
GS/OS Enhancements

in

System 6

Copyright © 1991-1992

Apple Computer, Inc.

All Rights Reserved
This document describes the enhancements made to GS/OS for AppleIIGS System Software version 6.0. The descriptions are broken out according to which modules of GS/OS have changed.

Table of Contents

System Call Manager
1

New Calls
1

$2007 JudgeName
1

$203A SetStdRefNum
4

Enhanced calls
5

$2004 ChangePath
5

$2025 EraseDisk
7

$2024 Format
7

$201B GetLevel
10

$2027 GetName
11

$2039 GetRefInfo
12

$201A SetLevel
13

$2008 Volume
14

Internal Enhancements
17

Character I/O Speed Enhancements
17

Pathnames that begin with a digit
17

Call to SysBeep2 for Disk Request
17

Auto Detection of Disk Insertion
17

Handling of StdIO Channels
17

GetRefNum Changes
18

GetPrefix/SetPrefix Changes
18

OSPublicFlags
18

Error Codes
19

Device Dispatcher
21

Auto Eject on Shutdown
21

Initialization Manager
22

Volume Name Entry in Format Dialog
22

Description of Operation
22

The Graphics Dialog
22

The Text Dialog
24

GS/OS Boot Loader
25

Version Number on Splash Screen
25

Disable System Extensions During Booting
25

GQuit
25

Quit call invokes Program Launcher
25

Leave SHR screen active during application launch
25

BASIC.Launcher functionality
25

Error Handling During Application Launch
25

System Loader and ExpressLoad
26

Don‘t Launch Zero-length Applications
26

Merge of System Loader and ExpressLoad
26

LGetPathname & LGetPathname2
26

GetLoadSegInfo and ExpressLoad
26

Segment Loading and Special Memory
26

Drivers
27

SCSIScan.Driver
27

SCSITape.Driver
27

SCSIHD.Driver
27

Slinky
27

AppleDisk5.25
27

AppleDisk3.5
27

Console.Driver
27

UniDisk3.5
28

File System Translators
29

Option List Changes
29

FST Attributes.
30

AppleShare FST
30

Character FST
30

DOS 3.3 FST
31

HFS FST
31

High Sierra FST
31

Pascal FST
31

ProDOS FST
31

ProDOS 8 Changes
32

.c1.System Call Manager

.c2.New Calls
.c3.$2007 JudgeName;$2007
JudgeName

Description
This function allows the caller to verify the syntax of a file name, directory name or volume name. The caller can also simply query the file system about the syntax limitations for a given type of name.

[image: image1.wmf]
pcount Word input value: Number of parameters in this parameter block. Minimum = 3, maximum = 6.

fileSysID Word input value: File system ID of the FST to which the call is directed.

nameType Word input value: Specifies the type of name.

0 = unknown

1 = volume name

2 = directory name

3 = filename

If ‘nameType’ = 0, the least restrictive rules are used. If ‘nameType’ > 3, error $53 (parameter out of range) is reported.

syntax Longword result pointer: Points to a displayable Pascal string which describes the FSTs syntax rules.

maxLen Word result value: The maximum length of the specified name type.

name Longword input pointer: Points to a class 1 output buffer which contains the name. The FST changes the name to make it conform to the FSTs syntax rules. If the pointer is 0, no error is reported. If the output buffer is not large enough to hold a maximum length name of the specified type, error $4F (buffer too small) is reported. (This is because the changed name returned by the FST may be longer than that supplied by the caller.)

The supplied name should be a single name only with no separator characters. The JudgeName call is not intended to pass judgement on a pathname.

nameFlags Word result value: Indicates what, if anything, was wrong with the name.

[image: image2.wmf]
Comments
Read-only FSTs will return an invalidFSTop error ($65).

Errors
$4F
buffTooSmall

Buffer too small

$53
paramRangeError
Parameter out of range

$64
invalidFSTID

Invalid FST number

$65
invalidFSTop

Invalid FST operation

ProDOS Note
Before it does any other processing, a ProDOS JudgeName call translates special characters into plain-ASCII characters by calling StringToText. When making this call, the FST will force the target language to be English text.

Here are the StringToText translations that are important for ProDOS. Other translations occur, but only the ones listed below result in characters that the ProDOS FST keeps. (Other characters get turned into periods, and then groups of periods are shortened.)

All letters with diacritical marks (accent, grave accent, umlat, tilde,

degree symbol) become the corresponding normal letters.

Character
Becomes
$CA (option-space)
normal space ($20)

“®”
“(R)”

“©”
“(C)”

“™”
“(TM)”

“µ”
“u”

“ƒ”
“f”

“ß”
“B”

“Œ” and “œ”
“OE” and “oe”

“…” (option-;)
three periods (...)

“ç”
“c”

“ø” and “Ø”
“0” (zero).

“Æ” and “æ”
“AE” and “ae”

.c3.$203A SetStdRefNum;$203A
SetStdRefNum

Description
This function allows the caller to explicitly set the reference number associated with one of the standard I/O channels (stdin, stdout, stderr). It provides the inverse functionality of the GetStdRefNum call.

[image: image3.wmf]
pcount Word input value: Number of parameters in this parameter block. Minimum = 2, maximum = 2.

prefixNum Word input value: Decimal value of the prefix number associated with the standard I/O channel. Valid prefix numbers are 10 (stdin), 11 (stdout), and 12 (stderr).

refNum Word input value: Reference number to use for the standard I/O channel. The reference number must refer to a currently open file.

