
Archiver I/O Formats

version 1.0

INTERNAL

Monte Benaresh

September 24, 1991

REVISION HISTORY

2/23/90
0.0
Preliminary draft.

MJB (Monte Benaresh)

9/24/91
1.0
Major revision. Added description of Entire Volume backup format. Added detailed structure descriptions for Table of Contents, media header, and file header.

MJB

about this document

This document describes the backup image model for the file-by-file backup, volume backup, and restore functions in Archiver, a full-featured backup utility currently being implemented for the Apple IIgs. For a description of the feature set and overall structure and implementation of Archiver, consult the ERS.

OVERVIEW

Archiver supports entire volume image backup and file-by-file backup, and the corresponding restore functions.

File-By-File Backup
From the user's point of view, a file-by-file backup operation accepts a hierarchical list of GS/OS files which reside on a single GS/OS volume and produces as output a backup set in the form of either 1) a GS/OS file, or 2) data written to a collection of pieces of media accessed by a GS/OS block device. The file-by-file restore operation accepts any form of output from the file-by-file backup operation and presents the user with a list of the files which were backed-up to that backup set. The user then chooses which of the files he wishes to restore and specifies the path of a new directory which Archiver creates and to which the files are to be restored. The restore operation then continues by accessing the backup set and creating files in the specified directory with the same names, fork data, parent directories, and file info (including option list data) as the files which were backed-up to the backup set and chosen to be restored.

The design of the file-by-file backup format specifically provides for special handling of the error condition where a restore operation is in progress and the user does not provide some of the pieces of a backup set requested by the application. Inability to access certain pieces of the set may render the utility unable to conveniently provide a list of files which were backed-up to that set, or to restore every file entirely. However, the format for each individual piece of media in a backup set provides information which identifies the file to which the data on that piece belong and their position within the file. Thus, it is possible to attempt to salvage as much raw file data as possible from an incomplete backup set. From the user's point of view, restoring files would be much less convenient in this case, even when the desired files can be restored entirely. Note that Archiver 1.0 provides no support for salvaging data from incomplete backup sets (however, if a restore operation proceeds without error to a certain point, and then must be aborted due to missing pieces of the backup set, the files already restored and possibly a portion of the last file being restored will be OK).

The file-by-file backup format was also intended to support incremental backup, a function which updates an existing backup set to include new files on the GS/OS volume from which the files in that backup set were originally chosen. Any new file may or may not have the same pathname as a file which was originally backed-up to that backup set. Optionally, the backup set may be updated with information about which files in the original backup set are no longer present on the volume from which they were backed-up. Note that an incremental backup can be performed to a backup set more than once, though no more than a designated number of times. When an existing backup set is updated with new files, the new data are appended to the backup set, and the old data are preserved. Thus it would be possible to restore any file which was ever backed-up to that set (from the user's point of view, files with identical pathnames which were backed-up at different times might be considered different "versions" of the same file).

In summary, the file-by-file backup image provides the following features:

•A list of files backed-up to a given backup set must be quickly accessible

•All of the data and file information for any GS/OS file must be stored

•The file list and the body of file data must be appendable

•The backup image must be able to reside in a file or on an arbitrary number of pieces of media

•Each piece of media in a backup set must contain information which identifies the owner file and position within that file of all of the file data stored on that piece

In addition, the following characteristics were incorporated in the design in order to support features that add convenience or improve performance of the basic functions:

•The list of files must contain file info which is valuable to the user when deciding which files to restore

•When a backup set resides on physically separate pieces of media, the list of files must contain information which allows for quick and direct access to data belonging to a given file in that backup set

•Each piece of media must contain information which identifies its particular backup set and its specific ordinal position in that set

•Each piece of media should be recognizable as a "dummy" volume by a GS/OS file system

•Each piece of media should behave intelligently when a user attempts to boot from it

Entire Volume Backup
From the user's point of view, an entire volume backup operation accepts a single GS/OS volume and produces as output a backup set in the form of either 1) a GS/OS file, or 2) data written to a collection of pieces of media accessed by a GS/OS block device. The entire volume restore operation accepts any form of output from the entire volume backup operation and re-creates the backed-up volume in place of an existing online volume by overwriting the existing volume with data from the restored volume.

Volumes can only be completely restored; there are no options associated with volume restore except the choice of destination volume to be replaced by the restore volume.

