call.

The TextEdit control uses the TextEdit tool set. This new tool set is completely described
in Chapter 49, “TextEdit Tool Set.” You should familiarize yourself with the material in
that chapter before using this control.

2812 Apple IIGs Toolbox Reference, Volume 3

New control definition procedure messages

Previously, control definition procedures had to support 13 message types (see Chapter 4,
“Control Manager,” in Volume 1 of the Toolbox Reference for a discussion of the original
message types). When you create custom controls with new control records (see “New
Control Manager Templates and Records” later in this chapter), your control must support
these additional messages.

Value Control Message Description

13 ctlHandleEvent Handle a keystroke or menu selection

14 ct1lChangeTarget Issued when control’s target status has
changed

15 ctlChangeBounds Issued when control’s boundary
rectangle has changed

16 ctlWindChangeSize Window size has changed

17 ctlHandleTab By pressing the Tab key, the user has
moved to a control that can be the
target

18 ctlNotifyMultiPart A multipart control (a control that

owns separate visible items) must be
hidden, drawn, or shown

19 ctlWindStateChange Window state has changed

In addition, the initcCtl, dragCtl, and recsize messages have new control routine
interfaces when used with extended controls. The following sections discuss each new or
changed message in detail.

If you must draw when handling control messages, your control definition procedure
should save the current GrafPort and set the port correctly for your control before
drawing. After your control definition procedure is finished drawing, restore the previous
GrafPort. Note that saving the current GrafPort includes saving the pen state, all pattern
and color information, and all regions in the port to which your program draws.

To maintain compatibility with future versions of the Control Manager, control definition
procedures should always return a retValue of 0 for unrecognized and unsupported control
message types. In addition, if you use custom control messages, be careful to assign type
values greater than $8000 (decimal 32,768).

Chapter 28 Control Manager Update

2813

Initialize routine

Previously, ct/Param contained param1 and param2 from NewCont rol. If you create
your custom control with NewCont rol, these input parameters are the same. However, if
you create your control with NewCont rol12 (see “New Control Manager Calls” later in this
chapter), then ctlParam contains a pointer to the control template for the control.

Drag routine

The result code for the drag routine now contains additional information that allows
control definition procedures to disable tracking. Previously, retValue indicated whether
or not your defProc wanted the Control Manager to do the dragging. For controls created
with NewCont rol, this is still the case. For controls created with NewCont ro12, your
definition procedure uses the low-order word of retValue exactly as before (zero means
that the Control Manager should drag the control; nonzero means your control definition
procedure handled it). Your defProc retumns the part code of the control in the high-order
word (see Chapter 4, “Control Manager,” in Volume 1 of the Toolbox Reference for
information on control part codes). If this value is 0, then the Control Manager assumes
that the user aborted the drag operation and performs no screen updates.

Record size routine

Previously, ct!/Param was undefined for this routine. Now, the Control Manager sets
ctiParam to 0 for controls created with NewCont rol. For controls created with
NewControl2, ct/Param contains a pointer to the control template.

Event routine

To pass information for all events, including keystroke or mouse events, the Control
Manager calls the control definition procedure with the ct 1Hand1eEvent message. Only
controls you create with either the fct 1wantEvents bit or the fct1canBeTarget bit
setto 1 in the moreFlags field of the control template will receive this message (see
“New Control Manager Templates and Records” later in this chapter for detailed
information on these flags). The first qualifying control in the control list has the first
opportunity to handle the event. If that control processes the event, then no other
controls see it. If, however, that control does not process the event, the Control Manager
passes the event to the next qualifying event in the list. This process continues until a
control handles the event or the list is exhausted. If no control definition procedure
handles the event, TaskMaster passes the event to the application.

2814 Apple IIGs Toolbox Reference, Volume 3

If your custom control can be the target control, your event routine should issue the
MakeNextCtlTarget tool call whenever the user presses the Tab key. When your routine
regains control after that call, it should check whether another control became the target
control. If so, your routine should send a ct 1Hand1eTab control message to that control
definition procedure. In either case, your routine must indicate that it handled the Tab
key event by setting retValue to $FFFFFFFF on return from the Event routine.

Parameters

Stack before call

Previous contents
- Space - Long—Space for result
ctiMessage Word—ct 1HandleEvent message
- ctlparam - Long—Pointer to task record containing event information
—theControlHandle- Long—Handle to control
<—SP

Stack after call

Previous contents

<—SP

Chapter 28 Control Manager Update

- retValue - Long—$FFFFFFEF if control took the event; $0 if control did not

2815

Target routine

To signal a change in the control’s target status (the control is now, or is no longer, the
target), the Control Manager calls the control definition procedure with the
ct1lChangeTarget message. Note that this message is sent to both the previous target
control and the new target control. Your control definition procedure can distinguish
which control is the new target by examining the £Ct1Target bit in the ct 1MoreFlags
field of the control record. This bit is set to 1 in the control record of the new target
control. In the previous target, the bit is set to 0.

In response to the ct 1ChangeTarget message, some control definition procedures
change the appearance of their control on the screen or perform other actions as
appropriate. For example, LineEdit and TextEdit controls display an insertion point or a
text selection only when they are the target.

Parameters

Stack before call

Previous contents
- Space - Long—Space for result
ctiMessage Word—ct 1ChangeTarget message
- ctlParam - Long—Undefined
—theControlHandle- Long—Handle to control
<—SP

Stack after call

Previous contents

- retValue - Long—Undefined

<—SP

2816 Apple IIGs Toolbox Reference, Volume 3

Bounds routine

To signal to the control that its boundary rectangle has changed, the Control Manager calls
the control definition procedure with the ct 1changeBounds message. In response to
this message, your control definition procedure should adjust its internal control record
variables to account for the new rectangle. For example, any subrectangles defined for a
control may need to change whenever the boundary rectangle changes.

@ Note: This message is not supported by control definition procedures currently
provided by Apple Computer, Inc.; however, you should handle this message in any
custom controls you create.

Parameters

Stack before call

Previous contents
- Space - Long—Space for result
ctiMessage Word—ct 1changeBounds message
- ctlParam - Long—Undefined
—theControlHandle- Long—Handle to control
<—SP

Stack after call

Previous contents

- retValue - Long—Undefined

<—SP

Chapter 28 Control Manager Update

28-17

Window size routine

The Control Manager calls the control definition procedure with the
ct1lWindChangeSize message whenever the user changes the size of the control
window. In response to this message, your control definition procedure should do what is
necessary to maintain a consistent screen presentation. This may entail resizing multipart
controls, moving size boxes, and so on.

Parameters

Stack before call

Previous contents
- Space - Long—Space for result
ctiMessage Word—ct1WindChangeSize message
- ctlParam - Long—Undefined
~theControlHandle- Long—Handle to control
<—SP

Stack after call

Previous contents

- retValue - Long—Undefined

<—SP

2818 Apple IIGs Toolbox Reference, Volume 3

Tab routine

Your control definition procedure receives the ct 1HandleTab message when the user
presses the Tab key while another control is the target. That control’s definition
procedure issues the MakeNextCt1Target tool call before sending this control message
(see “Event Routine” earlier in this chapter). Your definition procedure receives the
ctlChangeTarget control message before it receives the ct 1LHandleTab message.
The control definition procedure should perform the appropriate actions in response to
becoming the target as a result of a Tab keystroke rather than a mouse click. For example,
in response to this message, LineEdit and TextEdit control definition procedures select all
the text in the control in preparation for user input.

