GS/OS High Sierra File System Translator

External ERS

Version 1.00

© 1987-1990 Apple Computer, Inc.

All rights reserved.

INTRODUCTION
1

LIMITATIONS
2

FILE TYPES
3

APPLE EXTENSIONS TO ISO 9660
3

SYSTEM CALLS
4

CREATE ($01)
4

DESTROY ($02)
4

CHANGE_PATH ($04)
4

SET_FILE_INFO ($05)
4

GET_FILE_INFO ($06)
5

VOLUME ($08)
8

CLEAR_BACKUP_BIT ($0B)
11

OPEN ($10)
11

READ ($12)
15

WRITE ($13)
16

CLOSE ($14)
16

FLUSH ($15)
17

SET_MARK ($16)
17

GET_MARK ($17)
18

SET_EOF ($18)
19

GET_EOF ($19)
19

GET_DIR_ENTRY ($1C)
20

GET_DEV_NUM ($20)
25

FORMAT ($24)
26

ERASE_DISK ($25)
26

FST_SPECIFIC ($33)
26

Appendix A
29



.c1.INTRODUCTION

This document describes the operation and limitations of the GS/OS High Sierra File System Translator (HS-FST) for compact read only optical discs (CDROM).  It assumes familiarity with the structure and usage of GS/OS and of the High Sierra File System.

The HS-FST is based on two documents:


-
The May 28, 1986 document entitled "Working Paper for Information Processing - Volume



and File Structure of Compact Read Only Optical Discs for Information Interchange" 

published by the CDROM Ad Hoc Advisory Committee.  This is the "High Sierra" standard.


-
The international standard ISO 9660, first edition, entitled "Information processing - Volume



and file structure of CD-ROM for information interchange".

High Sierra and ISO 9660 are different file systems.  The HS-FST supports both file systems;  all references to "High Sierra" should be interpreted to mean both High Sierra and ISO 9660.

.c1.LIMITATIONS
The function of a File System Translator is to provide application programs with transparent access to files from any file system via standard GS/OS system calls.  FST's provide only the file access capablilities of GS/OS;  they do not implement capabilities or system calls peculiar to other file systems.  Accordingly, and in conjunction with interchange level 2, the HS-FST:


-
supports associatied files (GS/OS "extended" files) for ISO 9660 discs only

-
supports only one Primary Volume Descriptor per physical volume


-
supports 3 logical block sizes: 512, 1024, and 2048


-
does not support multi-volume sets


-
does not support multi-extent files


-
does not support records (record files are treated like any other file)


-
maps the existence bit of the file flags to the GS/OS invisible bit


-
ignores file permissions

 
-
is a read-only implementation 

This last limitation imposes some obvious restrictions on the GS/OS system calls which require writing data to the disc:  these calls will always return a write-protect error after identifying that the file or device requested is present and is in High Sierra format.

The following lists all the GS/OS system calls supported by the HS-FST;  those in bold type perform the indicated function, those in plain type will always return an error (with the exception of Flush; see the call description):


Call #
Name
Call #
Name

$01
Create
$14
Close

$02
Destroy
$15
Flush


$04
Change Path
$16
Set_Mark

$05
Set File Info
$17
Get_Mark


$06
Get File Info
$18
Set_EOF


$08
Volume
$19
Get_EOF

$0B
Clear Backup Bit
$1C
Get_Dir_Entry


$10
Open
$20
Get_Dev_Num

$12
Read
$24
Format


$13
Write
$25
Erase_Disk




$33
FST_Specific




.c1.FILE TYPES 

High Sierra does not provide a file typing mechanism.  This is potentially very limiting since most applications select a particular file type as a filter when calling the standard file tools and, therefore,  files from a High Sierra disc will never be selectable.

The HS-FST provides a partial solution to the problem: 

File name suffixes are looked up in a table and mapped to file types.  For instance, the file "ABC.TXT" would be assigned a file type $04 (text) because of the suffix ".TXT".   A table of suffixes and their associated file types is maintained by the HS-FST and the FST_Specific calls allow for modification of this table.  The default table contains only the ".TXT"=$04  and ".BAT"=$04 mapping.

A complete solution to the problem, requiring the cooperation of the disc publisher, is described below.

.c1.APPLE EXTENSIONS TO ISO 9660

About 5.0 Changes - Apple Extensions to ISO 9660 and CD-ROM XA Discs
The recently published specification for CD-ROM XA includes an incompatability with the Apple Extensions to ISO 9660;  the solution, agreed to by engineers at Microsoft and Apple, requires that receiving systems (i.e. the High Sierra FST) handle XA discs as a special case (for details of the format, see the attached document).  The High Sierra FST now supports both version 1 and version 2 of the Apple Extensions on CD-ROM XA discs.

Extended Attribute Records on Directories

The High Sierra and ISO 9660 file systems allow for the presence of Extended Attribute Records (XARs) on both files and directories.  The High Sierra FST supports XARs on files but not on directories.  When an XAR is encountered on a directory, the FST will return a dir_error ($51).

Appendix A describes extensions to the ISO 9660 standard which allow publishers to include ProDOS file type and auxiliary file type, and to preserve ProDOS filename syntax.

When the Protocol Identifier (defined in Appendix A) is present on a volume, the HS-FST will return the file_type and aux_type data from the directory record if present (SystemUseID = 01).  In this case, the HS-FST will not use the file type mapping table described earlier.

When the Protocol Identifier is present on a volume and the ProDOS Filename Transformation bit is set, the HS-FST will handle the necessary conversions such that the original ProDOS filenames can be used to refer to all files and directories on the volume.

.c1.SYSTEM CALLS

This section gives some general information about using the HS-FST and describes the parameters for each of the calls.  Italicized text in the call parameter descriptions indicate areas where the HS-FST differs from the descriptions given in the document entitled "GS/OS System Calls".