Note that if the source volume is formatted as a ProDOS or an HFS volume, then the user has the option of backing up only blocks marked as "in use" in the volume's block allocation bitmap. Independently, the user has the option of applying a basic run-length-encoding compression method to the volume data before it is sent to the output routines. In any case, volume blocks are read in ascending order, and the resulting data are organized into a simple byte stream with no internal formatting which forms a subset of the overall backup set format.

Except for the content of the actual data portion of the backup set, the entire volume backup format is similar to the file-by-file backup format in order to support the features which allow each piece of media appear as a dummy GS/OS volume and to be bootable. These similarities are presented in detail in the design discussion below.

DESIGN

The core of a backup image is the backup data stream. This part of the backup set is conceptually block size-independent and contains the actual backup data. For a file-by-file backup this consists of the file fork data and the file info for all files in the backup set; for a volume backup this consists of all the volume blocks, or optionally just the blocks in use, in ascending order, optionally compressed.
When the destination for a backup is block media, the format for each piece has essentially two sections: 1) The section which contains the media header and "skeleton" file system structures so that the piece of media will behave properly in the GS/OS environment, 2) The section which contains a portion of the backup data stream. The block media format for file-by-file and entire volume backup is illustrated in figures 1a and 1b:

[image: image1.wmf]
Figure 1a:

ArchiverGS media piece format for file-by-file backup image

[image: image2.wmf]
Figure 1b:

ArchiverGS media piece format for entire volume backup image

Notes on figures 1a and 1b:

• Byte offsets are independent of block size.

• n is the number of bitmap blocks needed to account for every block on the piece of media in the ProDOS volume.

• In figure 1a, x is the number of bytes in the fragment header and varies with the length of the pathname of the file it belongs to.

The boot code displays a splash screen which identifies the piece as a member of an Archiver backup set, the user name for the backup set, the ordinal number of the particular piece in the set, and the number of bytes of user data represented in the backup. The boot code then waits for a keypress before rebooting the machine.

The media header is a quick summary of vital information about the piece of media and the backup set it belongs to. The media header is described in the following figure.

m_hdr
RECORD 0
;header for each piece of media

0000
signature
ds.b 10
;signature to identify Archiver disk

; = $01 $2F $38 $0E $06 $04 $00 $04

; $22 $21

000A
flags
ds.w 1
;flags as follows:

;

; bits
0-1
header type, = 0 in v1.0

;

2-4
backup type, 0 = file-

;

by-file, 1 = volume

;

5-7
compression used,

;

1 = run-length-encoding

;

8

1 = smart vol backup

;

9-14
undefined

;

15

1 = backup completed

000C
create_date
ds.b 8
;date this backup set was created

0014
rev_date
ds.b 8
;date this backup set was last revised

001C
rev_count
ds.w 1
;number of times this set was revised +1

001E
name
ds.b 40
;user name (comment) for this backup

0046
code
ds.l 1
;unique number code for this set

004A
piece_num
ds.w 1
;number of this piece in the backup set

004C
piece_tot
ds.w 1
;total number of pieces in this backup set

;(only on 1st header)

004E
tot_eof
ds.l 1
;total byte size of file backup, block

;count of volume backup

0052
next_type
ds.w 1
;type of device the next piece was written

;on (unused in v1.0)

0054
toc_addr
ds.l 1
;byte address of toc on this volume,

;0 = no toc

0054
stream_start

;for vol backup, this is addr of start of

;backup stream on each piece

0058
toc_len
ds.l 1
;number of bytes in use in the TOC

005C
fst_id
ds.w 1
;FST ID for volume backup

005E
bm_1st
ds.w 1
;1st bitmap word verbatim

0060
bm_blk_1st
ds.w 1
;block # of 1st bitmap block

0062
alloc_count
ds.w 1
;# of blocks represented by each bm bit

0064
used_blocks
ds.l 1
;actual # of blocks backed up in smart vol

;backup

0068
last_addr
ds.l 1
;addr within last piece (or file) of end

;of backup

006C
bm_blk_last
ds.w 1
;block # of last bitmap block

006E
alloc_blocks
ds.w 1
;# of allocation blocks represented in

;bitmap

0070
size

ENDR

Figure 2:

ArchiverGS media header structure

The ProDOS directory block allows the piece to appear as a ProDOS volume with the name "Archiver.XXXXX" where XXXXX is the ordinal number of the piece in its backup set, e.g., the fourteenth piece in a backup set would have the volume name "Archiver.00014". The directory contains no files and the bitmap shows all blocks marked as "in use."