Parameters

Stack before call

Previous contents
- Space - Long—Space for result
ctiMessage Word—ct 1HandleTab message
- ctlParam - Long—Undefined
~theControlHandle- Long—Handle to control
<—SP

Stack after call

Previous contents

- retValue - Long—Undefined

<—SP

Chapter 28 Control Manager Update

2819

Notify multipart routine

The Control Manager calls the control definition procedure with the
ctlNotifyMultiPart message to signal that a multipart control needs to be hidden,
shown, or drawn. This message is relevant only to multipart controls, which include other
displayable entities that do not fit within the boundary rectangle. For example, list
controls consist of the list itself and a scroll control, which is separate, and are therefore
multipart controls. By contrast, the scroll control itself is not a multipart control because
its component parts (arrows, page regions, and thumb) are fully contained in the scroll
control boundary rectangle, and are not separate functional entities. The
fCtlIsMultiPart bitin the moreF1ags field of the control template must be set to 1
for a control to receive this message. In response to this message, your definition
procedure must do what is needed to hide or show the control completely.

The low-order word of ct/Param tells the definition procedure what to do.

0 Hide the entire control

1 Erase the entire control

2 Show the entire control

3 Show one control
Parameter

Stack before call

Previous contents
- Space - Long—Space for result
ctiMessage Word—ct1NotifyMultiPart message
- ctlParam - Long—High word is undefined; low word contains option
—theControlHandle- Long—Handle to control
<—SP
Stack after call
Previous contents
- retValue - Long—Undefined
<—SP

2820 Apple IIGs Toolbox Reference, Volume 3

Window change routine

The Control Manager calls the control definition procedure with the
ct1lWindStateChange message to signal that the state of the window containing the
control has changed. For example, a control definition procedure receives this message
whenever the control's window is activated or deactivated. At this time, the control
definition procedure may draw dimmed controls in windows that have been unhidden.

The low-order word of the ct/Param parameter contains the new state of the window.

$0000 The window has been deactivated
$0001 The window has been activated

The high-order word is undefined.
Parameter

Stack before call

Stack after call

Previous contents

- retValue - Long—Undefined
<—SP

Chapter 28 Control Manager Update

Previous contents
- Space - Long—Space for result
ctiMessage Word—ct 1WindStateChange message
- ctlparam - Long—Low word contains new window state; high word undefined
~theControlHandle- Long—Handle to control
<—SP

28-21

New Control Manager calls

The following sections describe new Control Manager tool calls, in alphabetical order by

call name.

CallCtlDefProc $2C10

This routine calls the specified control with the specified control message and parameter.
Set the ct/Param parameter to 0 if the control definition procedure does not accept an
input parameter (see “New Control Definition Procedure Messages” earlier in this chapter
for information on input parameters for defProc messages).

Parameters

Stack before call

Previous contents

- Space

~ ctiHandle

ctiMessage

- ctlParam

Stack after call

Previous contents

- Result

Errors None

Long—Space for result from control definition procedure
Long—Handle of control to be called
Word—Control message to send to control definition procedure

Long—Parameter to pass to control definition procedure

<—SP

Long—Result value from control definition procedure

<—SP

2822 Apple IIGs Toolbox Reference, Volume 3

extern pascal Long CallCtlDefProc(ctlHandle,

ct1lMessage, ctlParam);

Handle ctlHandle;
Word ct1lMessage;
Long ctlParam;

Chapter 28 Control Manager Update 2823

CMLoadResource $3210

This is an entry point to the internal Control Manager routine that loads resources. You
specify the resource type and ID of the resource to be loaded. See Chapter 45, “Resource
Manager,” for more information on resources.

Any errors during resource load result in system death,

A Warning Applications must never issue this call. a

Parameters

Stack before call

Previous contents

- Space -

resourceType

— resourcelD -

Stack after call

Previous contents

Long—Space for result
Word—Type of resource to load
Long—ID of resource to load

<—S§P

~ resourceHandle - Long—Handle of loaded resource
<—SP
Errors None
C extern pascal Handle CMLoadResource (resourceType,
resourcelD) ;
Word resourceType;
Long resourcelD;

2824 Apple IIGs Toolbox Reference, Volume 3

CMReleaseResource $3310

This is an entry point to the internal Control Manager routine that releases resources. You
specify the resource type and ID of the resource to be released. The resource is released
by marking it purgeable. See Chapter 45, “Resource Manager,” for more information on
resources.

Any errors result in system death.

A Warning Applications must never issue this call. a

Parameters

Stack before call

Previous contents
resourceType Word—Type of resource to release
— resourcelD - Long—ID of resource to release
<—SP

Stack after call

| Previous contents I

| | <—SP
Errors None
C extern pascal void CMReleaseResource (resourceType,
resourcelD) ;
Word resourceType;
Long resourcelD;

Chapter 28 Control Manager Update

28-25

FindTargetCtl $2610

Searches the control list for the active window and returns the handle of the target control
(the control that is currently the target of user keystrokes). FindTargetCt1 returns the
handle of the first control that has the fct 1Target flag setto 1 in the ct 1MoreFlags
field of its control record. If no target control is found or an error occurs, then the call

returns an undefined value.

This call will return a handle only to an extended control.

Parameters

Stack before call

Previous contents

- Space -

Stack after call

Previous contents

Long—Space for result

<—SP

- ctiHandle - Long—Handle of target control; undefined if none or error
<SP
Errors $1004 noCtlError No controls in window.
$1005 noExtendedCtl1Error No extended controls in window.
$1006 noCtlTargetError No target extended control.
$100C noFrontWindowError There is no front window.
C extern pascal Handle FindTargetCtl{();

2826 Apple IIGs Toolbox Reference, Volume 3

GetCtlHandleFromID $3010

Retrieves the handle to the control record for a control with a specified ct 11D field value.
The ct 11D field is an application-defined tag for a control. Set the ct 11D field with the
SetCt1ID or NewControl2 tool call; read the contents of the ct 11D field with

GetCtlID.

If an error occurs, the returned handle is undefined.
This call is valid only for extended controls.
Parameters

Stack before call

Previous contents
- Space - Long—Space for result
- ctiWindowPtr - Long—Pointer to window for control list search; NIL = top window
- ctlID - Long—ID value for desired control
<—SP

Stack after call

Previous contents

- ctiHandle - Long—Handle for specified control
<—SP
Errors $1004 noCtlError No controls in window.
$1005 noExtendedCtlError No extended controls in window.
$1009 noSuchIDError The specified ID cannot be
found.

$100C noFrontWindowError There is no front window.

C extern pascal Long GetCtlHandleFromID (ctlWindowPtr,
ctlID);

Pointer ctlWindowPtr;
Long ctlID;

Chapter 28 Control Manager Update ~ 28-27

GetCtlID $2A10

Returns the ct 11D field from the control record of a specified control. The ct 11D field is
an application-defined tag for a control. Your application can use this field in many ways.

For example, since the value of ct 11D is known at compile time, you can construct
efficient routing code for handling control messages for many different controls.