Recall that block size under High Sierra is not fixed across volumes; if needed, use the VOLUME call to get the block size for a particular volume.  Block counts returned by the calls always refer to blocks of the size returned by the VOLUME call.

High Sierra "associated" files are analogous to the resource fork of a GS/OS "extended" file.  If a file, call it FILE, has an associated file, call it FILE.ASSOC, FILE will be referred to as the data fork of an extended file, and FILE.ASSOC will be referred to as the resource fork of FILE.  Directories cannot have associated files.

Some High Sierra discs have all zeroes in the date/time fields;  in this case, or when any invalid date/time is found, the HS-FST will return a default date/time of Friday, January 1, 1988 12:00.

.c2.CREATE ($01)
This call will always return one of the following errors:


$04
parameter count out of range


$10
device not found


$27
I/O error


$2B
write-protected


$2F
device offline



$40
invalid pathname syntax


$44
path not found


$45
volume not found


$46
file not found


$52
unsupported volume type


$53
invalid parameter


$57
duplicate volume


$58
not a block device


$59
invalid class

.c2.DESTROY ($02)

Always returns an error.  Same as Create call.

.c2.CHANGE_PATH ($04)

Always returns an error.  Same as Create call.

.c2.SET_FILE_INFO ($05)

Always returns an error.  Same as Create call.

.c2.GET_FILE_INFO ($06)

Description:

This call returns certain file attributes of an existing open or closed block file.
Class 0 Parameters:

Offset
Label
Description

$00-$03
pathname
input long word pointer:



Points to a class 0 string representing the pathname of the file whose file information is to be retrieved.

$04-$05
access
output word value:



bits 15-8
reserved, must be zero



bit 7
D=0, destroy disabled; D=1, destroy enabled



bit 6
RN=0, rename disabled; RN=1, rename enabled



bit 5
B=0, backup not needed; B=1, backup needed



bits 4-3
reserved, must be zero



bit 2
I=0, visible; I=1 invisible



bit 1
W=0, write disabled; W=1, write enabled



bit 0
R=0, read disabled; R=1, read enabled

$06-$07
file_type
output word value:



$000F if a directory, else $0000 ("unknown") unless the file name matches an entry in the file type mapping table.  See FST_Specific calls.

$08-$0B
aux_type or
output long word value:


total_blocks



Zero unless call specifies a volume directory, in which case this field returns the total # of blocks on the volume.


$0C-$0D
storage_type
output word value:



$01 = standard file (no associated file)



$05 = extended file (associated file present )



$0D = subdirectory



$0F = volume directory

$0E-$0F
create_date
output word value:



bits 15-9
year (1=1901, 2=1902,…)



bits 8-5
month (1=January, 2=February,…)



bits 4-0
day (1-31)

$10-$11
create_time
output word value:



bits 15-13
0



bits 12-8
hour (0-23)



bits 7-6
0



bits 5-0
minute (0-59)

$12-$13
mod_date
output word value:



Always same as create_date.

$14-$15
mod_time
output word value:



Always same as create_time.

$16-$19
blocks_used
output long word value:



For a standard file or extended file, this field returns the total number of blocks used by the file.  For a subdirectory file this field returns the number of blocks occupied by the subdirectory.  For a volume, this field returns the total number of blocks used for all purposes on the volume (this is always the same as total_blocks).

Class 1 Parameters:

Offset
Label
Description

$00-$01
pccount
parameter count (minimum=2)

$02-$05
pathname
input long word pointer:



Points to a class 1 string representing the pathname of the file whose file information is to be retrieved.

$06-$07
access
output word value:



bits 15-8
reserved, must be zero



bit 7
D=0, destroy disabled; D=1, destroy enabled



bit 6
RN=0, rename disabled; RN=1, rename enabled



bit 5
B=0, backup not needed; B=1, backup needed



bits 4-3
reserved, must be zero



bit 2
I=0, visible; I=1 invisible



bit 1
W=0, write disabled; W=1, write enabled



bit 0
R=0, read disabled; R=1, read enabled

$08-$09
file_type
output word value:



$000F if a directory, else $0000 ("unknown") unless the file name matches an entry in the file type mapping table.  See FST_Specific calls.

$0A-$0D
aux_type
output long word value:



Always = $0000


$0E-$0F
storage_type
output word value:



$01 = standard file (no associated file)



$05 = extended file (associated file present )



$0D = subdirectory



$0F = volume directory

$10-$17
create_date_time
output double long word value:



Value of the file's creation date and time attributes:



byte 00
-
second (0-59)



byte 01
-
minute (0-59)



byte 02
-
hour (0-23)



byte 03
-
year (year-1900)



byte 04
-
day (0-30)



byte 05
-
month (0-11)



byte 06
-
null



byte 07
-
day of week (1-7, 1=sunday)

$18-$1F
mod_date_time
output double long word value:



Same as create_date_time.
$20-$23
option_list
input long word pointer to output (default null):



Points to a data area consisting of a two-byte length field followed by a two-byte output length field, followed by space for the output data.  The length field is an input giving the total length of the data area including the length word itself.  On output, the HS-FST sets the output length field to a value giving the number of bytes of space required by the output data, excluding the length words.  The HS-FST will not overflow the available output data area.  If the data area is too small, the caller may reissue the call after allocating a new output buffer with size adjusted to output length + 4.



If an Extended Attribute Record (XAR) exists for the file, the HS-FST will ouput as much of it as will fit into the data area pointed to.  If an XAR will not fit in the allotted space, the HS-FST will return as much of the data as possible and return a buff_too_small error ($4f). 
$24-$27
eof
output long word value:



For a standard file, this field gives the number of bytes that can be read from the file.



For an extended file, this field gives the number of bytes that can be read from the file's data fork.



For a volume directory or a subdirectory, this field gives the number of bytes that can be read from the directory.