Errors
$43
invalidRefNum

invalid reference number

$53
paramRangeErr

parameter out of range

.c2.Enhanced calls
.c3.$2004 ChangePath;$2004
ChangePath

Description
This call changes a file’s pathname to another pathname on the same volume, or changes the name of a volume. ChangePath cannot be used to change a device name; use the DRename call for that purpose.

[image: image4.wmf]
pCount Word input value: Number of parameters in this parameter block. Minimum = 2, maximum = 3.

pathname Longword input pointer: Points to a GS/OS string representing the name of the file or volume whose pathname is to be changed

newPathname Longword input pointer: Points to a GS/OS string representing the new pathname of the file or volume whose name is to be changed.

flags Word input value: Bits defining optional actions of the call, as follows:

[image: image5.wmf]
Bit 15 = 1 -
When renaming a volume and specifying the location of the volume by using a device name as the first parameter, setting this bit of the flags word tells GS/OS NOT to update any internal data structures with the new volume name. This is used when renaming a known duplicate online volume and the new name should NOT be used to refer to the original online volume. (e.g. renaming a duplicate of the boot volume). In addition to setting this bit, the first pathname (pathname1) MUST be supplied as a device name.

Bit 15 = 0 -
Update internal data structures as is normally done.

Comments
A file may not be renamed while it is open.

A file may not be renamed if rename access is disabled for the file.

A subdirectory s may not be moved into another subdirectory t if s = t or if t is contained in the directory hierarchy starting at s. For example, “rename /v to /v/w” is illegal, as is “rename /v/w to /v/w/x”.

The ChangePath call has been changed for System 6 to allow a duplicate online volume to be renamed. Previously, this was not possible because GS/OS would not allow both volumes to be online long enough for even one of them to be renamed.

To perform the ChangePath, the pathname parameter (parameter number 1) must be supplied as a device name corresponding to the device in which the volume is mounted.

Errors
See the GS/OS Reference Manual.

.c3.$2025 EraseDisk;$2025
EraseDisk
.c3.$2024 Format;$2024
Format
Description
See the GS/OS reference manual.

[image: image6.wmf]
pCount Word input value: Number of parameters in this parameter block. Minimum = 1, maximum = 6.

devName Longword input pointer: Points to a GS/OS string representing the device name of the device containing the volume to be erased.

volName Longword input value: Points to a GS/OS string representing the volume name to be assigned to the newly erased volume. If the pointer is not 0 and the length of the supplied string is not 0, and bit 15 of the flags word is set, GS/OS will use the value of the string as the default value in the Edit Line control of the Initialization dialog box. Otherwise, the supplied volume name will be displayed as a non-editable name to the user.

fileSysID Word result value: If the call is successful, this parameter identifies the file system that was placed on the disk. If the call is unsuccessful, this parameter is returned as $0000.

The file system IDs are as follows:

$0000
Reserved
$0008
Apple CP/M

$0001
ProDOS/SOS
$0009
Reserved

$0002
DOS 3.3
$000A
MS/DOS

$0003
DOS 3.2 or 3.1
$000B
High Sierra

$0004
Apple II Pascal
$000C
ISO 9660

$0005
Macintosh (MFS)
$000D
AppleShare

$0006
Macintosh (HFS)
$000E-$000F
Reserved

$0007
Lisa

reqFileSysID Word input value: Provides the file system ID of the file system that should be initialized on the disk. The values for this parameter are the same as those for the fileSysID parameter.

If you supply both this parameter and a valid volName parameter and no flags word, the Disk Initialization dialog box is suppressed. By supplying both this parameter and setting bit 14 of the flags word, the Initialization Manager will use the reqFileSysID to set the initial selection in the FST List control.

flags Word input value: Bits defining to the Initialization Manager how to interpret the volName and reqFileSysID parameters, as follows:

[image: image7.wmf]
Bit 15 = 1 -
Place the supplied volName into an Edit Line control and allow the user to change it.

Bit 15 = 0 -
Display the supplied volume name as static text in the Initialization Manager dialog.

If a volume name is not supplied, this bit is ignored, and the user will be presented with a default name (“Untitled”) in the Edit Line control.

Bit 14 = 1 -
Use the supplied reqFileSysID as the initial selection in the FST List control, and allow the user to make another selection.

Bit 14 = 0 -
Use the supplied reqFileSysID as the only selectable file system. All other file systems displayed in the FST List control will be grayed out and not selectable.

Bit 13 = 1-
Inhibit the display of the “Initializing” dialog while performing the actual format operation.

Bit 13 = 0 -
Display the “Initializing” dialog.

realVolName Longword input value: Pointer to a GS/OS result buffer into which GS/OS will place the actual volume name used for the operation. If the user is allowed to edit the supplied volume name, this may be different from the volume name passed as parameter number 2.

GS/OS will limit the length of a user-entered volume name to 32 characters. The result buffer should be at least this large. If it‘s not long enough, a buffTooSmall error will be returned, but not until after the Format or EraseDisk operation has been completed. In this case, it would be extremely unfriendly to simply make the buffer longer and repeat the call (as is usually done). Instead, use the Volume call to retrieve the volume‘s new name.

Comments
The realVolName result buffer is not filled in until after GS/OS is done using the volName parameter. Therefore, it is possible to fill a result buffer with a name, and set volName to point to the Class 1 string portion of the buffer, and then set realVolName to point to the beginning of the same buffer. In this way, the same memory can be used for both the input and output parameters.

Errors
See the GS/OS reference manual.

.c3.$201B GetLevel;$201B
GetLevel
Description
This function returns the current value of the system or user file level.