Use the setCt 1ID or NewControl2 Control Manager tool call to set the ct 11D field.

If the specified control is not an extended control, the resulting ID is undefined, and an
error is returned.

Parameters

Stack before call

Previous contents
- Space - Long—Space for result
- ctiHandle - Long—Handle to control
<—SP

Stack after call

Previous contents
- ctiiD - Long—ct 11D for specified control
<—SP

Errors $1004 noCtlError No controls in window.

$1007 notExtendedCt1Error Action valid only for extended
controls.

C extern pascal Long GetCtlID(ctlHandle) ;

Handle ctlHandle;

2828 Apple IIGs Toolbox Reference, Volume 3

GetCtlMoreFlags $2E10

Gets the contents of the ct 1MoreF1lags field of the control record for a specified
control. The ct 1MoreF1lags field contains flags governing target status, event
processing, and other aspects of the control.

Use the setct 1MoreFlags or NewControl2 Control Manager tool call to set the
ct1lMoreFlags field.

If the specified control is not an extended control, the result is undefined, and an error is
returned.

Parameters

Stack before call

Previous contents
Space Word—Space for result
- cHHandle - Long—Handle to control
<—SP

Stack after call

Previous contents
ctiMoreFlags Word—ct 1MoreFlags for specified control
<—SP

Errors $1004 noCtlError No controls in window.

$1007 notExtendedCt1Error Action valid only for extended
controls.

C extern pascal Word GetCtlMoreFlags (ctlHandle) ;

Handle ctlHandle;

Chapter 28 Control Manager Update

28-29

GetCtlParamPtr $3510

Retrieves the pointer to the current text substitution array for the Control Manager. This
array contains the information used for text substitution in static text controls (see

“Static Text Control” earlier in this chapter for details).

Set the contents of this field with the setct1ParamPtr or NewControl2 Control

Manager tool call.

¢ Note: This pointer is global to the Control Manager; it is not associated with a
specific control. For this reason, when using this feature with desk accessories be sure

to save and restore the previous contents of the field.

Parameters

Stack before call

Previous contents

- Space -

Stack after call

Previous contents

Long—Space for result

<—SP

~ SubArrayPir - Long—Pointer to text substitution array
<—SP
Errors None
C extern pascal Pointer GetCtlParamPtr():;

2830 Apple IIGS Toolbox Reference, Volume 3

InvalCtls $3710

Invalidates all rectangles for all controls in a specified window.
Parameters

Stack before call

Previous contents

- ctiWindowPtr - Long—Pointer to window for operation

<—SP

Stack after call

| Previous contents |
| | o

Errors None

C extern pascal void InvalCtls(ctlWindowPtr);

Pointer ctlWindowPtr;

Chapter 28 Control Manager Update 2831

MakeNextCtlTarget $2710

Makes the next eligible control the target control. This routine searches the control list of
the active window for the first target control (fCt 1Target bit set to 1 in the
ct1MoreFlags field of the control record). It then clears the target flag for this control,
searches the control list for the next control that can be the target (fct 1canBeTarget
bit setto 1 in ct 1MoreF1lags), and makes that control the target. The call returns the
handle of the new target control. If no new target control is found, the Control Manager
returns the handle of the current target control.

Both affected controls (the old and new target) receive ct 1ChangeTarget messages
from the Control Manager.

If an error occurs, the returned handle is undefined.

This call is valid only for extended controls.
Parameters

Stack before call

Previous contents

- Space - Long—Space for result (handle)

<—SP

Stack after call

Previous contents

- ctHandle - Long—Handle of new target control; undefined if error
<—SP
Errors $1004 noCtlError No controls in window.
$1005 noExtendedCt1Error No extended controls in window.

$100B noCtlToBeTargetError

No control could be made the
target.

C extern pascal Handle MakeNextCtlTarget () ;

2832 Apple IIGs Toolbox Reference, Volume 3

MakeThisCtlTarget $2810

Makes the specified control the target. You specify the control that is to become the
target control by passing its handle to this routine. This call will work for both active and
inactive windows.

Both affected controls (the old and new targets) receive ct 1ChangeTarget messages
from the Control Manager.

This call is valid only for extended controls.

Parameters

Stack before call

Previous contents

- ctlToBeTarget - Long—Handle to control to be made the target

<—SP

Stack after call

I Previous contents I
| | e

Errors $1007 notExtendedCt1Error Action valid only for extended
controls.
$1008 canNotBeTargetError Specified control cannot be
made the target.

C extern pascal void MakeThisCtlTarget (ctlToBeTarget) ;

Handle ctlToBeTarget;

Chapter 28 Control Manager Update

2833

NewControl2 $3110

Creates one or more new controls. You specify the parameters governing those controls in
control templates that are passed to NewContro12 (see “New Control Manager
Templates and Records” later in this chapter). If NewControl2 creates a single control, it
returns the handle to that control. If NewCont ro12 creates two or more controls, it
returns 0. For sample code showing how to use the NewContro1l2 tool call, see “Control
Manager Code Example” later in this chapter.

All controls created by NewCont ro12 have new style control records and are extended
controls.

Parameters

Stack before call

Previous contents
- Space - Long—Space for result
- ownerPtr - Long—Pointer to window for control(s)
inputDesc Word—Describes contents of inputRef
- inputRef ~ Long—Reference of a type defined by inputDesc
<—SP

Stack after call

Previous contenls

- ctiHandle - Long—Control handle (if single control created) or 0
<—SP
Errors None
C extern pascal Handle NewControl2 (ownerPtr,

inputDesc, inputRef);

Pointer ownerPtr;
Word inputDesc;
Long inputRef;

2834 Apple 11Gs Toolbox Reference, Volume 3

inputDesc

Defines the contents and type of item referenced by inputRef.

Possible values for inputDesc are

singlePtr 0
singleHandle 1
singleResource 2
ptrToPtr 3
ptrToHandle 4
ptrToResource 5
handleToPtr 6
handleToHandle 7
handleToResource 8

resourceToResource 9

inputRef is a pointer to a single-item
template.

inputRef is a handle for a single-item
template.

inputRef is a resource ID of a single-
item template (resource type of
rControlTemplate, $8004).
inputRef is a pointer to a list of
pointers to item templates.
inputRef is a pointer to a list of
handles for item templates.
inputRef is a pointer to a list of
resource IDs of item templates
(resource type of
rControlTemplate, $8004).
inputRef is a handle to a list of
pointers to item templates.
inputRefis a handle to a list of
handles for item templates.
inputRefis a handle to a list of
resource IDs of item templates
(resource type of
rControlTemplate, $8004).
inputRef is a resource ID of a list of
resource IDs of item templates (the
list reference is a resource of type
rControlList, $8003; each entry
in that list is a resource of type
rControlTemplate, $8004).

If inputRef defines a list, that list is a contiguous array of template
references (pointers, handles, or resource IDs), terminated with a

NULL entry.

Chapter 28 Control Manager Update

2835

NotifyCtls $2D10

Calls the control definition procedures for extended controls in a specified window,
sending a specified control message and parameter. You determine which controls are to
be called by setting up the mask parameter. This routine compares the value of mask with
that of the ct 1MoreF1ags field of the control record for each control in the window. If
any of the bits you have specified in mask are set to 1 in ct 1MoreFlags, the control is
sent the message you have specified (the system performs a bitwise AND operation with
maskand ct 1MoreF1lags; a nonzero result yields a call to the control).