$28-$2B
blocks_used
output long word value:



If the pathname parameter specifies a standard file, this field returns the total number of blocks used by the file.  If it specifies an extended file, this field returns the number of blocks used by the file's data fork.  If the call specifies a subdirectory or volume directory, this field is undefined.

$2C-$2F
resource_eof
output long word value:



If the specified file is an extended file, this field gives the number of bytes that can be read from the file's resource fork.  Otherwise, it is undefined.

$30-$33
resource_blocks
output long word value:



If the specified file is an extended file, this field gives the number of blocks used by the file's resource fork.  Otherwise, it is undefined.

Errors:


$04
parameter count out of range


$10
device not found


$27
I/O error


$40
invalid pathname syntax


$44
path not found


$45
volume not found


$46
file not found


$4B
unsupported storage type


$52
unsupported volume type


$53
invalid parameter


$58
not a block device

.c2.VOLUME ($08)

Description:
Given the name of a block device, this call returns the name of the volume mounted in the device as well as other information about the volume. 

Class 0 Parameters:
Offset
Label
Description
$00-$03
dev_name
input long word pointer



Points to a class 0 string containing the name of a block device.

$04-$07
vol_name
input long word pointer to output string



Points to a data area where the HS-FST places a class 0 string containing the volume name of the volume mounted in the device.

$08-$0B
total_blocks
output long word value



Total number of blocks contained on the volume.

$0C-$0F
free_blocks
output long word value



Always = $0000.
$10-$11
file_sys_id
output word value



Identifies the file system contained on the volume as follows:



$0000
reserved



$0001
ProDOS/SOS



$0002
DOS 3.3



$0003
DOS 3.2 or 3.1



$0004
Apple II Pascal



$0005
Macintosh (flat file system)



$0006
Macintosh (hierarchical file system)



$0007
LISA file system



$0008
Apple CP/M



$0009
Character FST



$000A
MS/DOS



$000B
High Sierra



$000C
ISO 9660



…



$FFFF
reserved



If the volume is not a High Sierra or ISO 9660 volume, the HS-FST will return an "unsupported volume type" error ($52).
Class 1 Parameters:
Offset
Label
Description
$00-$01
pcount
input word value



parameter count (minimum=2)

$02-$05
dev_name
input long word pointer



Points to a class 1 string containing the name of a block device.

$06-$09
vol_name
input long word pointer to output string



Points to a class 1 output string where the HS-FST places the volume name of the volume mounted in the device.

$0A-$0D
total_blocks
output long word value



Total number of blocks contained on the volume.

$0E-$11
free_blocks
output long word value



Always = $0000.
$12-$13
file_sys_id
output word value



Identifies the file system contained on the volume as follows:



$0000
reserved



$0001
ProDOS/SOS



$0002
DOS 3.3



$0003
DOS 3.2 or 3.1



$0004
Apple II Pascal



$0005
Macintosh (flat file system)



$0006
Macintosh (hierarchical file system)



$0007
LISA file system



$0008
Apple CP/M



$0009
Character FST



$000A
MS/DOS



$000B
High Sierra



$000C
ISO 9660


…



$FFFF
reserved



If the volume is not a High Sierra or ISO 9660 volume, the HS-FST will return an "unsupported volume type" error ($52).
$14-$15
block_size
output word value



The size, in bytes, of a block.

Errors:


$04
parameter count out of range


$10
device not found


$11
invalid device request


$27
I/O error


$28
no device connected


$2E
disk switched


$45
volume not found


$52
unsupported volume type


$53
invalid parameter


$57
duplicate volume


$58
not a block device

.c2.CLEAR_BACKUP_BIT ($0B)

Always returns an error.  Same as Create call.

.c2.OPEN ($10)

Description:
This call causes the HS-FST to establish an access path to a file.  Once an access path is established, the user may perform file READs and other related operations on the file.

The class 1 OPEN call also optionally returns all the file information returned by the GET_FILE_INFO call.

A file may be opened more than once (limited only by memory) and each open will assign a different reference number.

Class 0 Parameters:
Offset
Label
Description
$00-$01
ref_num
output word value



A reference number assigned by GS/OS to the access path.  All other file operations (READ, CLOSE, etc.) refer to the access path by this number.

$02-$05
pathname
input long word pointer



Points to a class 0 string representing the pathname of the file to be opened.

$06-$09
reserved
This field is reserved and must be set to $00000000.

Class 1 Parameters:
Offset
Label
Description
$00-$01
pcount
parameter count (minimum=2)

$02-$03
ref_num
output word value



A reference number assigned by GS/OS to the access path.  All other file operations (READ, CLOSE, etc.) refer to the access path by this number.

$04-$07
pathname
input long word pointer



Points to a class 1 string representing the pathname of the file to be opened.

$08-$09
request_access
input word value (default “as allowed”)



Specifies the desired access permissions.



bits 15-2
reserved, must be zero



bit 1
W=1, request write permission



bit 0
R=1, request read permission



If this field is not included or its value is $0000, the file will be opened as permitted by its stored access attributes.



If this field is included and its value is anything other than $0000 or $0001, the HS-FST will return an access error ($4E).
$0A-$0B
resource_number
input word value (default=$0000)



This field is meaningful only when pathname specifies an extended file.  In this case, a value of $0000 tells the HS-FST to open the data fork, and a value of $0001 tells it to open the resource fork (i.e. the associated file).

$0C-$0D
access
output word value:



Value for the file's access attribute, which is described under the GET_FILE_INFO call.

$0E-$0F
file_type
output word value



$000F if a directory, else $0000 ("unknown") unless the file name matches an entry in the file type mapping table.  See FST_Specific calls.

$10-$13
aux_type
output long word value



Always = $0000
$14-$15
storage_type
output word value



Value of the file's storage_type attribute.