[image: image8.wmf]
pCount Word input value: Number of parameters in this parameter block. Minimum = 1, maximum = 2.

level Word result value: The value of the system file level.

levelMode Word input value: internal range of the file level.

Comments
The levelMode parameter is useful when a file needs to be opened that can‘t be closed with a Close call with a reference number of 0.

The steps to open a file at an internal file level are:

1.
Call GetLevel with pCount = 2, levelMode = $0000. Save the returned level.

2.
Call SetLevel with pCount = 2, level = $0080 and levelMode = $0000.

3.
Open a file or files with a class 0 or 1 Open call, or with OpenResourceFile.

4.
Call SetLevel with pCount = 2, levelMode = $0000, and level= saved level.

To close your protected file, simply do a close with the reference number. There is no need to fiddle with the file level when closing by reference number.

Errors
$59
invalidLevel

invalid file level

.c3.$2027 GetName;$2027
GetName
Description
Returns the filename (not the complete pathname) of the currently running application. Optionally returns the User ID of the currently running application.

There are two methods which can be used to get the complete pathname of the application.

1) Concatenate prefix 9: with the filename returned by this call. Do this before making any change in prefix 9:.

2) Use the returned User ID in an LGetPathname2 call to the System Loader.

[image: image9.wmf]
pCount Word input value: Number of parameters in this parameter block. Minimum = 1, maximum = 2.

dataBuffer Longword input pointer: Points to a result buffer where the filename is to be returned.

userID Word result value: User ID of the currently executing application.

Errors
See the GS/OS reference manual.

.c3.$2039 GetRefInfo;$2039
GetRefInfo

Description
This function returns the access attributes and full pathname for an open file when the reference number is given as input. Optionally, the fork number and file level used to open the file may be returned.

[image: image10.wmf]
pCount Word input value: Number of parameters in this parameter block. Minimum = 2, maximum = 5.

refNum Word input value: Reference number of the open file.

access Word output value: Access attributes of the open file, as follows:

1 = read only

2 = write only

3 = read/write

pathname Longword input pointer: Points to a GS/OS output string where GS/OS places the full pathname of the file selected by the refNum parameter.

resourceNumber Word output value: Defines which fork of the file is opened with the supplied refNum. A value of $0000 means that the data fork is open, a value of $0001 means that the resource fork is open.

level Word output value: The system file level that was in effect when the file was opened. This value is copied directly out of the File Control Record. User levels will have the high bit set.

Errors
See the GS/OS reference manual.

.c3.$201A SetLevel;$201A
SetLevel

Description
This function sets the current value of the system file level.

Whenever a file is opened, GS/OS assigned it a file level equal to the current system file level. A Close call with a reference number of $0000 closes all files with the file level values at or above the current system file level. Similarly, a Flush call with a reference number of $0000 flushes all files with file level values at or above the current system file level. See also the GetLevel call.

[image: image11.wmf]
pCount Word input value: Number of parameters in this parameter block. Minimum = 1, maximum = 2.

level Word input value: The value of the system file level.

levelMode Word input value: internal range of the file level.

Comments
See the comments for the GetLevel call.

Errors
$59
invalidLevel

invalid file level

.c3.$2008 Volume;$2008
Volume

Description
Given the name of a block device, this call returns the name of the volume mounted in the device, along with other information about the device, volume, and FST which manages the file system on the volume.

[image: image12.wmf]
pCount Word input value: Number of parameters in this parameter block. Minimum = 2, maximum = 8.

devName Longword input pointer: Points to a GS/OS input string containing the name of a block device.

volName Longword input pointer: Points to a GS/OS output string where GS/OS returns the volume name of the volume mounted in the device.

totalBlocks Longword result value: Total number of blocks contained on the volume.

freeBlocks Longword result value: The number of free (unallocated) blocks on the volume.

fileSysID Word result value: Identifies the file system contained on the volume, as follows:

$0000
Reserved
$0008
Apple CP/M

$0001
ProDOS/SOS
$0009
Reserved

$0002
DOS 3.3
$000A
MS/DOS

$0003
DOS 3.2 or 3.1
$000B
High Sierra

$0004
Apple II Pascal
$000C
ISO 9660

$0005
Macintosh (MFS)
$000D
AppleShare

$0006
Macintosh (HFS)
$000E-$000F
Reserved

$0007
Lisa

blockSize Word result value: The size, in bytes, of a block.

characteristics Word result value: Device and FST characteristics, as follows:

[image: image13.wmf]
deviceID Word result value: Identifying number associated with a particular type of device. This parameter may be useful for Finder-like applications when determining what type of icon to display for a particular device.

Current definitions of the device ID numbers include:

$0000
Apple 5.25 Drive
$0011
Reserved

(includes UniDisk™,

DuoDisk®, Disk IIc,

and Disk II®)

$0001
ProFile™ 5 MB
$0012
Apple Desktop

Bus™

$0002
ProFile 10 MB
$0013
Hard disk (generic)

$0003
Apple 3.5 Drive
$0014
Floppy disk

(includes UniDisk 3.5

(generic)

Drive)

$0004
SCSI (generic)
$0015
Tape drive (generic)

$0005
SCSI hard disk
$0016
Character device

driver (generic)

$0006
SCSI tape drive
$0017
MFM-encoded disk

drive

$0007
SCSI CD-ROM
$0018
AppleTalk network

(generic)

$0008
SCSI printer
 $0019
Sequential Access

device

$0009
Serial modem
$001A
SCSI Scanner

$000A
Console driver
$001B
Other scanner

$000B
Serial printer
$001C
LaserWriter SC

$000C
Serial LaserWriter®
$001D
AppleTalk main driver

$000D
AppleTalk® LaserWriter
 $001E
AppleTalk file

service driver

$000E
RAM disk
$001F
AppleTalk RPM driver

$000F
ROM disk
$0020
Apple SCSI Tape Driver

$0010
File Server

Comments
When a dupVolume error is returned, the pathname in conflict is returned in the buffer pointed to by the volName parameter.