Set the param parameter to 0 if the control definition procedure does not accept an input
parameter (see “New Control Definition Procedure Messages” earlier in this chapter for
information on input parameters for definition procedure messages).

Parameters

Stack before call

Previous contents
mask Word—Bit mask to be compared with ct 1MoreFlags
message Word—Control message to send to control definition procedures
- param - Long—Parameter to pass to control definition procedures
- window - Long—GrafPort of window whose control list is to be searched
<—SP

Stack after call

I Previous contents |

| I <—SP
Errors None
C extern pascal void NotifyCtls(mask, message, param,
window) ;
Word mask, message;
Long param, window;

2836 Apple 1IGs Toolbox Reference, Volume 3

SendEventToCtl $2910

Passes a specified extended task record (which must comply with the new format defined
in Chapter 52, “Window Manager Update,” in this book) to the appropriate control or
controls. This call returns a Boolean value indicating whether the event was fielded by a
control and returns the handle of the control that serviced the event. That handle is
returned in taskData2 of the task record for the event.

The targetOnlyFlag parameter governs how the Control Manager searches for a control to
field the event. If targetOnlyFlag is set to TRUE, sendEventToCt 1 sends the event to
the target control. If there is no target control, the result is FALSE and taskData2 is
undefined.

If targetOnlyFlag is set to FALSE, sendEvent ToCt 1 conducts a two-part search for a
control to field the event. First, the Control Manager looks for non—edit field controls that
want keystrokes (for example, buttons with keystroke equivalents). The Control Manager
tries to send the event to each such control (with the ct 1HandleEvent control
message). If no control accepts the event, the Control Manager looks for an edit field
control (LineEdit or TextEdit) that can become the target. If no control accepts the
event and there is no target, the result is FALSE and taskData2 is undefined. Otherwise,
the result is TRUE and taskData2 contains the handle of the accepting control.

This call is valid only for extended controls.
& Note: If a control can be made the target (fCt 1CanBeTarget issetto 1 in

ct1lMoreFlags of its control record), then the Control Manager sends events to that
control regardless of the setting of the £Ct 1WantEvents bit.

Parameters

Stack before call

Previous contents
Space Word—Space for result Boolean
targetOnlyFlag Word—(Boolean) TRUE = send to target only; FALSE = all controls
- ctlWindowPtr - Long—Pointer to window to search; NIL for top window
- eTaskRecPtr - Long—Pointer to extended task record for event
<—SP

Chapter 28 Control Manager Update 2837

Stack after call

Previous contents

Result Word—(Boolean) TRUE if event accepted; otherwise FALSE
<—SP
Errors $1005 noExtendedCtlError No extended controls in window.

$100C noFrontWindowError There is no front window.

extern pascal Boolean SendEventToCtl (targetOnlyFlag,
ctlWindowPtr, eTaskRecPtr):;

Word targetOnlyFlag;
Pointer ctlWindowPtr, eTaskRecPtr;

2838 Apple IIGS Toolbox Reference, Volume 3

SetctlID $2B10

Sets the ct 11D field in the control record of a specified control. The ct 11D field is an
application-defined tag for a control. Your application can use this field in many ways.
For example, since the value of ct 11D is known at compile time, you can construct
efficient routing code for handling control messages for many different controls.

Use the Getct 11D Control Manager call to retrieve the contents of this field.

If the specified control is not an extended control, an error is returned.
Parameters

Stack before call

Previous contents
- newlD - Long—New ct 11D value for the control
- ctiHandle - Long—Handle to control
<—SP

Stack after call

l Previous contents l
l | <—SP

Errors $1004 noCtlError No controls in window.
$1007 notExtendedCt1Error Action valid only for extended
controls.
C extern pascal void SetCtlID(newID, ctlHandle):;
Long newlD;
Handle ctlHandle;

Chapter 28 Control Manager Update

2839

SetCtlMoreFlags $2F10

Sets the contents of the ct 1MoreFlags field of the control record for a specified
control. The ct 1MoreFlags field contains flags governing target status, event
processing, and other aspects of the control.

Use the GetCt 1MoreFlags Control Manager call to retrieve the contents of this field.

If the specified control is not an extended control, an error is returned.
Parameters

Stack before call

Previous contents
newMoreFlags Word—New ct 1MoreFlags value for the control
— CctiHandle - Long—Handle to control
<—SP

Stack after call

| Previous contents l

| ——
Errors $1004 noCtlError No controls in window.
$1007 notExtendedCtlError Action valid only for extended
controls.
C extern pascal void SetCtlMoreFlags (newMoreFlags,

ctlHandle) ;

Word newMoreFlags;
Handle ctlHandle;

2840 Apple IiGs Toolbox Reference, Volume 3

SetCtlParamPtr $3410

Sets the pointer to the current text substitution array for the Control Manager. This array
contains the information used for text substitution in static text controls (see “Static
Text Control” earlier in this chapter).

Use the Getct 1ParamPtr Control Manager tool call to retrieve the contents of this field.

& Note: This pointer is global to the Control Manager; it is not associated with a specific
control. For this reason, when using this feature with desk accessories be sure to save
and restore the previous contents of the field.

Parameters

Stack before call

Previous contents

- subArrayPtr - Long—New pointer to text substitution array

<—SP

Stack after call

I Previous contents l

I | <—SP
Errors None
C extern pascal void SetCtlParamPtr (subArrayPtr):;
Pointer subArrayPtr;

Chapter 28 Control Manager Update

2841

Control Manager error codes

Table 28-1 lists the error codes that may be returned by Control Manager calls.

m Table 28-1 Control Manager error codes

Yalue Name Definition

$1001 wmNotStartedUp Window Manager not initialized

$1002 cmNotInitialized Control Manager not initialized

$1003 noCtlInList Control not in window list

$1004 noCtlError No controls in window

$1005 noExtendedCtlError No extended controls in window

$1006 noCtlTargetError No target extended control

$1007 notExtendedCtlError Action valid only for extended controls

$1008 canNotBeTargetError Specified control cannot be made the
target

$1009 noSuchIDError The specified ID cannot be found

$100A tooFewParmsError Too few parameters specified

$100B noCtlToBeTargetError No control could be made the target

$100C noFrontWindowError There is no front window

2842 Apple IIGS Toolbox Reference, Volume 3

New Control Manager templates and records

This section describes the format and content of all Control Manager control templates
and records. In addition, “Control Manager Code Example” shows how to use control
templates with the NewContro12 tool call.

NewControl2 input templates

Each type of control has its own control template, corresponding to the control record
definition for the control type. The item template is an extensible mechanism for defining
new controls. Rather than placing all the control parameters on the stack at run time, the
template holds these parameters in a standard format that can be defined at compile
time. Furthermore, the templates can be created as a resource, simplifying program
development and maintenance, reducing code size, and reducing fixed memory usage.
Your program can pass more than one input template to NewControl2 at a time.

All control templates have the same seven-field header. One of the header fields is a
parameter count, allowing extensible support for templates of variable length. The value
of the parameter count field tells the Control Manager how many parameters to use,
making optional template fields possible.