$01=standard file



$05=extended file



$0D = subdirectory



$0F = volume directory

$16-$1D
create_date_time
output double long word value



Value of the file's creation date and time attributes.  See get_file_info call for format.

$1E-$25
mod_date_time
output double long word value



Always same as create_date_time
$26-$29
option_list
input long word pointer to output (default null)



Points to a data area consisting of a two-byte length field followed by a two-byte output length field, followed by space for the output data.  The length field is an input giving the total length of the data area including the length word itself.  On output, the HS-FST sets the output length field to a value giving the number of bytes of space required by the output data, excluding the length words.  The HS-FST will not overflow the available output data area.  If the data area is too small, the caller may reissue the call after allocating a new output buffer with size adjusted to output length + 4.



If an Extended Attribute Record (XAR) exists for the file, the HS-FST will ouput as much of it as will fit into the data area pointed to.  If an XAR will not fit in the allotted space, the HS-FST will return as much of the data as possible and return a buff_too_small error ($4f). 
$2A-$2D
eof
output long word value



For a standard file, this field gives the number of bytes that can be read from the file.



For an extended file, this field gives the number of bytes that can be read from the file's data fork, even if one is opening the resource fork.



For a subdirectory file, this field is undefined.



For the volume directory, this field is undefined.

$2E-$31
blocks_used
output long word value



If the pathname parameter specifies a standard file, this field returns the total number of blocks used by the file.  If it specifies an extended file, this field returns the number of blocks used by the file's data fork, even if one is opening the resource fork.  If the call specifies a subdirectory or volume directory, this field is undefined.

$32-$35
resource_eof
output long word value



If the specified file is an extended file, this field gives the number of bytes that can be read from the file's resource fork, even when one is opening the data fork.  Otherwise, it is undefined.

$36-$39
resource_blocks
output long word value



If the specified file is an extended file, this field gives the number of blocks used by the file's resource fork, even if one is opening the data fork.  Otherwise, it is undefined.

Errors:


$04
parameter count out of range


$27
I/O error


$28
no device connected


$2E
disk switched


$40
invalid pathname syntax


$44
path not found


$45
volume not found


$46
file not found


$4B
unsupported storage type


$4E
access not allowed


$50
file is open


$52
unsupported volume type


$58
not a block device

.c2.READ ($12)

Description:
This function attempts to transfer request_count bytes, starting at the current mark, from the file specified by ref_num into the buffer pointed to by data_buffer.  The file mark is updated to reflect the new file position after the read.

Two factors may cause fewer than request_count bytes to be transferred, so the function returns the actual number of bytes transferred in transfer_count.  If the HS-FST reaches the end of file before transferring request_count bytes, it stops the read and sets transfer_count to the number of bytes actually read.  If newline mode is enabled and a newline character is encountered before request_count bytes have been read, the HS-FST stops the transfer and sets transfer_count to the number of bytes actually read, including the newline character.

The HS-FST allows reading of directories with class 1 calls only (class 0 will return an invalid_access error);  however, to preclude problems caused by invalid assumptions about the structure of the directory data, the HS-FST will always return a "caution" error ($66) after a successful read.  Also, the HS-FST does not allow read calls and get_dir_entry calls to the same reference number:  if an open file has previously been accessed by a get_dir_entry call and a read call is made with the same reference number, the HS-FST will return an invalid_access error  (if it is necessary to do this, open the directory twice).

Class 0 Parameters:
Offset
Label
Description
$00-$01
ref_num
input word value



The identifying number assigned to the file by the OPEN call.

$02-$05
data_buffer
input long word pointer



Points to a memory area large enough to hold the requested data.

$06-$09
request_count
input long word value



The number of bytes to be read.

$0A-$0D
transfer_count
output long word value



The number of bytes actually read.

Class 1 Parameters:
Offset
Label
Description
$00-$01
pcount
parameter count (minimum=4)

$02-$03
ref_num
input word value



The identifying number assigned to the file by the OPEN call.

$04-$07
data_buffer
input long word pointer



Points to a memory area large enough to hold the requested data.

$08-$0B
request_count
input long word value



The number of bytes to be read.

$0C-$0F
transfer_count
output long word value



The number of bytes actually read.

$10-$11
cache_priority
input word value (default = $0000)



Specifies whether or not disc blocks handled by the read call are candidates for caching.



$0000
do not cache blocks involved in this read



$0001
cache blocks involved in this read if possible

Errors:


$04
parameter count out of range


$27
I/O error


$2E
disk switched


$43
invalid reference number


$4C
eof encountered


$4E
access not allowed


.c2.WRITE ($13)

Returns write-protect error ($2B).

.c2.CLOSE ($14)

Description:
This call closes the access path to the specified file, releasing all resources used by the file and terminating further access to it..  Memory resident data structures associated with the file are released.

If the specified ref_num is $0000, all files at or above the current system file level are closed.

Class 0 Parameters:
Offset
Label
Description
$00-$01
ref_num
input word value



The identifying number assigned to the file by the OPEN call.  A value of $0000 indicates that all files at or above the current system file level should be closed.

Class 1 Parameters:
Offset
Label
Description
$00-$01
pcount
parameter count (minimum=1)

$02-$03
refnum
input word value



The identifying number assigned to the file by the OPEN call.  A value of $0000 indicates that all files at or above the current system file level should be closed.

Errors:


$04
parameter count out of range


$27
I/O error


$2B
disk write protected


$2E
disk switched


$43
invalid reference number


$48
volume full


$5A
block number out of range

.c2.FLUSH ($15)

Does nothing.  Returns with carry clear.

.c2.SET_MARK ($16)

Description:
This call sets the file mark (the position from which the next byte will be read or to which the next byte will be written) to a specified value.  The value may not exceed EOF, the current size of the file.

Class 0 Parameters:
Offset
Label
Description
$00-$01
ref_num
input word value



The identifying number assigned to the file by the OPEN call.