The characteristics word is very similar to the same parameter to the DInfo call, with the addition of the “Media Write Protected” and “Read Only File System” bit definitions. They are provided to return as much information (in only one GS/OS call) about the mounted volume and the device in which it is mounted.

Errors
See the GS/OS reference manual.

.c2.Internal Enhancements

.c3.Character I/O Speed Enhancements;- Character I/O speed enhancements. This was achieved by folding the functionality of the QuickConsole INIT into the System Call Manager itself. As implemented, calls to character I/O devices are special cased so the unnecessary processing is removed from the call overhead.

.c3.Pathnames that begin with a digit;- Intelligent handling of pathnames that begin with a digit. Prior to System 6, the System Call Manager pathname processing assumed that any pathname that started with a digit was a pathname that started with a GS/OS prefix number. When this assumption was incorrect, it lead to some type of pathname error being returned to the caller (e.g., pathname syntax error, file not found error, etc.). Pathname processing has been made more intelligent by having the System Call Manager look at the character following the leading digit (or leading two digits) and determining if the character is a valid pathname separator. If the character IS a valid separator, processing will proceed as it previsouly did, assuming that the number represents a GS/OS prefix designator. If the character is NOT a valid separator, the System Call Manager will assume that the leading number is NOT a prefix and therefore not try to expand the (non-existent) prefix designator. It will simply prefix the value of the default prefix (0: or 8:) to the supplied pathname to determine the full pathname.

Please note that this does NOT cover all possible situations. It simply reduces the chances of incorrect assumptions. For example, “7/3/59” is a valid HFS filename. If this filename were passed to the System Call Manager for processing, it would see the valid pathname separator character following the leading digit, and assume that the “7/” portion of the filename refers to prefix 7. It would then build a full pathname by concatenating the “3/59” portion of the filename to the existing value of prefix 7, thereby producing a full pathname that, in all likelihood, does not match any existing file. On the other hand, filenames like “5.0 System Disk” will be processed just like any other filename.

.c3.Call to SysBeep2 for Disk Request;- Call SysBeep2 for disk requests. When GS/OS has to display a dialog asking the user to insert a disk, the System Call Manager calls the new SysBeep2 toolset routine to give the user an audible signal that a disk is required. Normally, this will be a standard SysBeep sound but a user may customize this with any sound that she desires.

.c3.Auto Detection of Disk Insertion;- Automatic detection of disk insertions. When GS/OS displays a dialog box asking the user to place a particular volume online, it will continually scan all devices which support removable media, looking for the disk insertion. When a disk is inserted into a device which supports disk-insertion notification, GS/OS will remove the dialog and continue as if the user had pressed RETURN.

.c3.Handling of StdIO Channels;- How GS/OS handles the Standard I/O channels. GS/OS special-cases any Open calls on the Standard I/O Channel prefix numbers. If an Open call is made using only the prefix number associated with one of the standard I/O channels, GS/OS stores the reference number as the StdIO refnum for that particular I/O channel. This is done to support the GetStdRefNum call.

If the Open call fails with a fileBusy error, GS/OS will perform the following checks to see if both standard output and standard error output are being redirected to the same file. If any of the following tests fail, a fileBusy error will be returned (as it has been in the past).

First, GS/OS checks to see if the caller is trying to Open prefix 11 or prefix 12. (If it‘s not one of the standard output channels, it‘s a true fileBusy error).

Next, if the caller is making a Class 0 call, or if the pCount of a Class 1 call is less than 4, GS/OS continues with the following checks. In the case of a Class 1 call, the pCount must be less than 4, since GS/OS will not be able to return all of the information requested by the larger pCount.

Next, GS/OS will compare the contents of prefixes 11 and 12. If they are not equal (ignoring character case), we have a true fileBusy error.

GS/OS then ensures that the alternate output I/O channel already contains a valid refnum. That is, if the caller is opening prefix 12 (stderr), the prefix 11 refNum is checked to ensure that stdout has already been opened, and visa-versa. If the alternate output channel has already been opened, GS/OS will come to the conclusion that the caller is trying to redirect both standard output and standard error output to the same disk file. In this case, GS/OS will copy the existing refnum into the alternate channel refnum variable, and return this refnum to the caller. No error will be returned in this case, and both stdout and stderr refnums will refer to the same physical disk file.

During a Close call, if the supplied refnum equals both the stdout and stderr refnums, GS/OS performs a quiet close on the stderr I/O channel. This means that the internal refnum variable for stderr will be zeroed (as is done during a normal Close), but the physical file will not actually be closed. This is because the stdout I/O channel is still referring to the currently open file.

.c3.GetRefNum Changes;- GetRefNum changes. The GetRefNum call now correctly returns one of the standard I/O channel refnums when the supplied pathname refers to only the standard I/O channel prefix no matter what the contents of the prefix are. GS/OS simply recognizes when the supplied pathname is “10:”, “11:”, or “12:” (or equivalent), and performs an internal GetStdRefNum call to retrieve the refnum in question.

.c3.GetPrefix/SetPrefix Changes;- GetPrefix/SetPrefix changes. GetPrefix and SetPrefix now allow a prefix number of -1 ($FFFF), which represents the ‘@’ prefix. This will allow “switcher” type programs to set the ‘@’ prefix properly when the current application is changed.