The following sections define the item templates for each control type. Field names
marked with an asterisk (*) represent optional fields.

Chapter 28 Control Manager Update

2843

Control template standard header

Each control template contains the standard header, which consists of seven fields.
Following that header, some templates have additional fields that further define the
control to be created. The format and content of the standard template header are shown
in Figure 28-1.

Custom control definition procedures establish their own item template layout. The only
restriction placed on these templates is that the standard header be present and well
formed. Custom data for the control procedure may follow the standard header.

a Figure 28-1 Control template standard header

S00 |- pCount — Word
$02 |- —
- [0 — Long
SO6 rect . Rectangle
SOE [~ -
— procRef - Long
12 | flag — Word
$14 |- moreFlags - Word
$16 []
— refCon -1 bong
pCount Count of parameters in the item template, not including the pcount
field. Minimum value is 6; maximum value varies according to the type
of control template.
1D Field that sets the ct 11D field of the control record for the new
control. The application may use the ct 11D field to provide a
straightforward mechanism for keeping track of controls. The control
ID is a value assigned by your application for your convenience. Your
application can use the ID, which has a known value, to identify a
particular control.
rect Field that sets the ct 1Rect field of the control record for the new

control. Defines the boundary rectangle for the control.

2844 Apple IIGs Toolbox Reference, Volume 3

procRef

Sets the ct 1Proc field of the control record for the new control. This
field contains a reference to the control definition procedure for the
control. The value of this field is either a pointer to (or a resource ID
for) a control definition procedure or the ID of a standard routine. If
the fct 1ProcRefNotPtr flag in the moreF1lags field is set to 0,
then procRe £ must contain a pointer. If the flag is set to 1, then the
Control Manager checks the low-order three bytes of procref. If
these bytes are all zero, then procRe £ must contain the ID for a
standard routine; if these bytes are nonzero, procRe£ contains the
resource ID for a control routine.

The standard values are

simpleButtonControl $80000000 Simple button
checkControl $82000000 Check box
iconButtonControl $07FF0001 Icon button
editLineControl $83000000 LineEdit
listControl $89000000 List
pictureControl $8D000000 Picture
popUpControl $87000000 Pop-up menu
radioControl $84000000 Radio button
scrollBarControl $86000000 Scroll bar
growControl $88000000 Size box
statTextControl $81000000 Static text
editTextControl $85000000 TextEdit

& Note: The procRef value for iconButtonControl is not truly a standard value.
Rather, it is the resource ID for the standard control definition procedure for icon

buttons.

flag

A word used to set both ct1Hilite and ct1Flag in the control
record for the new control. Since this is a word, the bytes for
ctlHilite and ct1Flag are reversed. The high-order byte of £1ag
contains ct 1Hilite, and the low-order byte contains ct 1F1ag. The
bits in £1ag are mapped as follows:

Highlight bits15-8 Indicates highlighting style
0 = Control active, no highlighted parts

1-254 = Part code of highlighted part
255 = Control inactive

Chapter 28 Control Manager Update

2845

Invisible

bit 7 Governs visibility of control

0 = Control visible
1 = Control invisible

Variable bits 6-0 Values and meaning depend on control
type
moreFlags Used to set the ct IMoreF1lags field of the control record for the
new control.

The high-order byte is used by the Control Manager to store its own
control information. The low-order byte is used by the control
definition procedure to define reference types.

The defined Control Manager flags are

fCtlTarget

fCtlCanBeTarget

fCt1lWantEvents

fCtlProcRefNotPtr

fCtlTellAboutSize

fCtlIsMultiPart

$8000
$4000

$2000

$1000

$0800

$0400

If this flag is set to 1, this control is currently the
target of any typing or editing commands.

If this flag is set to 1, then this control can be
made the target control.

If this flag is set to 1, then this control can be
called when events are passed via the
SendEventToCt 1 Control Manager call. Note
that if the fct 1canBeTarget flagissetto 1,
this control receives events sent to it regardless
of setting of this flag.

If this flag is set to 1, then the Control Manager
expects procRef (o contain the ID or resource
ID of a control procedure. If it is set to 0, then
procRef contains a pointer to a custom
control procedure.

If this flag is set to 1, then this control needs to
be notified when the size of the owning window
has changed. This flag allows custom control
procedures to resize their associated control
images in response to changes in window size.
If this flag is set to 1, then this is a multipart
control. This flag allows control definition
procedures to manage multipart controls
(necessary since the Control Manager does not
know about all the parts of a multipart control).

2846 Apple IIGs Toolbox Reference, Volume 3

The low-order byte uses the following convention to describe
references to color tables and titles (note, though, that some control
templates do not follow this convention):

titleIsPtr $00 Title reference is by pointer.

titleIsHandle $01 Title reference is by handle.

titleIsResource $02 Title reference is by resource ID (resource type
corresponds to string type).

colorTableIsPtr $00 Color table reference is by pointer.

colorTableIsHandle $04 Color table reference is by handle.

colorTableIsResource $08 Color table reference is by resource ID (resource
type is rCt 1ColorTbl, $800D).

refCon Used to set the ct 1Re£Con field of the control record for the new

control. Reserved for application use.

Keystroke equivalent information

Many of these control templates allow you to specify keystroke equivalent information
for the associated controls. Figure 28-2 shows the standard format for that keystroke

information.

s Figure 28-2 Keystroke equivalent record layout

500 keyl Byte
S01 key2 Byte
$02| keyModifiers - Word
S04 keyCareBits —{ Word

keyl

key2

This is the ASCII code for the uppercase or lowercase key equivalent.

This is the ASCII code for the lowercase or uppercase key equivalent.
Taken with kxey1, this field completely defines the values against
which key equivalents will be tested. If only a single key code is valid,
then set key1 and key2 to the same value.

Chapter 28 Control Manager Update

2847

keyModifiers

keyCareBits

These modifiers must be set to 1 if the equivalence test is to pass.
The format of this flag word corresponds to that defined for the
event record in Chapter 7, “Event Manager,” in Volume 1 of the
Toolbox Reference. Note that only the modifiers in the high-order
byte are used here.

These modifiers must match for the equivalence test to pass. The
format for this word corresponds to that for keyModifiers. This
word allows you to discriminate between double-modified
keystrokes. For example, if you want Control-7 to be an equivalent,
but not Option-Control-7, set the following three bits to 1: the
controlKey bit in keyModifiers and both the opt ionKey and
the cont rolKey bits in keyCareBits. If you want Return and Enter
to be treated the same, set the keyPad bit to 0.

Simple button control template

Figure 28-3 shows the template that defines a simple button control.

s Figure 28-3 Item template for simple button controls

$00
$02

506 !

SOE

$12

$14
$16

S1A

SIE

$22

= pCount Word—Parameter count for template: 7, 8, or 9
E 1D E Long—Application-assigned control ID
rect * Rectangle—Boundary rectangle for control
E procRef E Long—simpleButtonCont rol=580000000
L flag ~ Word—Highlight and control flags for control
- moreFlags — Word—Additional control flags
E refCon _:_ Long—Application-defined value
E titleRef E Long—Reference to title of button
E *colorTableRef E Long—Reference to color table for control (optional)
L *keyEquivalent | Block, 6 bytes—Keystroke equivalent data (optional)

2848 Apple IIGs Toolbox Reference, Volume 3

Defined bits for £1ag are

Reserved
ctlInvis
Reserved
Button type

bits 15-8
bit 7
bits 6-2
bits 1-0

Defined bits for moreFlags are

fCtlTarget
fCtlCanBeTarget
fCtlWantEvents
fCtlProcRefNotPtr
fCt1lTellAboutSize
Reserved

Color table reference

Title reference

bit 15
bit 14
bit 13
bit 12
bit 11
bits 104
bits 3-2

bits 1-0

Must be set to 0.

