Apple IIGS Finder 6.0

System 6 Delta ERS v3.1CD

by Andy Nicholas and Dave Lyons
Document Release History

January 28, 1991
1.0
First Release

January 30, 1991
1.1
Added pictures of some new features

February 5, 1991
1.2
Added proposed Finder SendRequest stuff. Also added option and window menu stuff

February 7, 1991
1.3
Rounded out the More Stuff To Come section and added some user ERS suggestions

February 18, 1991
1.4
Added stuff about new help system and preferences.

February 24, 1991

Added more Finder Extension stuff (DAL).

March, 1991

Finally added stuff about help and preferences forFinder 6.0D27

April 8, 1991
1.5
Added information about new finder icon matching data structures. Brought Finder

Extension information up to date.

June 8, 1991
1.6
Cleaned up Finder Extension information some. Finder Request codes are now called “tellFinderXXX” instead of “frqXXX”.

June 26, 1991
1.7
Updated some screen shots. Changed the rBundle and rFinderPath resource definitions, scrunched the size for Tim.

June 30, 1991
1.8
Cleaned up some more for Tim, changed font to AppleGaramond

August 11, 1991
1.9
Added note about finder.data files not being backwards compatible. Updated Finder Extensions information.

September 1, 1991
2.0
Fixed some stuff for Tim, included more missing information. Added info about rRectList resource for Finder customization. Brought Finder Extension information up to date.

September 9, 1991
2.1
Updated Finder Extension information, removed Dependency section.

October 11, 1991
2.2
Updated ERS for Beta System 6 CD.

October 13, 1991
2.3
Last minute changes for Beta CD.

January 11, 1992
2.4
FinderSaysIdle added, tellFinderLoadBundle removed.

February 14, 1992
2.5
Changes throughout to be complete, concise, correct, and to follow the Apple Publications Style Guide.

Internal Finder icon and window structures documented.

February 18, 1992
2.6
Added dependency rules section for Desktop files.

February 18, 1992
2.7
Added note about always having small icons in rBundles (NumResults must be >= 4)

February 20, 1992
2.8
Corrected offsets in tellFinderGetDebugInfo’s DataOut buffer

February 22, 1992
2.9
Corrected byte ordering for longs passed to tellFinderMatchFileToIcon and tellFinderCheckdatabase. Ugh.

February 24, 1992
3.0
Added notes in finderSaysMItemSelected, finderSaysBeforeOpen, tellFinderSpecialPreferences, tellFinderSetSelectedIcons., tellFinderGetSelectedIcons, tellFinderGetWindowIcons Made some stuff clearer in the OneDoc section. Cleaned up some formatting. Noted that we hope to have a Keyboard Navigation extension working soon.

February 25, 1992
3.1
Added notes about receiving multiple finderSaysGoodbye reqeusts.

Table of Contents

History
4

Design Principles and Implementation Goals
4

What's new in Finder 6.0?
5

Better GS/OS Support
5

Resources
5

Optimizations
6

Enhancements
7

Finder's About Box
7

The Windows Menu
9

Command, Option, and Control Keys
11

New Help System
12

Clean Up (and Clean Up by Name)
13

Preferences
13

Window Information Bars
14

Icon Info
15

Launching
15

New Icon Matching System
15

Application Notes
16

Dependency Rules
17

Icon Loading And Searching Order
23

Inter-Application Communication
23

finderSays codes
24

tellFinder Codes
29

Internal Finder Data Structures
39

Things I Think I’d Pay Cash For If I Was a User (Ideas for Extensions)
43

Related Documents
44

.c1.History

Finder 1.0 was the first true Finder product for the Apple IIgs. Finder 1.1 was a maintenance release, and it wasn’t until the 1.2 version that substantial improvements were made, including GS/OS support, enhanced performance, and several other new features. Finder 1.3, documented by the Finder 1.3 Delta ERS, concentrated on being network aware, but also offered general enhancements and bug fixes. Finder 6.0 (Finder for System 6.0) fixes bugs primarily left from the previous network awareness effort and adds many new features only found in Macintosh System 7.0. This document describes the new feature set implemented by Finder 6.0, as well as documenting behavior intended by the original authors which has never before been described.