.c3.OSPublicFlags;- Global OSPublicFlags variable. A new global variable has been defined to allow GS/OS to communicate certain events to the remainder of the system. This 16-bit variable is located at $E1/00B8. The variable is supplied for reading only, and is not to be modified by anything other than GS/OS.

Currently, only bit 15 is defined as the NoInits bit. When the user has booted the system and requested that no INITs and/or DAs be loaded (by holding down a shift key during the booting process), bit 15 of the OSPublicFlags variable will be set.

All other bits within the 16-bit value are currently reserved (I mean it!)

.c2.Error Codes

The following error codes have either been added for this release, or were not previously documented:

Code
Constant
Description
$42
tooManyFilesOpen
The AppleShare file server limit of open

files has been reached

$65
invalidFSTop
FST does not handle this type of call

$66
fstCaution
FST handled call, but result is weird

$68
devListFull
device list is full

$69
supListFull
supervisor list is full

$6A
fstError
generic FST error

$88
networkError
Generic network error

The generated driver bank 0 core routines have been modified so that when a Pascal firmware driver reports an error, the error will be translated into a GS/OS error code in the range of $30 through $3F. As an example, assume there is a peripheral card installed in slot 2 which emulates a Super Serial Card. Prior to System 6, when a driver Read call was handled by the generated driver core, the card’s firmware reported an overrun error ($24) in the X register, and returned with the last valid character in the accumulator. The generated driver recognized the error, discarded the valid character, and then returned the untranslated error code to the caller in the accumulator. In this case, the error code was a GS/OS-defined error code for “Driver Already Open”, which has nothing what-so-ever to do with the actual error encountered.

With the new I/O model, the generated driver will store the valid character in the caller’s buffer, and then return a translated error code back to the caller. The error code will be the one returned by the firmware but shifted up into the range of $30-$3F. In the case of the Super Serial Card, this error code is actually a combination of error bits in bits 0-3 of the returned word. The following table shows the relationship of the returned error code and what errors are actually being reported:

[image: image14.wmf]
.c1.Device Dispatcher
.c2.Auto Eject on Shutdown;- Automatic ejection of removable media during an OS shutdown. Currently, any application which issues an OSShutdown call (like the Finder) must first scan the device list looking for any device that contains removable media, and then issue an Eject call to each such device. (Actually, each application isn‘t required to do this, but it is a friendly feature.) This functionality has been added to GS/OS itself so if a complete shutdown is requested (bit 0 of shutDownFlag is 0, as opposed to a restart in which this bit = 1), all ejectable disks will be ejected from their respective devices.

Automatic ejection will not take place during a system restart, on the assumption that, since the user requested the restart, he must have some reason for leaving the disks in the drives in the first place. If an application wishes to eject disks during a restart, it can set bit 2 of the shutDownFlag to 1.

.c1.Initialization Manager
.c2.Volume Name Entry in Format Dialog;- Addition of LineEdit item to request a volume name. The Init Manager dialog has been changed to include a LineEdit item, allowing the user to specify a volume name to apply to a newly formatted diskette. If the volName parameter is supplied and is not NULL, Init Manager will use the supplied volume name as the default value to place in the LineEdit control. If the volName is NULL, or is absent altogether, the Init Manager will apply a default of “Untitled” to the Edit Line control.

The new JudgeName facility is used to ensure that the volume name syntax is proper before formatting the media.

Please refer to the new call descriptions in the “Enhanced Calls” section of this document for details on the new parameter requirements.

.c2.Description of Operation;Description of Operation
The Initialization Manager supports both a graphics-based interface and a text-based interface. The graphics interface is displayed when the existing system environment can support the graphic dialog box. This means that the Desk Manager must by active (and by implication, Miscellaneous Tools, QuickDraw, Event Manager, Window Manager, Control Manager, and LineEdit), the system must be displaying the Super-HiRes screen, and the Master SCB must indicate that the screen is in 640x200 mode. There must also be 64K of memory available (for use by the toolsets). If none of the above prerequisites are met, the Initialization Manager will produce its own text-based dialog, using the Console Driver.

.c3.The Graphics Dialog
The graphics dialog is produced using standard toolbox calls.

The dialog window displays the name of the device that will be used for the operation, as well as the volume name that will be used. If the application specified that the user is allowed to edit the volume name, it will appear in an EditLine control. The user will be allowed to use standard editing actions (mouse clicks, cursor movement, etc) to specify the volume name. If the name is not editable, it will be displayed as static text within the window.

The dialog also contains two list controls - one for a list of FSTs that support formatting, and another for a list of formatting options supported by the driver. In both cases, if any item is determined to be non-selectable (e.g., if the caller specified that a specific FST be used for the operation, or a particular formatting option is not supported by the currently selected FST), that item will be dimmed and not selectable by the user. Each list can be manipulated using standard desktop interface techniques (i.e. mouse clicks, arrow keys, etc.). The initially selected FST will be the one specified by the caller (if a specific FST was requested), or the FST used to boot the system (if the caller did not specify a specific FST). The initially selected format will be the format specifically requested by the currently selected FST (if appropriate), or the default format as specified by the device driver.

One of the above three controls can be made the active control either by clicking on the control with the mouse or by using the ‘TAB’ key to cycle through the controls. The currently active control is specified by either a bold outline around the control (in the case of the list controls), or by a flashing cursor or inverse text in the EditLine control.