0 = Visible, 1 = Invisible.

Must be set to 0.

Describes button type.

00 = Single-outlined, round-cornered button
01 = Bold-outlined, round-cornered button
10 = Single-outlined, square-cornered button
11 = Single-outlined, square-cornered, drop-
shadowed button

Must be set to 0.

Must be set to 0.

Set to 1 if button has keystroke equivalent.
Must be set to 1.

Must be set to 0.

Must be set to 0.

Defines type of reference in colorTableRef.
See Chapter 4, “Control Manager,” in Volume 1
of the Toolbox Reference for the definition of
the simple button color table.

00 = Color table reference is by pointer

01 = Color table reference is by handle

10 = Color table reference is by resource ID
(resource type of rCt1ColorTbl, $800D)
11 = Invalid value

Defines type of title reference in tit leRef.
00 = Title reference is by pointer

01 = Title reference is by handle

10 = Title reference is by resource ID (resource
type corresponds to string type)

11 = Invalid value

keyEquivalent Keystroke equivalent information stored at keyEquivalent is
formatted as shown in Figure 28-2.

Chapter 28 Control Manager Update

Check box control template

Figure 28-4 shows the template that defines a check box control.

s Figure 28-4 Control template for check box controls

$00 pCount -
$02 | -

[— 1D -
$06

rect
SOE | —~

— procRef =
S12 |- flag -~
$14 | moreFlags —
$16 |- -

— refCon]
SIAC -

= titleRef -
SIEL. jnicialvalve
$20 |- —

[~ *colorTableRef —
S24:

*keyEquivalent

Defined bits for £1ag are

Reserved
ctlInvis
Reserved

Word—Parameter count for template: 8, 9, or 10

Long—Application-assigned control ID

* Rectangle—Boundary rectangle for control

Long— checkBoxControl =$82000000

Word—Highlight and control flags for control
Word—Additional control flags

Long—Application-defined value

Long—Reference to title of box
Word—Initial box setting: 0 for clear, 1 for checked

Long—Reference to color table for control (optional)

: Block, 6 bytes—Keystroke equivalent data (optional)

bits 15-8 Must be set to 0.
bit 7 0 = Visible, 1 = Invisible.
bits 6-0 Must be set to 0.

2850 Apple IIGs Toolbox Reference, Volume 3

Defined bits for moreFlags are

fCtlTarget
fCtiCanBeTarget
fCtlWwantEvents
fCtlProcRefNotPtr
fCt1lTellAboutSize
Reserved

Color table reference

Title reference

bit 15
bit 14
bit 13
bit 12
bit 11
bits 104
bits 3-2

bits 1-0

Must be set to 0.
Must be set to 0.

Set to 1 if check box has keystroke equivalent.

Must be set to 1.

Must be set to 0.

Must be set to 0.

Defines type of reference in colorTableRef
(see Chapter 4, “Control Manager,” in Volume 1
of the Toolbox Reference for the definition of
the check box color table).

00 = Color table reference is by pointer

01 = Color table reference is by handle

10 = Color table reference is by resource ID
(resource type of rCt1ColorTbl, $800D)

11 = Invalid value

Defines type of title reference in titleRef.
00 = Title reference is by pointer

01 = Title reference is by handle

10 = Title reference is by resource ID (resource
type corresponds to string type)

11 = Invalid value

keyEquivalent Keystroke equivalent information stored at keyEquivalent is
formatted as shown in Figure 28-2.

Chapter 28 Control Manager Update

2851

Icon button control template

Figure 28-5 shows the template that defines an icon button control. For more information
about icon button controls, see “Icon Button Control” earlier in this chapter.

= Figure 28-5 Control template for icon button controls

$00 | pCount
$02 |-]
| D —
506 rect
SOE |- -
- procRef —
$12 L flag —
$14 [moreFlags —
$16 [i
— refCon -
SIAL -
t iconRef —
S1E - —
- *titleRef —
— —
$22 |-]
= *colorTableRef —
526 — *displayMode ~
28 ; *keyEquivalent

Word—Parameter count for template: 7, 8, 9, 10, or 11

Long—Application-assigned control ID

- Rectangle—Boundary rectangle for control

Long—iconButtonCont rol =$07FF0001

Word—Highlight and control flags for control
Word—Additional control flags

Long—Application-defined value
Long—Reference to icon for control
Long—Reference to title for control (optional)

Long—Reference to color table for control (optional)

Word—Bit flag controlling icon appearance (optional)

Block, 6 bytes—Key equivalent information (optional)

2852 Apple IiGs Toolbox Reference, Volume 3

Defined bits for £1ag are

ctlHilite

ctlInvis
Reserved
showBorder
buttonType

bits 15-8

bit 7
bits 6-3
bit 2
bits 1-0

Defined bits for moreFlags are

fCtlTarget
fCtlCanBeTarget
fCtlWantEvents
fCtlProcRefNotPtr
fCt1lTellAboutSize
Reserved

Icon reference

Color table reference

bit 15
bit 14
bit 13
bit 12
bit 11
bits 10-6
bits 54

bits 3-2

Sets the ct 1Hilite field of the control
record.

0 = Visible, 1 = Invisible.

Must be set to 0.

0 = Show border, 1 = No border.

Defines button type.

00 = Single-outlined, round-cornered button
01 = Bold-outlined, round-cornered button
10 = Single-outlined, square-cornered button
11 = Single-outlined, square-cornered, and drop-
shadowed button

Must be set to 0.

Must be set to 0.

Must be set to 0.

Must be set to 1.

Must be set to 0.

Must be set to 0.

Defines type of icon reference in iconRef.
00 = Icon reference is by pointer

01 = Icon reference is by handle

10 = Icon reference is by resource ID (resource
type of rIcon, $8001)

11 = Invalid value

Defines type of reference in colorTableRef;
the color table for an icon button is the same as
that for a simple button (see Chapter 4,
“Control Manager,” in Volume 1 of the Toolbox
Reference for the definition of the simple
button color table).

00 = Color table reference is by pointer

01 = Color table reference is by handle

10 = Color table reference is by resource ID
(resource type of rCt1ColorTbl, $800D)

11 = Invalid value

Chapter 28 Control Manager Update

28-53

Title reference

titleRef

displayMode

Background color
Foreground color

Reserved
offLine

openIcon

selectedIcon

keyEquivalent

bits 1-0 Defines type of title reference in t it 1eRef.
00 = Title reference is by pointer
01 = Title reference is by handle
10 = Title reference is by resource ID (resource
type of rPstring, $8006)
11 = Invalid value

Reference to the title string, which must be a Pascal string. If you are
not using a title but are specifying other optional fields, set bits 0 and
1of moreFlags to 0, and set this field to 0.