.c1.Design Principles and Implementation Goals

Finder 6.0 is the latest step toward an Apple IIgs Finder that is not only efficient, pleasant, and reliable for the user, but also easy for Apple to maintain and enhance. One good way to promote such qualities is to design and implement according to a small set of well-understood principles. Here are the main principles we used in producing Finder 6.0:

Slickness
Wherever possible, we have attempted to be as consistent through the desktop metaphor as possible. In previous versions of the Finder many simple operations such as opening windows were not consistent with the desktop metaphor in that the direction of the zoom rectangles used to indicate the opening or closing of an object would always occur from the point that the icon would be located were it to be viewed as a large icon.

We have tried to make sure that no part of the Finder has gone unexamined in an effort to be sure that the metaphor we provide is as consistent as possible regardless of bugs in the Finder. There is no excuse for a bug or design flaw which destroys the metaphor such that the user perception of the metaphor is ruined.

Tweaking the user-interface such that the “impossible drag” is now possible is another example of doing things slickly on the user’s behalf.

Convenience
Even though the IIgs Finder is modeled after the Finder on the Macintosh, the simple fact remains that both platforms are very different. For instance, the IIgs is limited to a single screen. With such limited space, windows tend to get stacked upon each other. Given that the maximum window limit of 10 windows will be lifted in Finder 6.0, it is wise to provide users a way to quickly find a window without having to manually search through a stack of windows on their desktop. Hence the inclusion of the Windows menu, allowing users to make better use of limited screen space.

Extension

A large part of Finder 6.0's design is based on the premise that previous versions of the Finder were good enough for novice users. Much time was spent making sure that people who are more than just casual users of the Finder would be able to remain comfortable using the Finder for the majority of their system oriented tasks. For this reason, there are many more "power-user" features in Finder 6.0.

The Finder supports simple Inter-Process Communication (IPC). A standard set of hooks is provided to extend the Finder. These IAC hooks (finderSays and tellFinder codes) allow adding menu items to the Finder, selecting objects on the desktop or in windows, and opening and closing windows.

Finder 6.0 is a readily-modified package that is necessary to support the needs of international markets. In implementing new features and enhancing old ones, our goal has been to ease the task of adapting the Apple IIgs Finder to new markets and languages. In particular, one of the goals of Finder 6.0 is to put as much of the Finder's structures into resources as possible.

Response
One of the primary criticisms of previous versions of the Finder was that it was too slow. To address this, we have taken the view that if at all possible, the Finder should not be the bottleneck in showing the user a responsive metaphor. The reason for this is that any good metaphor (which we already have) is useless if the user can't interact with it, or becomes bored or tired because of the time required to accomplish anything through the user-interface. For this reason, the Finder scrolls windows much quicker and opens windows much faster. Do things right, do things fast.

Transparency

There are areas of the Finder which needed to be transparent (or more so) to the user. For this reason the Finder now cooperates with GS/OS and the toolbox to implement smooth transitions when launching other desktop applications.

.c1.What's new in Finder 6.0?

.c2.Better GS/OS Support

All File System Translators (FSTs) supported in System 6.0 are supported by Finder 6.0. These include: ProDOS, HFS, DOS 3.3, Pascal, AppleShare, and High Sierra/ISO 9660.

Finder 6.0 uses GS/OS option lists to preserve as many file attributes as possible when copying files across file systems. For example, if you copy an HFS file to a ProDOS disk, its 4-byte HFS file type and creator type remain intact.

.c2.Resources

Resources are an integral part of Finder 6.0. All of the major components of the Finder are contained in resources. This includes all of the Finder's menus, its About Box, and its Tool Startup table. All of the Finder's dialogs are contained in resources.

An rRectList resource (resource type $C001, ID = 1) now contains information that a user might wish to customize:

resource rRectList(1,locked,fixed,preload) {

 {

{ 39, 14,103,358},

/* first default window position

*/

{ 49, 24,113,368},

/* second default window position

*/

{ 59, 34,123,378},

/* third default window position

*/

{ 69, 44,133,388},

/* fourth default window position

*/

{ 79, 54,143,398},

/* fifth default window position

*/

{ 89, 64,153,408},

/* sixth default window position

*/

{ 99, 74,163,418},

/* seventh default window position

*/

{109, 84,173,428},

/* eighth default window position

*/

{$e000,$002c,$FFFF, 0},
/* Y1 = default folder background & outline color */

/* X1 = comma character

*/

/* Y2 = default preference settings

*/

/* X2 = default quit setting (bit mapped)

*/

{180,570, 0, 0},

/* default trashcan position (y1,x1 used only)
*/

{120, 20,180,500},

/* default trash window position

*/

{120, 20,180,500},

/* default clipboard window position

*/

{$dddd,$dddd,$dddd,$dddd},
/* default desktop pattern

*/

{$dddd,$dddd,$dddd,$dddd}

 }

};

rComment(1) and rComment(2) resources contained in any files the Finder deals with have special purposes:

+000
unformatted text

The Finder recognizes two kinds of rComment resources (the only two that are defined).