$02-$05
position
input long word value



The value assigned to the mark.  It is the position (in bytes relative to the beginning of the file) at which the next read will begin.

Class 1 Parameters:
Offset
Label
Description
$00-$01
pcount
parameter count (minimum=3)

$02-$03
ref_num
input word value



The identifying number assigned to the file by the OPEN call.

$04-$05
base
input word value



A value that tells how to interpret the displacement field.



$0000
set mark = displacement



$0001
set mark = eof - displacement



$0002
set mark = mark + displacement



$0003
set mark = mark - displacement

$06-$09
displacement
input long word value



A value used to compute the new value of the mark as described above.

Errors:


$04
parameter count out of range


$27
I/O error


$43
invalid reference number


$4D
position out of range


$5A
block number out of range

.c2.GET_MARK ($17)

Description:
This function returns the current mark for the specified file.

Class 0 Parameters:
Offset
Label
Description
$00-$01
ref_num
input word value



The identifying number assigned to the file by the OPEN call.

$02-$05
position
output long word value



The current value of the mark in bytes relative to the beginning of the file.

Class 1 Parameters:
Offset
Label
Description
$00-$01
pcount
parameter count (minimum = 2)

$02-$03
ref_num
input word value



The identifying number assigned to the file by the OPEN call.

$04-$07
position
output long word value



The current value of the mark in bytes relative to the beginning of the file.

Errors:


$04
parameter count out of range


$43
invalid reference number

.c2.SET_EOF ($18)

Returns write-protect error ($2B).

.c2.GET_EOF ($19)

Description:
This function returns the current logical size of a specified file.

Class 0 Parameters:
Offset
Label
Description
$00-$01
ref_num
input word value



The identifying number assigned to the file by the OPEN call.

$02-$05
eof
output long word value



The current logical size of the file, in bytes.

Class 1 Parameters:
Offset
Label
Description
$00-$01
pcount
parameter count (minimum = 2)

$02-$03
ref_num
input word value



The identifying number assigned to the file by the OPEN call.

$04-$07
eof
output long word value



The current logical size of the file, in bytes.
Errors:


$04
parameter count out of range


$43
invalid reference number

.c2.GET_DIR_ENTRY ($1C)

Description:
This call returns information about a directory entry in the volume directory or a subdirectory.  Before executing this call, the caller must open the directory or subdirectory.  The call allows the caller to step forward or backward through file entries or to specify absolute entries by entry number.

The HS-FST does not allow get_dir_entry calls and read calls to the same reference number:  if an open file has previously been accessed by a read call and a get_dir_entry call is made with the same reference number, the HS-FST will return an invalid_access error  (if it is necessary to do this, open the directory twice).

Class 0 Parameters:
Offset
Label
Description
$00-$01
ref_num
input word value



The identifying number assigned to the directory or subdirectory file by the open call.

$02-$03
flags
Flags that indicate various attributes of the file:



bit 15 = 0
the file is not an extended file.



bit 15 = 1
the file is an extended file.



bits 14-0
reserved for Apple.

$04-$05
base
input word value



A value that tells how to interpret the displacement field.



$0000
displacement gives an absolute entry number



$0001
displacement is added to current displacement to get 

next entry number



$0002
displacement is subtracted from current





displacement to get next entry number

$06-$07
displacement
input word value



In combination with the base parameter, specifies the directory entry whose information is to be returned.  When the directory is first opened, the HS-FST sets the current displacement value to 0.  The current displacement value is updated  on every GET_DIR_ENTRY call.  



If the base and displacement fields are both zero, the HS-FST returns a 2-byte value in the entry_num field that specifies the total number of active entries in the subdirectory.  In this case, the HS-FST also resets the current displacement to the first entry in the subdirectory.



To step through the directory entry by entry, one should set  both the base and displacement fields to $0001.

$08-$0B
name
input long word pointer to output string



Points to a class 1 string giving the name of the file or subdirectory.

$0C-$0D
entry_num
output word value



The absolute entry number of the entry whose information is being returned.  This field is provided so that a program can obtain the absolute entry number even if the base and displacement fields specify a relative entry.

$0E-$0F
file_type
output word value



$000F if a directory, else $0000 ("unknown") unless the file name matches an entry in the file type mapping table.  See FST_Specific calls.

$10-$13
eof
output long word value



Value of the eof field of the directory entry.

$14-$17
block_count
output long word value



The value of the blocks_used field of the directory entry.

$18-$1F
create_date_time
output double long word value



The value of the creation date/time field of the directory entry.  See get_file_info call for format.

$20-$27
mod_date_time
output double long word value



Always the same as create_date_time.
$28-$29
access
output word value



Value for the file's access attribute, which is described under the GET_FILE_INFO call.

$2A-$2D
aux_type
output long word value



Always = $0000
$2E-$2F
file_system_id
output word value



File system identifier of the file system on the volume containing the file.  Always = $000B or $000C unless not a High Sierra or ISO 9660 volume, in which case the HS-FST returns an "unsupported volume type" error ($52).

Class 1 Parameters:
Offset
Label
Description
$00-$01
pcount
parameter count (minimum = 5)

$02-$03
ref_num
input word value



The identifying number assigned to the directory or subdirectory file by the open call.

$04-$05
flags
Flags that indicate various attributes of the file:



bit 15 = 0
the file is not an extended file.



bit 15 = 1
the file is an extended file.



bits 14-0
reserved for Apple.

$06-$07
base
input word value



A value that tells how to interpret the displacement field.



$0000
displacement gives an absolute entry number



$0001
displacement is added to current displacement to get 

next entry number



$0002
displacement is subtracted from current 


displacement to get next entry number

$08-$09
displacement
input word value



In combination with the base parameter, specifies the directory entry whose information is to be returned.  When the directory is first opened, the HS-FST sets the current displacement value to zero.  The current displacement value is updated on every GET_DIR_ENTRY call.  