At the bottom of the window there are two buttons - Cancel and either Initialize or Erase, depending on which operation is being performed. The ‘Cancel’ button can be activated either with a mouse click, or by pressing the ‘ESC’ or Apple-. keys. This will abort the operation before any changes are made to the disk. The ‘Initialize/Erase’ button can be activated either with a mouse click or by pressing Apple-Return. In this case, the operation will proceed. The button will be deactivated (the button title will be dimmed) when the EditLine control does not contain any text, or if either of the list controls do not have a currently selected item.

The area between the list controls and the buttons is used to display various messages to the user. When the window is initially displayed, the dialog contains a message warning the user that continuing the Initialize or Erase operation will destroy any data on the target disk. As soon as the user performs some action within the dialog window, the message is cleared (or, more likely, replaced with another message).

If the currently selected FST does not support the volume size described by the currently selected format (e.g., ProDOS with a 40 megabyte drive), a message is displayed warning the user that the file system will not be able to use the entire capacity of the drive. This message remains on screen until the user selects another format or FST (if the new selections don‘t also cause display of the message), or until the user makes the EditLine control the currently active control. (This is referred to as the “Too Big” message in the following paragraphs.)

Normally, the message area displays the text supplied by the currently selected FST‘s JudgeName facility. This message is updated whenever a different FST is selected. If the “Too Big” message is displayed, it is replaced by the JudgeName message only when the EditLine control is the active control (the reason being that the user should have some kind of prompt to help them enter a valid volume name while they‘re actually entering the name).

When the user selects the Initialize/Erase button, the Initialization Manager performs a JudgeName call to the currently selected FST to be sure that the volume name is acceptable to the file system. If the JudgeName call returns with no error, the operation will be carried out. If the JudgeName call says that the name is no good, the Initialization Manager determines what step to take next depending on whether or not the volume name is editable by the user. If not, the Initialization Manager simply continues, and leaves it up to the FST to generate the Pathname Syntax error for return to the caller. If the volume name is editable, the Initialization Manager displays a message to this effect in the message area of the dialog window, and then allows the user to edit the volume name and/or make a new FST selection.

.c3.The Text Dialog
The text dialog is similar in appearance and operation to the graphics dialog. The main difference is the lack of any mouse support. All input and control manipulation must be performed by using the keyboard.

The volume name EditLine control is implemented with the Console Driver‘s User Input Routine. As such, all editing keystrokes supported by the UIR can be used when specifying the volume name (see the GS/OS Reference, page 252 for a list of these commands).

Like the graphics dialog, the Tab key can be used to cycle the active control between the EditLine control and the list controls. The currently active control is indicated by having an active cursor in the EditLine control, or having the list control title displayed in inverse text.

The list controls are manipulated by using the up and down arrow keys to move the selection bar from item to item. Note that the selection bar does not wrap within the list - once at the bottom of the list, it will stay at the bottom until the user presses the up arrow key. If there are more than four items to be displayed in the list, the items will scroll up and down as appropriate to ensure that the selection bar remains visible on the screen.

List items that are not selectable (and would be dimmed in the graphics dialog) are indicated by displaying parentheses around the list item. The Initialization Manager will not allow the selection bar to be placed on such items.

Like the graphics dialog, the Esc key is used to cancel the dialog. Apple-. is not recognized as a cancel command, since that would preclude its recognition as a UIR editing command. Apple-Return is used to accept the current selections and proceed with the initialization or erasure operation. The sequence of events when Apple-Return is pressed is the same as those in the graphics dialog, with the JudgeName call being made, etc.

One additional keypress recognized by the text dialog but not the graphics dialog is the Apple-? sequence (or, the Apple-/ sequence). This keypress will force the display of the JudgeName prompt if the volume name is editable. This is supplied because there is no easy way to recognize the first keystroke within the EditLine control like there is with the graphics EditLine control. By supplying a “Help” key, the Initialization Manager can “hand-hold” the user through the entry of a valid volume name.

.c1.GS/OS Boot Loader
.c2.Version Number on Splash Screen;- Display System Software version number on graphics splash screen. The GS/OS loader has been modified to display an additional string in the Super Hi-Res splash screen. This string will display the current version number of the system software.

.c2.Disable System Extensions During Booting;- Disabling System Extensions. At the beginning of the boot process, the GS/OS Boot Loader will check the state of the shift keys. If either shift key is depressed, the boot loader will display the message “No Inits/DAs” on the graphics splash screen, and then skip loading of any non-system INITs and all Desk Accessories. Tool.Setup and Resource.Mgr will always be loaded during the boot process.

.c1.GQuit
.c2.Quit call invokes Program Launcher;- Allow applications to avoid quitting to themselves if they are the startup application. If bit 12 of the flags word supplied in the Quit call is clear, GQuit will automatically execute the Apple IIGS Program Launcher if no application User ID remains on the system Quit stack and if GS/OS is active. If P8 is active, the system behavior will be as before, with the default Start application being relaunched.

If bit 12 of the flags word is set, the application will simply be relaunched.

.c2.Leave SHR screen active during application launch;- Turn SHR screen off only when quitting to an application that is NOT a desktop app, as defined by it‘s auxtype. Previously, GQuit did not guarantee any particular screen mode (text vs. SHR) when launching an application. This has been changed so that, if the application being launched does NOT support the desktop interface (as defined by having $DB in bits 15-8 of the auxtype and bit 1 of the lower byte set), GQuit will be sure that the text screen is displayed.

.c2.BASIC.Launcher functionality;- Implement BASIC.Launcher functionality into GQuit and P8 directly. A new quit code module has been added to P8 which will be stored in the language card area of memory when P8 is active. This module will be used as a subroutine by GQuit when transferring control from a 16-bit (GS/OS) application to an 8-bit (P8) application, or when an 8-bit application uses the extended version of the Quit call.