An rComment resource with ID=1 is displayed in the Comment card in Icon Info. If this resource is not present, you can generally add it using the Comment card.

A file’s rComment ID=2 resource, if present, is used when the user tries to open a document that can’t be launched. The message in the resource usually explains how to properly use the file (for example, try launching Sys.Resources). This happens only after Finder Extensions decline to handle opening the document by refusing finderSaysBeforeOpen and finderSaysOpenFailed broadcasts. The message shows up in an alert window, with a Note icon.

.c2.Optimizations

Scrolling speed in windows has been dramatically improved. This was accomplished by checking the visible region (visRgn) of the window which was being updated. If an icon isn’t inside the visRgn, it isn’t drawn.

Finder 6.0 stores and searches the information in Finder.Data files in a more efficient order, so folders open much faster. The new Finder.Data format is also more compact than previous Finder.Data versions.

 Because the format was also changed to allow long pathnames, previous Finder versions do not recognize Finder 6.0’s Finder.Data files (windows opened as if no Finder.Data file is present).

When a folder which does not contain a Finder.Data file or a network folder is opened, icons are placed in the window much faster, dramatically improving the time required to open a folder. Opening a folder on a local hard-drive containing 150 items took approximately 29 seconds with Finder 1.3. Finder 6.0 opens the same folder in under 3 seconds.

When cleaning up the normal way (that is, not using Option-Clean Up to clean up by name), the Finder now only animates the drawing of the icons which are visible or will become visible. This speeds up Clean Up dramatically.

Control-Opening (or, Control-Double clicking) a folder prevents the Finder from reading any Finder.Data file in the folder. Folders containing many items open much faster this way.

When files or folders are dragged, the outlines which are dragged belong to only those items which have some portion of their icon or name inside the current visRgn. There is a limit of dragging 100 item outlines, but because usually less than 100 items are immediately visible inside an open window, the Finder has to do less work when dragging, so it a drags faster.

.c2.Enhancements

.c3.Finder's About Box

The modeless About box has useful information in it which is updated automatically every 15 seconds. The About box shows the total physical memory in the system and the total available memory. This is different from free memory in that all purgable memory is included, whereas free memory in the control panel is just a list of the free memory blocks in the system Thus, available memory is a more accurate portrayal of the state of the user's system. The amount of memory which the Finder, System, Desk Accessories, and Setup Files are using is also shown. The amount of memory included in the System calculation includes the memory allocated to the system RAM disk. The version of the Finder and the version of the System software is also shown. The version and version string information is obtained from the Finder from its rVersion(1) resource and from the Sys.Resources file from its rVersion($07FF0001) resource.

Of primary importance when designing the new Finder About box was to make it a genuinely useful part of the Finder. In previous versions of the IIgs Finder, the About box was used for telling the user the version number of the Finder and not much else.

[image: image1.wmf]
c3.User-Interface Changes

Folders are now allowed on the desktop...

[image: image2.wmf]
Tweaks
You can now double click the name of a volume or folder icon and have that icon open. Previously the Finder would think you wanted to rename the icon and create an edit line control (this was very annoying). This allows user’s more “slop” when they want to open folders that use a list view (so that the user doesn’t have to try to hit the tiny icon to the left of the name).

Files on the desktop can now be renamed. ‘Put Away’ removes a disk from the desktop.

After closing a window, if there aren’t any selected icons in any other window or on the desktop, the Finder automatically selects the icon that the zoom effect zoomed into.

All icons are now deselected if the Esc key is pressed. If an icon has a rename field, that icon is deselected. Pressing Return while a single icon is highlighted gives that icon a rename field.

Holding down the Command key while clicking the title of the front window shows a pop-up menu containing a list of folders indicating the hierarchy of the current window. Selecting a folder from the pop-up opens the chosen folder's window. Holding down the Option key while selecting a folder from the pop-up closes the current window after opening the selected folder.

[image: image3.wmf]
.c3.The Windows Menu
Also new to Finder 6.0 is the Windows menu. The Apple IIgs does not have the ability to have an enormous desktop. This usually amounts to a tremendous amount of clutter on the desktop as windows completely overlap one another. A problem frequently arises of how to quickly find a particular window. The Windows menu provides two solutions: Stacking the windows such that their titles are immediately visible, and showing the windows that the user has opened in alphabetical order, allowing any to be immediately shown. The windows menu also gives the user a quick reminder of which windows are open without having to manually dig through a pile of open windows.