File-by-File Backup Data Stream

The layout of the file-by-file backup data stream is illustrated in the following figure:

[image: image3.wmf]
Figure 3:

ArchiverGS backup data stream format for file-by-file backup image

Notes on figure 3

• All fields, except the Table of Contents, are an arbitrary number of bytes in size, within size limits. File header #1 always begins on a block boundary.

• Archiver v1.0 does not support extensible backups, and no expansion space is allocated after the Table of Contents.

• n is the number of non-directory files backed-up to the backup set.

• The second copy of the Table of Contents is required to fit on a single piece of media.

The Table of Contents (TOC) contains summary information about a file-by-file backup and a list of entries containing information about the files backed-up in that set. Files are always listed in order of depth-first traversal of the directory hierarchy, and directory order for files within a directory. Only files selected to be backed up have entries in the TOC. The TOC and file entry structures are described in figures 4a and 4b. Note that the revision_count, media_types, types_table, and revision_dates fields of the TOC are not used by Archiver v1.0.

toc
RECORD 0
;format for the entire TOC

0000
media_count
ds 1
;# of pieces of media in this set

0002
revision_count
ds 1
;# of revisions to this set

0004
buf_size
ds.l 1
;# bytes occupied by toc's buffer

0008
entry_count
ds 1
;# of master entries

000A
last_entry
ds.l 1
;offset to last valid entry

000E
last_entry_size
ds.w 1
;size of the last entry

0010
f_hdr_size
ds.w 1
;size of a file entry without path

;string

0012
media_types
ds.b 256
;list of types of media in order, 0 =

;past last entry

0112
types_table
ds.l 8
;size in bytes of each media type

0132
revision_dates
ds.b 8 * 16
;date of each of up to 16 revisions

01B2
tot_eof
ds.l 1
;total number of bytes represented on

;this backup set

01B6
ent_start

;entries start here

ENDR

Figure 4a:

ArchiverGS Table of Contents structure

var_entry
RECORD 0
;format for variable-sized TOC entry

0000
prev_size
ds.b 1
;size of previous entry (for reverse-walk)

0001
size
ds.b 1
;size of this entry, 0 = last entry

0002
filetype
ds.w 1
;GS/OS file type

0004
eof
ds.l 1
;logical length of data fork

0008
create
ds.b 8
;create date & time

0010
modd
ds.b 8
;mod date & time

0018
r_eof
ds.l 1
;logical length of resource fork

001C
flags
ds.w 1
;word of flags, including entry type

001E
depth
ds.b 1
;depth in hierarchy: 1=root, 0=entry

;unused

001F
revision
ds.b 1
;number of the revision at which this

;entry was created: 0=original(master)

;backup

0020
link
ds.w 1
;entry number of next entry pertaining to

;this file: 0=no more entries

0022
addr
ds.b 6
;location of start of file's backup image

0022
err_code
equ addr
;error code if problem with file

0028
hdr_len
ds.w 1
;length of file's header

002A
child_sel

;this offset is used as a word field for

;counting the number of selected

;chilidren while the user is choosing

;files, but gets zeroed out before the

;actual backup starts (for directory only)

002A
r_len
ds.l 1
;compressed length of resource fork

002E
filename

;p-string for full pathname starts here

ENDR

Figure 4b:

ArchiverGS Table of Contents file entry structure

The file fragment header, which appears just before the continuation of the backup data stream, is written on every piece of media except the first in the set. This header describes the file whose backup image spans the boundary between the previous piece and the piece the fragment header appears on (in other words, the file that was being backed-up when the media filled-up and the backup was continued on a new piece). It contains the same information as the file header which appears before the fork data for each file in the backup data stream, with the addition of information about which fork spans the boundary and the offset into that fork at which the boundary occurs, or the offset into the file header if that structure spans the boundary. Since the file fragment header contains the pathname of the file it describes, it is variable in size, and that size is contained in one of its fields which is always at a constant offset from its start. The file header is described in figure 5.