If the base and displacement fields are both zero, the HS-FST returns a 2-byte value in the entry_num field that specifies the total number of active entries in the subdirectory.  In this case, the HS-FST also resets the current displacement to the first entry in the subdirectory.



To step through the directory entry by entry, one should set  both the base and displacement fields to $0001.

$0A-$0D
name
input long word pointer to output string



Points to a class 1 output string giving the name of the file or subdirectory.

$0E-$0F
entry_num
output word value



The absolute entry number of the entry whose information is being returned.  This field is provided so that a program can obtain the absolute entry number even if the base and displacement fields specify a relative entry.

$10-$11
file_type
output word value



$000F if a directory, else $0000 ("unknown") unless the file name matches an entry in the file type mapping table.  See FST_Specific calls.

$12-$15
eof
output long word value



Value of the eof field of the directory entry.

$16-$19
block_count
output long word value



The value of the blocks_used field of the directory entry.

$1A-$21
create_date_time
output double long word value



The value of the creation date/time field of the directory entry.  See get_file_info call for format.

$22-$29
mod_date_time
output double long word value



Always same as create_date_time.
$2A-$2B
access
output word value



Value for the file's access attribute, which is described under the GET_FILE_INFO call.

$2C-$2F
aux_type
output long word value



Always = $0000.
$30-$31
file_system_id
output word value



File system identifier of the file system on the volume containing the file.  Always = $000B of $000C unless not a High Sierra or ISO 9660 volume, in which case the HS-FST returns an "unsupported volume type" error ($52).
$32-$35
option_list
input long word pointer to output



Points to a data area where the HS-FST returns FST specific information related to the file.  This is the same information returned in the option list of the OPEN and GET_FILE_INFO calls.



This field points to a buffer that starts with a length word giving the total buffer size including the length word.  The next word is an output length value which is undefined on input.  On output, this word is set to the size of the output data excluding the length word and the output length word.  The HS-FST will not overflow the available space specified in the input length word.  If the data area is too small, the caller may reissue the call after allocating a new output buffer with size adjusted to output length + 4.



If an Extended Attribute Record (XAR) exists for the file, the HS-FST will ouput as much of it as will fit into the data area pointed to.  If an XAR will not fit in the allotted space, the HS-FST will return as much of the data as possible and return a buff_too_small error ($4f). 
$$36-$39
resource_eof
output long word value:



If the specified file is an extended file, this field gives the number of bytes that can be read from the file's resource fork.  Otherwise, it is undefined.

$3A-$3D
resource_blocks
output long word value:



If the specified file is an extended file, this field gives the number of blocks used by the file's resource fork.  Otherwise, it is undefined.

Errors:


$04
parameter count out of range


$10
device not found


$27
I/O error


$4A
incompatible file format


$4B
unsupported storage type


$52
unsupported volume type


$53
invalid parameter


$58
not a block device

.c2.GET_DEV_NUM ($20)

Description:
This call returns the device number (dev_num) of a device identified by device name or volume name.  Only block devices may be identified by volume name, and then only if the named volume is mounted.  Most other device calls refer to devices by device number.

GS/OS assigns device numbers at boot time.  They are a series of consecutive integers beginning with 1.  There is no defined relationship between devices and specific device numbers.

Because a device may hold different volumes and because volumes may be moved from one device to another, the device number returned for a particular volume name may change.  

Class 0 Parameters:
Offset
Label
Description
$00-$03
dev_name
input long word pointer



Pointer to a class 0 string representing the device name or volume name (for a block device).

$04-$05
dev_num
output word value



The device reference number of the specified device.

Class 1 Parameters:
Offset
Label
Description
$00-$01
pcount
parameter count (minimum=2)

$02-$05
dev_name
input long word pointer



Pointer to a class 1 string representing the device name or volume name (for a block device).

$06-$07
dev_num
output word value



The device reference number of the specified device.

Errors:


$04
parameter count out of range


$10
device not found


$11
invalid device request


$40
invalid device or volume name syntax


$45
volume not found

.c2.FORMAT ($24)

Returns write-protect error ($2B).

.c2.ERASE_DISK ($25)

Returns write-protect error ($2B).

.c2.FST_SPECIFIC ($33)

Description:
This call is used to control file type mapping by the HS-FST.  It is unique in that it uses a command number as one of its parameters and is actually four different calls.  This call is class 1 only.

The four calls are:


Map_Enable
-
Enable/Disable file type mapping.  Default is enabled.


Get_Map_Size
-
Return size in bytes of current map.


Get_Map_Table
-
Return current map.


Set_Map_Table
-
Replace current map.

The format of a map table is as follows:


Map_Size
length of table, including terminator (word)


Record_0
map record (variable length)


Record_1
map record


     :


Record_n
last map record


00
terminator (zero byte)

Map records consist of a text string (Msb's off) followed by a zero byte followed by a file type byte.  The text string can be any length and can include any legal characters for a High Sierra file name (text must be upper case, for example).  In APW assembly, a map table can be defined as follows:

map_table
dc
i2'end-map_table+1'
;Length of table.



dc
c'.TXT',h'00 04'

;Record 0.



dc
c'.TYPE',h'00 7f'

;Record 1.

end
dc
h'00'

;Terminator.

Map_Enable Parameters: 
Offset
Label
Description
$00-$01
pcount
parameter count (always = $0003)

$02-$03
file_sys_id
input word value



Must = $000B, the High Sierra file system id.

$04-$05
command_num
input word value



$0000 for map_enable

$06-$07
enable
input word value



$0000 = disable file type mapping.



$0001 = enable file type mapping (this is the default state).

Get_Map_Size Parameters: 
Offset
Label
Description
$00-$01
pcount
parameter count (always = $0003)

$02-$03
file_sys_id
input word value



Must = $000B, the High Sierra file system id.