Opening a window adds the window’s title to the Windows menu, while closing a window removes the title from the Windows menu. The item for the front window always has a checkmark by it.

Choosing a window from the Windows menu brings that window to the front. Option-choosing a window from the windows menu closes that window (without bringing it to the front).

The Windows menu does not apply to desk accessories. If a Control Panel or desk accessory window is in front of the other windows, no item in the Windows menu has a checkmark. The Windows menu is dimmed when no Finder windows are open. Omitting the names of desk accessory windows from the Windows menu simplifies the user’s perception of the desktop in that there is only a single reference to a desk accessory. Each desk accessory is listed once in the Apple menu—not twice, in both the Apple menu and Windows menu. Having the desk accessory available from a single point means the user does not wonder if there is a difference between choosing the it from the Apple menu and choosing it from the Windows menu.

Windows with duplicate names appear in the Windows menu, and the menu item which corresponds to a given window will not change as long as that window or any of the duplicates are not closed (or additional duplicates opened).

[image: image4.wmf]
User-Interface Bugs Squashed

In previous versions of the Finder, when a user was dragging a folder to a destination window, the Finder wouldn’t realize that it shouldn’t track in the window if the mouse was over the info-bar, or over the scroll bars, or the grow box, or the title. The result of this was sometimes if a folder resided directly beneath, say, the info-bar and you’d drop what you were dragging on that very spot, then the stuff you were dragging would go into the folder underneath the info bar. This was very bad and has been fixed.

Options: Tunneling, Reverse-Tunneling, and Close All

If the user double-clicks a folder while holding down the Option key, the Finder opens the folder and then closes the current window. This is called “Tunneling.”

If the user Option-selects a folder from the pop-up in the title bar of a window, the Finder opens the selected folder and then closes the current window. This is called “Reverse Tunneling.”

If the user Option-clicks the close box of a Finder window, the Finder closes all open windows.

The (Formerly) Impossible Drag
Below, the user wants to move the icon called “folders1” into the window named “System” The user intends to drag the icon from its current position into the visible, open window. However, as soon as the user presses the mouse button with the cursor over the icon, the window named “screen shots” comes to the front, and the window named “System” disappears behind “screen shots.”

[image: image5.wmf]
Finder 6.0 solves this problem the same way Macintosh Finder 7.0 does. The arrangement of windows stays the same until the user releases the mouse button. If the icon is dragged into the “System” window, the file will be copied and “System” left as the front window. A click to just select the icon, select a group of icons (lasso them), or a drag to a position in the same window will bring “screen shots” to the front. One note of difference: Macintosh Finder 7.0 brings a window to the front if a drag occurs in that window of an icon to a folder. Finder 6.0 does not do this on the basis that it is more consistent to always not move a window to the front on a click and drag than it is to bring the window to the front some of the time.

.c3.Command, Option, and Control Keys

Finder 6.0 has a number of shortcut keys. First, holding down the Control Key while opening a window forces the Finder to not read a Finder.Data file if present in the folder being opened. This can save an enormous amount of time when opening a folder with a large number of items.

Holding down the Control Key while coloring an icon reverses the Preference setting for “Color selected icon’s background instead of its outline.”

Holding down the Control Key when closing a window reverses the Preference setting for “Save Finder data to disk.” Note that this can be used in combination with other command keys such as “Close All” (Option-close) which will close all the windows and also reverse the preference setting for all the windows. The Control Key also works when Option-closing using the Windows menu.

Holding down the Option key when double-clicking a document forces the Finder to put up the Standard File dialog used in “Locating” an application for that document. Choosing “Open” from the Standard File dialog runs the chosen application only once and does not bind the document to the chosen application.

Holding down both the Option and Control keys while double-clicking a document forces the Finder to put up the Standard File dialog used for “Locating” an application for that document. Option-Control-double-click forces the Finder to permanently bind the document to the chosen application. The document can be re-bound later by Option-Control-double-clicking the same type of document again.

The link from the document type to the application (the “binding”) is stored in the Finder’s “Desktop” file in the Icons folder of any online volume (usually either the volume containing the application or the startup volume).