f_hdr
RECORD 0
;header for file fragment

;
*** HEADER MUST BE EVEN NUMBER OF BYTES IN LENGTH! ***

0000
sig
ds.w 3
;mini-signature, 1st 6 bytes of the

;standard Archiver signature EOR'ed with

;the "code" for this particular backup set

0006
size
ds.w 1
;size of this header

0008
access
ds.w 1
;file access word

000A
filetype
ds.w 1
;GS/OS file type

000C
aux_type
ds.l 1
;aux type

0010
storage_type
ds.w 1
;unused in Archiver v1.0

0012
eof
ds.l 1
;logical length of data fork

0016
create
ds.b 8
;create date & time

001E
modd
ds.b 8
;mod date & time

0026
r_eof
ds.l 1
;logical length of resource fork

002A
depth
ds.w 1
;depth in hierarchy: 1=root, 0=entry

;unused

002C
revision
ds.w 1
;number of the revision at which this

;entry was created: 0=original(master)

;backup

002E
flags
ds.w 1
;word of flags, including fork that

;follows

0030
mark
ds.l 1
;mark at which following data start

0034
opt_list_data
ds.b 44
;option list, including data size

;** must be even # of bytes **

0060
pathname

;G-string containing complete path, must

;be last field in fixed part of this

;header

ENDR

Figure 5:

ArchiverGS file header structure

The backup data stream continues at the byte following the file fragment header and continues to the last byte on the piece of media if necessary.

Entire Volume Backup Data Stream

As mentioned earlier, the data stream for entire volume backup is formed by concatenating all the blocks on the volume in ascending order. If the user has opted to use compression, then this byte stream is fed to a run-length-encoding algorithm, and the resulting output forms the backup data stream.

If the user has opted to back up only blocks in use on the volume, and the file system on the volume is either ProDOS or HFS, then only the blocks marked as "in use" in the volume allocation bitmap are included in the concatenation. Note that for HFS volumes, the header blocks, which are not accounted for in the bitmap, are always backed up, as are the last two physical blocks on the device containing the volume, which contain a duplicate copy of the Volume Information Block for use by disk recovery utilities. In any case, blocks are always concatenated in ascending order.

Compression Algorithm -- The run-length-encoding algorithm which can be applied to volume blocks at the user's option, is byte-oriented, and encodes runs as a "packet" of the following form:

$ZZ $XX $YY (usual case), $ZZ = $DB

Where $ZZ is the "flag" value, $XX is the repeat count, which cannot equal the flag value ($00 is taken as $100), and $YY is the repeated byte value, which cannot equal the flag value. Archiver uses a flag value of $DB because this value does not occur commonly in most user data. Runs of count 3 or less are not encoded, but simply passed through unchanged.

If the flag value occurs once in the data, it is encoded as a two-byte packet: $DB $DB. For this reason, a normal run with count $DB is always encoded as a run of length $DA, and then a single instance of the repeated value is encoded.

The following table summarizes the rules implemented by the Archiver run-length-encoding algorithm:

buffer contains
restrictions
encoded as…

$YY occurs $XX ≤ 3 times
$YY ≠ $DB
$YY ($XX times)

$YY occurs $XX > 3 times
$XX ≠ $DB
$DB $XX $YY

 (if $YY occurs $100 times then $XX = $00)

$YY occurs $DB times
$YY ≠ $DB
$DB $DA $YY $YY

$DB occurs 1 time

$DB $DB

$DB occurs $XX times

$DB $DB ($XX

 times)

The current implementation of the compression algorithm does not detect runs that cross buffer boundaries in memory. Therefore, a given volume could produce different compressed data stream images during different executions of the entire volume backup function if the block read buffer were not the same size on both occasions.

When the destination of a backup is a file, the format is as follows:

[image: image4.wmf]
Figure 6:

ArchiverGS media piece format for file-by-file backup image

The header portion of an Archiver backup file is identical to the media header (see Figure 2) described earlier. The backup data stream is identical to the one written to block media, except that file fragment headers are never written to a file containing a file-by-file backup.