The function of this module is to receive from GQuit a pathname of an 8-bit application that the user wishes to execute. The module will use P8 calls to load the application, then check the MessageCenter for the pathname of a document that the application is supposed to handle at startup. If the message exists, and the application adheres to the guidelines for accepting this document pathname, the module will tell the application of the pathname before starting it.

This is exactly what the existing BASIC.Launcher program does, but, by implementing the functionality into the two operating systems directly, all P8 applications that follow the conventions can benefit from this service.

.c2.Error Handling During Application Launch;- Error handling during application launch. When GQuit receives some kind of error from the System Loader after an InitialLoad or Restart call, it will no longer force a system death message. Instead, GQuit will display a dialog notifying the user of the problem, and give the user a choice between restarting the system or returning to the last application that has its User ID on the Quit stack.

.c1.System Loader and ExpressLoad
.c2.Don‘t Launch Zero-length Applications;- Disallow launching an application that has nothing in its data fork. Prior to System 6 it was possible for an application to perform an InitialLoad of a file that had a zero-length data fork. The System Loader has been modified to check the length of the file prior to completing the operation. If a non-OMF file is found (which a zero-length fork implies), the Loader will return an error to the caller.

.c2.Merge of System Loader and ExpressLoad;- Merge of System Loader and ExpressLoad. The old System Loader and ExpressLoad have been merged into a single System Loader, containing the functionality of the previous loaders. Where possible, duplicate (or near-duplicate) subroutines have been reduced to a single subroutine which both loaders take advantage of. This allows the removal of the ExpressLoad file from the system, while only using an additional 5.5K for the System Loader. In addition, this 5.5K is located in the upper reaches of bank 01 of memory, freeing up the non-special memory previously occupied by ExpressLoad.

.c2.LGetPathname & LGetPathname2;- LGetPathname and LGetPathname2 enhancements. LGetPathname and LGetPathname2 have always returned a pointer to the pathname, but the returned pointer may or may not have been pointing into a private data structure maintained by the loader. These calls have been enhanced so they now allocate a locked block of memory and copy the pathname into this locked block. The pointer returned from the calls will point to this block of memory. The pointer will remain valid until the next System Loader call, when the memory block containing the pathname will be disposed (using a DisposeAll call on a private User ID).

If the caller wishes to claim ownership of the memory block containing the pathname, it may use the pointer as the argument to a FindHandle call, and then make a SetHandleID call on the returned handle using the caller‘s ID.

.c2.GetLoadSegInfo and ExpressLoad;- GetLoadSegInfo and ExpressLoad. The ExpressLoad portion of the System Loader now handles a GetLoadSegInfo call when it applies to a load segment that has been loaded by ExpressLoad. Since ExpressLoad doesn‘t actually maintain the memory segment table, the returned memory segment table entry will by synthesized by ExpressLoad.

.c2.Segment Loading and Special Memory;- Segment Loading and Special Memory. When loading a load segment, the System Loader will always request non-special memory first. If this fails, and the SpecialMemoryFlag of the InitialLoad call allows it, the memory allocation request will be made again, this time allowing special memory to be used.

.c1.Drivers
.c2.SCSIScan.Driver

- New. See the SCSI Driver ERS for details.

.c2.SCSITape.Driver

- New. See the SCSI Driver ERS for details.

.c2.SCSIHD.Driver

- Allow write protection/enable of fixed HD partitions.

- Allow read protection/enable of fixed HD partitions.

.c2.Slinky

- New. See the Slinky Driver ERS for details.

.c2.AppleDisk5.25

See the AppleDisk 5.25 Driver ERS for details of the following:

- Rewrite of media I/O routines for performance enhancement

- Add restartability.

.c2.AppleDisk3.5

- Changed to support 800K and 1440K drives attached to the 3.5 Drive Controller Card.

.c2.Console.Driver

- Dead code removal

- New device-specific DStatus call added. The status code for this new call is $8007, and it is named GetVectors. The status list must be large enough to contain 8 bytes, and the RequestCount must equal 8.

The purpose of this call is to query the Console Driver about the locations of two single-character Input/Output subroutines. An application may retrieve these addresses from the console driver, and then call the subroutines to perform single-character input and output, similar to the methods used when using the built-in monitor firmware.

The COut vector (for Character Out) is returned in the first four bytes (first longword) of the status list. The COut subroutine is used to output a single character to the current display device. The character to be displayed must be placed in the low byte of the Accumulator before calling COut. The subroutine may be entered in either 8- or 16-bit mode, as the Console Driver will change the register width internally as needed. All registers and register widths will be preserved by the call.

The KeyIn vector (for Keyboard Input) is returned in the last four bytes (second longword) of the status list. The KeyIn subroutine is used to read a single keypress from the keyboard. The subroutine may be called in either 8- or 16-bit mode, as the Console Driver will change the register width internally as needed. All registers (except the Accumulator) and register widths will be preserved by the call. On exit, the low byte of the Accumulator will contain the ASCII code for the keypress, and the high byte of the Accumulator will contain the state of the keyboard modifiers pseudo-register ($C025). Note that, unlike the Monitor subroutine of the same name, KeyIn does not supply an input cursor on the screen. Like its namesake, though, it does increment the pseudo-random number stored at locations $4E-$4F on absolute page zero.

The contents of memory pointed to by these two vectors consist of 24-bit JMP instructions to the actual COut and KeyIn handlers. This allows an application to intercept the vectors to handle single-character I/O in whatever fashion they wish (e.g. to support single-character I/O to/from a graphics environment when supporting applications that normally communicate through the console driver).