$04-$05
command_num
input word value



$0001 for get_map_size

$06-$07
map_size
output word value



The size, in bytes, of the current map table.

Get_Map_Table Parameters: 
Offset
Label
Description
$00-$01
pcount
parameter count (always = $0003)

$02-$03
file_sys_id
input word value



Must = $000B, the High Sierra file system id.

$04-$05
command_num
input word value



$0002 for get_map_table 

$06-$09
buffer_ptr
input long word pointer



Points to a memory area large enough to hold the map table.  No checking is done on the size of this buffer!

Set_Map_Table Parameters:  
Offset
Label
Description
$00-$01
pcount
parameter count (always = $0003)

$02-$03
file_sys_id
input word value



Must = $000B, the High Sierra file system id.

$04-$05
command_num
input word value



$0003 for set_map_table 

$06-$09
map_ptr
input long word pointer



Points to new map table.  As long as there is space in memory for the new table, it will replace the old one.  If there is not enough space, an out_of_memory error will be returned and the original table will remain in effect.  No validity checking is done on the table.


Errors:


$04
parameter count out of range


$53
invalid parameter


$54
out of memory

.c1.Appendix A

Apple Extensions to ISO 96601  
Version 1.4

Bryan Atsatt & Brian Bechtel

Who Should Read This Document


-
Apple Developers working with ISO 9660


-
Publishers of authoring tools for ISO 9660 discs


-
Publishers of ISO 9660 discs


-
Publishers of ISO 9660 receiving system software

Introduction

It may be desirable to create an ISO 9660 CD ROM containing HFS and/or ProDOS files in order to benefit by the storage capacity and distribution cost savings of CD ROM, and the interchange advantages of ISO 9660.  However, both the HFS and ProDOS file systems require information that the ISO 9660 file system does not support:  ProDOS requires a file type and an auxiliary file type, while HFS requires a file type, a file creator, and, frequently, an icon resource.

This document defines a protocol which extends the ISO 9660 specification to include HFS and ProDOS specific information, without corrupting the ISO 9660 structures.  Discs created using the protocol are valid ISO 9660 discs, and should not behave differently on non-Apple receiving systems. 

In addition to preserving file specific information, the protocol defines a mechanism for preserving filenames across the ProDOS  ISO 9660  ProDOS translation.

The protocol was designed to solve existing compatibility problems as well as allow for future expansion.  It uses the SystemIdentifier field in the Primary Volume Descriptor for global information, and the SystemUse field in the directory record for file specific information.   

The Protocol Identifier


Location:
SystemIdentifier field in the Primary Volume Descriptor


Size:
32 bytes


Contents:
"APPLE COMPUTER, INC., TYPE: " followed by a long word type.  In hex:




41 50 50 4C 45 20 43 4F 4D 50 55 54 45 52 2C 20




49 4E 43 2E 2C 20 54 59 50 45 3A 20 3x 3x 3x 3x


Type:
The last four bytes of the identifier contain nibble encoded type information.  Nibble encoding is necessary in order to guarantee that these are legal ISO 9660 "a-characters" (i.e. printable characters).  The type bytes are numbered 0-3; type(0) is the byte following the space ($20).  The bits of each type byte are numbered 0-7, 0 being the least significant.  The type bytes are defined as follows:



type(0):
bit 0
1 = Perform ProDOS filename transformation (described later)




bit 1-3
reserved, must be zero




bit 4
must be 1




bit 5
must be 1




bit 6
must be 0




bit 7
must be 0



type(1):
bit 0-3
reserved, must be zero




bit 4
must be 1




bit 5
must be 1




bit 6
must be 0




bit 7
must be 0



type(2):
bit 0-3
reserved, must be zero




bit 4
must be 1




bit 5
must be 1




bit 6
must be 0




bit 7
must be 0



type(3):
bit 0-3
Apple Extensions version number  (1 indicates this version)




bit 4
must be 1




bit 5
must be 1




bit 6
must be 0




bit 7
must be 0

The identifier is considered valid if the first 28 bytes match.

The Directory Record SystemUse Field

Directory records in the ISO 9660 specification have the following format:


byte
DirectoryRcdLength


byte
XARlength

 
struct
ExtentLocation


struct
DataLength


struct
RecordingDateTime


byte
FileFlags


byte
FileUnitSize


byte
InterleaveGapSize


long
VolumeSequenceNum


byte
FileNameLength


char
FileName[FileNameLength]


byte
RecordPad


char
SystemUse[SystemUseLength]

The RecordPad field is present only if needed to make DirectoryRcdLength an even number.  If present, the RecordPad field must be zero ($00).  The SystemUse field is an optional field under ISO 9660;  it is defined for our use below. 

The SystemUse field, when present, must begin with a signature word , followed by a one byte SystemUseID, followed by file specific information.  SystemUseLength must be an even number. The signature word allows a receiving system to ensure that it can interpret the following data correctly, and the SystemUseID determines the type and format of the information which follows.

The AppleSignature is defined as "BA" ($42 41).

Receiving systems must perform a simple calculation to determine if the SystemUse field is present in any given directory record.  It is present if:


DirectoryRcdLength - FileNameLength > 34

Receiving systems should first verify that the SystemUse field is present (making sure to account for the possibility of a RecordPad field), then check for the AppleSignature before interpreting the SystemUseID.

The SystemUseID is defined as follows:


SystemUseID
Definition
 


$00
reserved.


$01
ProDOS file_type and aux_type follow.


$02
HFS fileType and fileCreator follow


$03
HFS fileType, fileCreator,  bundle bit set.


$04
HFS fileType, fileCreator, and ICN# resource (128 byte icon) follow. 


$05
HFS fileType, fileCreator, ICN# resource follow, bundle bit set.