Passed directly to the DrawIcon routine, this field defines the
display mode for the icon. The field is defined as follows (for more
information on icons, see Chapter 17, “QuickDraw II Auxiliary,” in
Volume 2 of the Toolbox Reference):

bits 15-12 Defines the background color to apply to the
black part of black-and-white icons.

bits 11-8 Defines the foreground color to apply to the
white part of black-and-white icons.

bits 7-3 Must be set to 0.

bit 2 0 = Don't perform the AND operation on the
image.
1 = Perform logical AND operation with light-
gray pattern and image being copied.

bit 1 0 = Don't copy light-gray pattern.
1 = Copy light-gray pattern instead of image.
bit 0 0 = Don't invert image.

1 = Invert image before copying.

Color values (both foreground and background) are indexes into the
current color table. See Chapter 16, “QuickDraw I1,” in Volume 2 of the
Toolbox Reference for details about the format and content of these
color tables.

Keystroke equivalent information stored at keyEquivalent is
formatted as shown in Figure 28-2.

28-54 Apple 1IGs Toolbox Reference, Volume 3

LineEdit control template

Figure 28-6 shows the template that defines a LineEdit control. For more information
about LineEdit controls, see “LineEdit Control” earlier in this chapter.

= Figure 28-6 Control template for LineEdit controls

S00 | pCount — Word—Parameter count for template: 8
$02 - -

— D — Long—Application-assigned control ID
$06 'R

: rect . Rectangle—Boundary rectangle for control
SOE [-

I~ procRef —| Long—editLineControl =$83000000
S12 flag —{ Word—Highlight and control flags for control
$14 L moreFlags — Word—Additional control flags
$16 |- -

— refCon — Long—Application-defined value
S1A |- maxSize — Word—Maximum length of input line (in bytes)
SIC |- -

— defaultRef Long—Reference to default text

Defined bits for f1ag are

Reserved bits 15-8 Must be set to 0.
ctlInvis bit 7 0 = Visible, 1 = Invisible.
Reserved bits 6-0 Must be set to 0.

Chapter 28 Control Manager Update

2855

Defined bits for moreFlags are

fCtlTarget bit 15 Must be set to 0.
fCtlCanBeTarget bit 14 Must be set to 1.
fCtlWantEvents bit 13 Must be set to 1.
fCtlProcRefNotPtr bit 12 Must be set to 1.
fCtlTellAboutSize bit 11 Must be set to 0.
Reserved bits 10-2 Must be set to 0.
Text reference bits 1-0 Defines type of text reference in
defaultRef.

00 = Text reference is by pointer
01 = Text reference is by handle
10 = Text reference is by resource ID (resource

type of xPString, $80006)
11 = Invalid value

maxSize Specifies the maximum number of characters allowed in the LineEdit
field. Valid values are in the range 1 to 255, inclusive.

The high-order bit indicates whether the LineEdit field is a password
field. Password fields protect user input by echoing asterisks or any
application-defined character, rather than the actual user input. If this
bit is set to 1, then the LineEdit field is a password field.

Note that LineEdit controls do not support color tables.

2856 Apple 1IGs Toolbox Reference, Volume 3

List control template

Figure 28-7 shows the template that defines a list control. For more information about list
controls, see “List Control” earlier in this chapter.

= Figure 28-7 Control template for list controls

S0 pCount —| Word—Parameter count for template: 14 or 15
$02 — -] I .

— 1D — Long—Application-assigned control ID
S06 : rect - Rectangle—Boundary rectangle for control
SOE |— —

— procRef —{ Long—1listContxrol =$89000000
$12 L— flag — Word—Highlight and control flags for control
$14 [moreFlags — Word—Additional control flags
$16 [— —]

— refCon —{ Long—Application-defined value
$1A | listSize — Word—Number of members in list
$1C [— listview — Word—Number of members visible in window
SIE |— 1istType — Word—Type of list entries, selection options, etc.
$20 — listStart —{ Word—First visible list member
$22 [— —

— listDraw — Long—Pointer to member-drawing routine
§26 [~ 1istMemieigne — Word—Height of each list item (in pixels)
S8 L iiscmensize —] Word—Size of list entry (in bytes)
S2A [—]

— listRef — Long—Reference to list of member records
S2E {— —

— *colorTableRef Long—Reference to color table for control (optional)

Defined bits for £1ag are

Reserved bits 15-8 Must be set to 0.
ctlInvis bit 7 0 = Visible, 1 = Invisible.
Reserved bits 6-0 Must be set to 0.

Chapter 28 Control Manager Update

2857

Defined bits for moreFlags are

fCtlTarget
fCtlCanBeTarget
fCtlWantEvents
fCtlProcRefNotPtr
fCt1lTellAboutSize
fCtlIsMultiPart
Reserved

Color table reference

List reference

bit 15
bit 14
bit 13
bit 12
bit 11
bit 10
bits 94
bits 3-2

bits 1-0

Must be set to 0.

Must be set to 0.

Must be set to 0.

Must be set to 1.

Must be set to 0.

Must be set to 1.

Must be set to 0.

Defines type of reference in colorTableRef
(the color table for a list control is described in
Chapter 11, “List Manager,” in Volume 1 of the
Toolbox Reference).

00 = Color table reference is by pointer

01 = Color table reference is by handle

10 = Color table reference is by resource ID
(resource type of rct1ColorTbl, $800D)

11 = Invalid value

Defines type of reference in 1istRef (the
format for a list member record is described in
Chapter 11, “List Manager,” in Volume 1 of the
Toolbox Reference).

00 = List reference is by pointer

01 = List reference is by handle

10 = List reference is by resource ID (resource
type of rListRef, $801C)

11 = Invalid value

2858 Apple IIGS Toolbox Reference, Volume 3

listType Valid values for 1ist Type are

Reserved bits 15-3 Must be set to 0.
fListScrollBar bit 2 Allows you to control where the scroll bar for the
list is drawn.
0 = Scroll bar drawn on outside of boundary
rectangle
1 = Scroll bar drawn on inside of boundary
rectangle (The List Manager calculates space
needed, adjusts dimensions of boundary
rectangle, and resets this flag.)
fListSelect bit 1 Controls type of selection options available to
the user.
0 = Arbitrary and range selection allowed
1 = Only single selection allowed
fListString bit 0 Defines the type of strings used to define list
items.
0 = Pascal strings
1 = Cstrings ($00-terminated)

For details on the remaining custom fields in this template, see the discussion under “List
Controls and List Records” in Chapter 11, “List Manager,” of Volume 1 of the Toolbox

Reference.

Chapter 28 Control Manager Update 28-59

Picture control template

Figure 28-8 shows the template that defines a picture control. For more information about
picture controls, see “Picture Control” earlier in this chapter.

n Figure 28-8 Control template for picture controls

S00 |- pCount — Word—Parameter count for template: 7
s02 - .

— D — Long—Application-assigned control ID
$06 : rect . Rectangle—Boundary rectangle for control
SOE |-]

— procRef — Long—pictureControl =58D000000
Sz flag — Word—Highlight and control flags for control
S14 - moreFlags — Word—Additional control flags
S1I6 - -

- refCon — Long—Application-defined value
SIAL- -

- pictureRef — Long—Reference to picture for control

Defined bits for £1ag are

ctlHilite bits 15-8 Specifies whether the control wants to receive
mouse selection events. The values for
ctlHilite are
0 = Control is active
255 = Control is inactive

ctlInvis bit 7 0 = Visible, 1 = Invisible.