.c3.New Help System

A new help system is available in Finder 6.0. The help system uses a pop-up and a text edit box. Choosing a topic from the pop-up menu displays text about that topic in the text box. The help system remembers the last chosen topic—if the help window is closed and later re-opened, the same topic will be shown. The text shown can be copied onto the clipboard, but it can’t be modified.

[image: image6.wmf]
.c3.Clean Up (and Clean Up by Name)

Option-choosing Clean Up changes the menu item to Clean Up by Name. When chosen, Clean Up by Name alphabetizes the files in the window and aligns them to the grid used by Clean Up without animating the movement of each file. The width of the window determines how many icons will fit in one row. The wider the window, the more icons will fit. If the view is set to “by Small Icon” the icons will be placed into columns based on the height of the window. The taller the window, the more icons will be placed into each column.

[image: image7.wmf]
.c3.Preferences

Finder 6.0 has a much different set of preferences, as shown below:

[image: image8.wmf]
The “List Views” options are new to Finder 6.0. They allow the user to remove or add individual fields from their windows. The effect of “Show disk info...” is shown prominently in the screen shot under “Window Information Bars.”

If a View that is not checked in the “List Views” is selected for a particular window, that view is shown anyway. The concept behind this is that the user should have more direct control over the individual views which are presented. “List Views” is a control which changes all fields in all windows. The Views pull-down menu affects only the front window.

When starting up, check 5.25” drivesis a new option in Finder 6.0. If the user deselects the checkbox, the Finder only shows the drive icon for any connected 5.25” drives, instead of both showing the drive icon and polling the drive for a diskette. When entering the Finder, this avoids the incredibly annoying racket created when the 5.25” drive recalibrates its drive head. This option only applies if the user has 5.25” drives and has the 5.25” driver installed.
.c3.Window Information Bars

The window information bars in Finder 6.0 are much improved. First, the file system appears prominently, as does the amount of free and used space. The free and used space appears in appropriate units—K for values from zero K to 1023K, and megabytes (to the nearest 0.1MB) for values of 1.0MB and up.

The “Size” of a file is calculated to the nearest K, not the nearest 1/2 K as before.

[image: image9.wmf]
.c3.Icon Info

Icon info has not drastically changed for Finder 6.0, but it sports a few improvements. First, as shown below, the pop-up menus for network folder privileges have drop-triangles to match the latest human interface guidelines.

[image: image10.wmf]
Comments are now allowed in all files, not just files on an AppleShare file server. Comments are not allowed in local folders or volumes. Comments can be edited and can be any length as long as they are saved back to the file’s resource fork (if a comment is only saved to a server’s database it is truncated to 199 characters). If a file on a local volume does not have a resource fork, an Add Comment button appears on the Comment card. Clicking Add Comment gives the user a warning that adding a resource fork to the file makes it unusable by ProDOS 8. Comments cannot be attached to $FF (ProDOS System) and $F9 (GS/OS System) files on local volumes.

$BC load files and older style icon files can now be inactivated. And finally, if a file contains an rVersion(1) resource, the contents of that resource appear on the General card.
.c3.Launching

The Finder now allows smooth transitions when launching files which have their auxiliary type set to indicate that they are a desktop application. Instead of showing an inverse stripe along the top of the text screen indicating the application being launched, the Finder now leaves the Super Hi-Res screen enabled and shows the name of the application in the menu bar. Applications following the rules in File Type Note $B3 benefit from this enhancement.

.c2.New Icon Matching System

Finder 6.0 employs a radically different scheme for keeping track of application and document icons. Finder 6.0 employs the concept of a “desktop database” which keeps track of which applications “own” which document icons. In the absence of a definite document “owner,” the existing applications are allowed to “vote” on which application can handle the document the best. (Note: Voting is not implemented in Finder 6.0. Set the voting bits correctly anyway, in case voting is implemented later.)

Simple pseudo-code follows of the Finder’s actions after the user double clicks an icon.

On opening an icon:

 begin

 if icon is an application (filetype $B3 or $FF)

begin

 If the application’s pathname is already in an existing

rFinderPath resource, then just launch.

 If the application’s pathname isn’t in any existing rFinderPath

resource, then

begin

 If file doesn’t have a resource fork, just launch.

 If file has a resource fork and an rBundle resource,

then move the rBundle resource into the finder’s

desktop database for that volume... then launch.

When the desktop database is updated, the rVersion

resource from the application is compared against

known rVersion resources so that duplicate entries

aren’t made to the desktop.

end.

end.

 if icon is a document

 begin

From the icon object in memory, the Finder finds who owns this document.