$06
HFS fileType, fileCreator, finder flags


$07-FF
reserved.

The following tables define in detail the data formats for each SystemUseID.  The MSB-LSB notation ("MSB" = Most Significant Byte, "LSB" = Least Significant Byte) means that the MSB occupies the lowest address, while LSB-MSB means that the LSB occupies the lowest address.

SystemUseID 01, ProDOS:
SystemUse offset
Contents



$00-01
$42 41 (AppleSignature)


$02
$01 (SystemUseID)


$03
ProDOS file type


$04-05
ProDOS aux type (LSB-MSB)

SystemUseID 02, HFS:
SystemUse offset
Contents


$00-01
$42 41 (AppleSignature)


$02
$02 (SystemUseID)


$03-06
HFS fileType (MSB-LSB)


$07-0A
HFS fileCreator (MSB-LSB)


$0B
$00 (padding for even length)

SystemUseID 03, HFS, bundle bit set:
SystemUse offset
Contents


$00-01
$42 41 (AppleSignature)


$02
$03 (SystemUseID)


$03-06
HFS fileType (MSB-LSB)


$07-0A
HFS fileCreator (MSB-LSB)


$0B
$00 (padding for even length)

SystemUseID 04, HFS:
SystemUse offset
Contents


$00-01
$42 41 (AppleSignature)


$02
$04 (SystemUseID)


$03-06
HFS fileType (MSB-LSB)


$07-0A
HFS fileCreator (MSB-LSB)


$0B-8A
HFS ICN# resource (MSB-LSB)


$8B
$00 (padding for even length)

SystemUseID 05, HFS, bundle bit set:
SystemUse offset
Contents


$00-01
$42 41 (AppleSignature)


$02
$05 (SystemUseID)


$03-06
HFS fileType (MSB-LSB)


$07-0A
HFS fileCreator (MSB-LSB)


$0B-8A
HFS ICN# resource (MSB-LSB)


$8B
$00 (padding for even length)

SystemUseID 06, HFS:
SystemUse offset
Contents



$00-$01
$42 $41 (AppleSignature)


$02
$06 (SystemUseID)


$03-$06
HFS fileType (MSB-LSB)


$07-$0A
HFS fileCreator (MSB-LSB)


$0B-$0C
HFS finder flags  (MSB-LSB)

The authoring software can simply copy the finder flags as retrieved by the HFS call GetFileInfo.  Only bits  5 (always switchLaunch), 12 (system file),  13 (bundle bit), and 15 (locked) are used.  All other bits are either ignored or set due to internal workings of the file system translator.  See Macintosh technical note #40 for more details about the finder flags.

The ProDOS Filename Transformation

This section defines a mechanism which preserves ProDOS filename syntax.  Legal filenames in ProDOS differ from legal filenames under ISO 9660:


-
ProDOS filenames allow multiple periods; ISO 9660 does not.


-
ISO 9660 requires that the two separators "." and ";" exist and that the ";" be followed by a version number.  This requirement is for files only, not directories.

This requires a transformation of some sort.  Fortunately, this specific combination of file systems allows us to define a reversible transformation which the authoring tool and receiving system can use to hide the fact that a transformation has occurred.

When creating an ISO 9660 disc from ProDOS source files, the authoring tool must perform the following transformation on all filenames:


-
Replace any periods (".", $2E) with underscore ("_", $5F).


-
If the filename refers to a directory, the transformation is finished.


-
If the filename refers to a file, append the characters ".;1" ($2E, 3B, 31).


Examples:


ProDOS Filename 
Type
ISO 9660 Filename


PRODOS
file
PRODOS.;1


BASIC.SYSTEM
file
BASIC_SYSTEM.;1


SYSTEM
directory
SYSTEM


DESK.ACCS
directory
DESK_ACCS


START.GS.OS
file
START_GS_OS.;1

NOTE:
The Volume Identifier in the Primary Volume Descriptor is a filename, and, therefore, must also be transformed.  It must be transformed as if it is a directory name.

When the ProDOS Transformation bit is set in the Protocol Identifier, the receiving system can handle the necessary conversions such that the original ProDOS filenames can be used to refer to all files and directories on the volume:


-
Before searching the disc for a given pathname, perform the transformation described above.


-
Before returning any names found, reverse the transformation above:




-
Strip ".;1" if present.




-
Replace any underscores ("_", $5F) with periods (".", $2E).

This process must be done for every file and directory on disc.

Guidelines For Transforming HFS Filenames

Since most HFS filenames are illegal in the ISO 9660 specification, some transformation will be required when creating an ISO 9660 disc with HFS files.  No reversible transformation is possible without degrading performance;  therefore, we can only define guidelines for publishers and authoring tool publishers to follow when performing the transformation:


-
convert all lowercase characters to uppercase.


-
replace all illegal characters, including periods, with underscore ("_", $5F).


-
if the filename must be shortened, truncate the rightmost characters.


-
if the filename refers to a file, append the characters ".;1" ($2E, 3B, 31).

Following these guidelines will result in more consistent discs.
ISO 9660 Associated Files

Associated files are exactly analogous to resource forks.  Though the format of associated files is clear in the ISO 9660 specification, we would like to re-state it here:  

An associated file is defined as having the associated bit set in the file flags byte of the directory record.  It has exactly the same file identifier as it's counterpart, and resides immediately before it's counterpart in the directory.  The associated file is treated as the resource fork, it's counterpart is treated as the data fork of the file.

For example, if a file "FOO.;1" has an associated file, there will be two adjacent directory records named "FOO.;1";  the first one (the resource fork) will have the associated bit set, the second one (the data fork) will have the associated bit clear.
1 ISO 9660 is the international file system standard, based on the "High Sierra" standard, for CD ROM.  The protocol defined in this document is intended for the ISO 9660 file system;  however, it is also supported for the High Sierra file system.