Reserved bits 6-0 Must be set to 0.

2860 Apple 11Gs Toolbox Reference, Volume 3

Defined bits for moreFlags are

fCt1lTarget
fCtlCanBeTarget
fCtlwantEvents
fCtlProcRefNotPtr
fCt1lTellAboutSize
Reserved

Picture reference

bit 15
bit 14
bit 13
bit 12
bit 11
bits 10~2
bits 1-0

Must be set to 0.

Must be set to 0.

Must be set to 0.

Must be set to 1.

Must be set to 0.

Must be set to 0.

Defines type of picture reference in
pictureRef.

00 = Invalid value

01 = Reference is by handle

10 = Reference is by resource ID (resource type
of rPicture, $8002)

11 = Invalid value

Chapter 28 Control Manager Update

28-61

Pop-up control template

Figure 28-9 shows the template that defines a pop-up control. For more information about
pop-up controls, see “Pop-up Control” earlier in this chapter.

= Figure 28-9 Control template for pop-up controls

S00 (— pCount — Word—Parameter count for template: 9 or 10
S02 - - o)
- 0> — Long—Application-assigned control ID
$06 : rect . Rectangle—Boundary rectangle for control
SOE |- -
— procRef — Llong—popUpCont ro1=587000000
Sz [0 flag — Word—Highlight and control flags for control
S14 |- moreFlags — Word—Additional control flags
S16 [-
— refCon ~ Long—Application-defined value
SIA L Cicientarn —~| Word—Width in pixels of title string area
S1C -
- menuRef —~| Long—Reference to menu definition
S0 L inicialvalue | Word—Item ID of initial item
$22 |-]
[~ *colorTableRet — Long—Reference to color table for control (optional)

2862 Apple I1Gs Toolbox Reference, Volume 3

Defined bits for £1ag are

ctlHilite

ctlInvis
fType2PopUp

fbontHiliteTitle

fDontDrawTitle

fDontDrawResult

fInWindowOnly

bits 15-8

bit 7
bit 6

bit 5

bit 4

bit 3

bit 2

Specifies whether the control wants to receive
mouse selection events. The values for
ctlHilite are

0 = Control is active

255 = Control is inactive

0 = Visible, 1 = Invisible.

Tells the Control Manager whether to create a
pop-up menu with white space for scrolling (see
Chapter 37, “Menu Manager Update,” for details
on type 2 pop-up menus).

0 = Draw normal pop-up menu

1 = Draw pop-up menu with white space

(type 2)

Controls highlighting of the menu title.

0 = Highlight title

1 = Do not highlight title

Allows you to prevent the title from being drawn
(note that you must supply a title in the menu
definition, whether or not it will be displayed);
if titlewidth is defined and this bit is set to
1, then the entire menu is offset to the right by
titleWidth pixels.

0 = Draw the title

1 = Do not draw the title

Allows you to control whether the selection is
drawn in the pop-up rectangle.

0 = Draw the result

1 = Do not draw the result in the result area after
a selection

Controls how much the pop-up menu can
expand; this is particularly relevant to type 2
pop-up menus (see Chapter 37, “Menu Manager
Update,” for details on type 2 pop-up menus).
0 = Allow the pop-up menu to expand to the
size of the screen

1 = Keep the pop-up menu in the current
window

Chapter 28 Control Manager Update

2863

fRightJustifyTitle bit1

fRightJustifyResult bit 0

Defined bits for moreF1ags are

fCtlTarget
fCtlCanBeTarget
fCtlWantEvents

fCtlProcRefNotPtr
fCt1lTellAboutSize
Reserved

Color table reference

fMenuDefIsText

bit 15
bit 14
bit 13

bit 12
bit 11
bits 10-5
bits 4-3

bit 2

Controls title justification.

0 = Left-justify the title

1 = Right-justify the title; note that if the title is
right justified, then the control rectangle is
adjusted to eliminate unneeded pixels (see
Figure 28-12) and the value for titlewidth is
also adjusted

Controls result justification.

0 = Left-justify the selection titlewidth
pixels from the left of the pop-up rectangle

1 = Right-justify the selection

Must be set to 0.

Must be set to 0.

Must be set to 1 if the pop-up menu has any
keystroke equivalents defined.

Must be set to 1.

Must be set to 0.

Must be set to 0.

Defines type of reference in colorTableRef
(the color table for a menu is described in
Chapter 13, “Menu Manager,” in Volume 1 of the
Toolbox Reference).

00 = Color table reference is by pointer

01 = Color table reference is by handle

10 = Color table reference is by resource ID
(resource type of rCt1ColorTbl, $800D)

11 = Invalid value

Defines type of data referred to by menuref.
0 = menuRef is a reference to a menu template
(See Chapter 13, “Menu Manager,” in Volume 1
of the Toolbox Reference for details on format
and content of a menu template.)

1 =menuRef is a pointer to a text stream in
NewMenu format (Again, see Chapter 13, “Menu
Manager,” in Volume 1 of the Toolbox Reference
for details.)

2864 Apple 11GS Toolbox Reference, Volume 3

Menu reference

rect

titleWidth

menuRef

initialvalue

bits 1-0 Defines type of menu reference in menuRe £ (if
fMenuDefIsText is set to 1, then these bits
are ignored).
00 = Menu reference is by pointer
01 = Menu reference is by handle
10 = Menu reference is by resource ID (resource
type of rMenu, $8009)
11 = Invalid value

Defines the boundary rectangle for the pop-up menu and its title,
before the menu has been selected by the user. The Menu Manager
calculates the lower-right coordinates of the rectangle for you if you
specify those coordinates as (0,0).

Provides you with additional control over placement of the menu on
the screen. The titlewidth field defines an offset from the left
edge of the control (boundary) rectangle to the left edge of the pop-
up rectangle (see Figure 28-11). If you are creating a series of pop-up
menus, you can align them vertically by giving all menus the same x]
coordinate and t it leWidth value. You may use tit lewidth for
this even if you are not going to display the title (fDontDrawTitle
flagis setto 1in £1ag). If you set t it leWidth to 0, then the Menu
Manager determines its value according to the length of the menu title,
and the pop-up rectangle immediately follows the title string. If the
actual width of your title exceeds the value of t it leWidth, results
are unpredictable.

Reference to menu definition (see Chapter 13, “Menu Manager,” in
Volume 1 of the Toolbox Reference and Chapter 37, “Menu Manager
Update,” in this book for details on menu templates). The type of
reference contained in menuRef is defined by the menu reference bits
inmoreFlags.

The initial value to be displayed for the menu. The initial value is the
default value for the menu and is displayed in the pop-up rectangle of
unselected menus. You specify an item by its ID, that is, its relative
position within the array of items for the menu (see Chapter 37, “Menu
Manager Update,” for information on the layout and content of the
pop-up menu template). If you pass an invalid item ID, no item is
displayed in the pop-up rectangle.

Chapter 28 Control Manager Update

= Figure 28-10 Unselected pop-up menu

(Pop-up rectangle)
Baud rate:| 300
= Figure 28-11 Selected pop-up<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>