IMPLEMENTATION (NOTE: This section has not been revised since v0.0 of this document)
BACKUP FUNCTION

The routines in Archiver are designed to write out the backup image sequentially, so that when the destination for the backup is block media, once a given piece fills up and is replaced by a new blank piece, it never needs to be written to again. The one exception is the first piece in a set, which needs to be written to at the conclusion of the backup operation in order to update the first Table of Contents image with compressed sizes of forks and the location in the backup set of each file.
The calling structure for the file-by-file backup operation is illustrated in figure 7. The core of the main writing mechanism for the backup operation is the main I/O buffer, which resides at a certain address in memory and has a certain size which is always a multiple of the block size of the destination media. The main I/O buffer is sized by subtracting 16K from the value returned by the Memory Manager MaxBlock call and rounding down to the nearest multiple of the block size of the destination device. Whenever the buffer becomes full or the contents of the buffer need to be written to media for any other reason, the flush buffer routine is called to write all valid data in the main I/O buffer to the destination block device and to keep track of the next block number to be written to at the next flush buffer call. The flush buffer routine always rounds the number of bytes in the buffer up to the next multiple of the destination block size when computing the request count for the device write call. The size of the I/O buffer is changed dynamically between flushes to ensure that the buffer never be filled across a media boundary (e.g., if the buffer physically has a $10000 bytes of RAM allocated, but the current device block number is 4 blocks from the end of a piece of media with a block size of $200, the logical size of the I/O buffer will be set to $800 bytes so that the next flush of the buffer will, at most, exactly fill up the current piece of destination media). If the flush buffer routine writes to the last block on the current piece of destination media, it exits through the swap media routine, which prompts the user for a new piece of media, verifies that a piece of media was swapped in and is write-enabled, resets the block number to be written to, and sends the media-specific structures ("section 1" of the format illustrated in figure 1b) through the main I/O buffer.

Data are placed in the buffer by two routines which keep track of available space in the buffer and call the flush buffer routine as needed. One routine moves a requested number of bytes from a RAM address to the buffer, and the other moves a requested number of bytes from a readable GS/OS file (fork) reference number to the buffer.

The routines that fill the data buffer are called directly or indirectly by the outer-level file backup routine, which manages the entire file backup operation. This routine accepts as input parameters the destination device number, the user name for the backup set, and a handle to the Table of Contents. This routine returns to its caller (usually the Pascal shell) when either a fatal error occurs or the file-by-file backup operation is complete.

The file backup operation allocates, in addition to the main I/O buffer, a work buffer which is always the size of one block on the destination device. This buffer is used as temporary space in which to build small structures such as the media headers, and also for reading headers from media for the purpose of protecting the user against inadvertently re-inserting a piece of media that has already been written to earlier in the backup operation.

Whenever a file image is about to be sent to the I/O buffer, the ordinal number of the piece of media and the byte offset within that piece that the image will start at are stored in that file's entry in the RAM image of the Table of Contents. This image gets written again to the first piece of media at the conclusion of the backup operation, so that the restore routines will be able to obtain information on exactly where to find the backup image of any given file in the backup set.

[image: image5.wmf]
Figure 7:

ArchiverGS file backup calling structure

RESTORE FUNCTION

The file-by-file restore operation is normally preceded by reading the Table of Contents from the first piece of media in the backup set from which files are to be restored. The user then decides which files in the list he wishes to restore, and his choices are marked in the RAM image of the Table of Contents, which is then passed to the main file-by-file restore routine. This routine scans the Table of Contents for parent directories of files to be restored, and creates those directories at the destination GS/OS path. When a non-directory file is then to be restored, a file is created at the GS/OS path derived by concatenating the destination path with the pathname of the file which was backed-up, and the user is prompted to insert the correct piece of media in the backup set (if it is not already online). File info data are then read into a temporary space, and file fork data are read from the media and written to the file just created. When both forks have been restored, the file is closed and the file info for the new file is set to match that of the file which was backed-up. The process is repeated for every file remaining to be restored, except that parent directories are only created as needed, i.e., never redundantly.

The calling structure for the file-by-file restore operation is illustrated in figure 8. All file info and fork data are read from media into the main I/O buffer by the read file routine. The read file routine accepts as input parameters the source device number, the address and size of the main I/O buffer, the piece number and starting byte offset on that piece of the image of the file to be restored, and the size of the file header and file fork data. It then reads as many blocks from the source device as necessary to either completely fill the buffer or to obtain all the data associated with the file being restored. The routine prompts the user for disk swaps as necessary and intelligently ignores file fragment headers, which are present at the start of the backup data stream on each piece of media. Note that the I/O buffer is required to be large enough to hold at least two blocks from the restore device, so that it will always be possible to read the entire file header in one operation (this requirement assumes that a file header will never be larger than a single block).

[image: image6.wmf]
Figure 8:

ArchiverGS file restore calling structure

4