- ResetTrap device-specific control call now resets the new COut and KeyIn vectors in addition to the original Console Trap vector.

.c2.UniDisk3.5

- Changed to support UniDisk 3.5 drives attached to the 3.5 Drive Controller Card.

.c1.File System Translators

.c2.Option List Changes
The definition of the second field of the option list has been changed. Previously, this field was undefined when doing a SetFileInfo call and was set to the actual data size by the FST when doing a GetFileInfo, Open or GetDirEntry call. This field must now be set to the actual data size when doing a SetFileInfo call so the FST can determine if the data it expects is really there.

The HFS, Appleshare and ProDOS FSTs now check both the first field (buffer size) and the second field (data size) when doing a SetFileInfo call. If the buffer size is < 36 or if the data size is < 32 then the option list data is ignored. If the sizes are OK, the FSTs then check the FST ID to make sure that it‘s either a $0001 (ProDOS), $0006 (HFS) or $000D (AppleShare). If so, the option list data is assumed to be 32 bytes of “HFS Finder Info”.

HFS and AppleShare will copy the data into the file‘s Catalog record. The ProDOS FST will copy the “HFS Finder Info” into the extended key block if the file is an extended file; otherwise the data is ignored. The data is stored immediately after the data fork mini-entry so it begins at offset $08. The format is as follows -

1 byte
-
entry size (18)

1 byte
-
entry type (1)

16 bytes
-
FInfo (first 16 bytes of Finder Info)

1 byte
-
entry size (18)

1 byte
-
entry type (2)

16 bytes
-
xFInfo (second 16 bytes of Finder Info)

1 byte
-
0

This is similar to the format used by the ProDOS File System Manager on the Mac. The only difference is that Mac ProDOS does not always store both entries. There could be just the FInfo entry or just the xFInfo entry. The GS/OS ProDOS FST will check for this situation when returning the HFS Finder Info during a GetFileInfo, Open or GetDirEntry call. If only 1 of the entries exists, the missing 16 bytes will be returned as all zeros. The data size will still be set to 32.

.c2.FST Attributes.

The FST attributes returned by the GetFSTInfo call have never really been too well documented, so here goes:

[image: image15.wmf]

If bit 15 is set (= 1), the GS/OS call dispatcher will convert the input pathname to all uppercase characters. Otherwise, the pathname will be passed to the FST as supplied by the caller.

If bit 14 is set, the FST is designed to communicate with character devices only. If clear, the FST communicates with block devices only.

If bit 13 is set, the FST supports formatting.

If bit 12 is set, the GS/OS call dispatcher will clear the high bit (bit 7) of characters within the input pathname prior to calling the FST. If clear, the pathname will be passed as supplied by the caller.

If bit 11 is set, the FST only supports read operations. Modification of disks is not supported.

Bits 1 and 0 specify the format type that this FST supports:

00
=
Universal format (such as High Sierra)

01
=
Apple format (such as HFS)

10
=
Non-Apple format (such as MSDOS)

11
=
Apple-][format (such as ProDOS, DOS 3.3, and Pascal)

.c2.AppleShare FST

- Added GetDefaultPrivileges and SetDefaultPrivileges calls to get and set the default access levels which will be applied to new folders created on AppleShare file servers. See the AppleShare FST ERS for details.

- Added support for the new JudgeName call.

- Added support for the enhanced ChangePath and Volume calls.

.c2.Character FST

- During startup, the Character FST now locates the Console Driver and determines the location of an internal entry point (using the AddTrap and ResetTrap calls). When a Write call is received with the Console Driver as the destination, the Character FST sends the call directly to the internal entry point, bypassing the Device Dispatcher.

.c2.DOS 3.3 FST

- New. See the DOS 3.3 FST ERS for details.

.c2.HFS FST

- New. see the HFS FST ERS for details.

.c2.High Sierra FST

- Added support for the new JudgeName call.

- Added support for the enhanced Volume call.

.c2.Pascal FST

- New. See the Pascal FST ERS for details.

.c2.ProDOS FST

- Added support for the new JudgeName call.

- Added support for the enhanced ChangePath and Volume calls.

- Added support for HFS-style option lists and storing of HFS-style directory information in the key block of the resource fork of an extended file.

.c1.ProDOS 8 Changes

- An alternate QUIT call handler has been added to P8 for use by GQuit when launching P8 applications from the GS/OS environment. See the GQuit section on Basic.Launcher functionality for a more complete description.

- P8 now turns off the super-hi-res screen just before displaying it‘s splash screen, but only if its being executed on a GS.

- To gain a little more room for new enhancements and bug fixes, the code has been changed to use 65C02 opcodes when available. As part of the initialization sequence, P8 checks the processor type and will refuse (gracefully) to execute if a 6502 is found. (The actual error message will be “Relocation/Configuration Error”.)

- The startup code and the kernel have been changed to support more than two devices per slot when the devices are attached to a SmartPort interface. This has been implemented as follows:

During startup, P8 performs the normal device scan like it always has. Once this is complete, it performs a second device scan, searching for SmartPort interfaces that have more than two devices connected. When such a device is found, the startup code stores some necessary information into some internal tables, and then fills in the Device Table with the address of a custom driver residing within the kernel.

When the custom driver receives control as the result of a P8 device call, it translates the ProDOS-style device call into a SmartPort-style call, using the device information that had previously been stored into the internal tables.

- The slot clock driver has been updated to work for years 1991-1996.