If no application owns the document,

 begin

 Presented the user with a Standard File dialog stating that an

 application couldn’t be found for this document. The user can either

 cancel the launch or choose an application. If the user chooses

 an application, the Finder generates a “OneDoc” structure and saves

 it in the Finder’s desktop database as an rBundle resource.

 end.

If an application owns the document,

 begin

 If the application still exists then launch.

 If the application doesn’t exist (meaning that it was moved or

 renamed), then give the user a Standard File dialog asking what

 application to launch. If the user chooses an application, then

 update the existing rFinderPath resource to contain the pathname

 of the new application.

 end.

 end.

 end.

.c3.Application Notes

If you are writing an application and wish to take advantage of Finder 6.0’s abilities, then there are a few things to keep in mind.

For the Finder to keep track of your application, your application must have an rVersion(1) resource and an rBundle(1) resource. When the Finder first launches your application, it copies the rBundle, rVersion, and any needed rIcon resources into the Desktop file on the volume on which your application currently exists (or onto the boot volume if that’s not possible). Every time thereafter when the Finder launches your application it checks the rVersion of your application against the rVersion which it copied.

Do not include any rFinderPath resources in your application. Any rFinderPath resources in your application are ignored when the Finder launches your application and copies your application’s rBundle, rVersion, and rIcons into the Desktop file.

Because of a quirk in the Finder’s design, it is better to group OneDocs together within an rBundle which use the same rIcon ID for the same icon (that is, several OneDocs can share an icon image). If the same icon is to be displayed for multiple sets of criteria and the OneDocs which refer to the shared rIcon are grouped together in the rBundle, the Finder loads each rIcon resource into memory only once, instead of once per reference. This can drastically reduce the amount of memory taken by rIcon resource and the amount of time the Finder spends updating and loading Desktop files.

All the OneDocs in your rBundle, once copied to a Desktop file, share the same rFinderPath resource. If the Finder notices that your application has moved, it changes only a single rFinderPath, thus linking all the OneDocs to the application’s new location on disk.

IMPORTANT:
When you create OneDoc structures for rBundle resources, always set the NumResults field to 4 or greater. The large icon and small icon fields of an rBundle must always exist because of a bug in Finder 6.0. If you want the Finder to use the generic icon for either the large or small icon, use NIL as the rIcon resource ID.

.c3.Dependency Rules

The Desktop file in the ICONS folder of a volume are special. Desktop files contain rBundle, rVersion, and rIcon resources copied from applications which the Finder has launched, and from files other than applications on which the user has used “Icon Info”.

A useful third-party utility would be one which allowed editing, organizing, and updating users’ Desktop files. In order to expedite this, there is one golden dependency rule to keep in mind:

“Any resource referenced directly or indirectly by an rBundle belongs to that rBundle.”

An rFinderPath resource is only referenced by a single rBundle resource. There may be multiple references to an rFinderPath within a single rBundle (by multiple OneDoc structures), but multiple rBundles must not reference a single rFinderPath.

An rVersion resource may be referenced by multiple rFinderPath resources, but those rFinderPath resources must only be referenced by a single rBundle resource (ie, an rVersion must not be indirectly connected to two or more rBundle resources).

rIcon resources are referenced by a single rBundle. There may be (and should be, to save memory and disk space) multiple references to a single rIcon resource by a single rBundle.

When removing an rBundle from a Desktop file, it is safe to assume that all the rIcon resources referenced by the rBundle may be removed, that the rFinderPath resources referenced by the rBundle may be removed, and that the rVersion resources referenced by the rFinderPath resources referenced by the rBundle may be removed without causing dependency problems.

When Finder 6.0 removes an rBundle resource because a newer version of an application needs to have its (newer) rBundle resource copied into a Desktop file, Finder 6.0 only removes the rBundle resource. Any rIcon and rFinderPath (and rVersion referenced by the rFinderPath) resources referenced by the removed rBundle are left “dangling” (not connected).

rVersion

($8029)

+000
Long
GS version longword

+004
Word
Country code

+006
PString
Application name

+xxx
PString
Extra string

(usually used for copyright purposes, and has no special meaning to the Finder)

NOTE:
Applications are differentiated primarily by their Country code and Application name, and secondarily by their version number.

To keep its Desktop database up-to-date, the Finder checks the rVersion of an application it is launching against the rVersion resources of the applications on which the Finder has gathered information.

If the “GS version longword” supercedes the last known version of an application (matched by the “Application name” field) then the old rBundle resource from the old Application and its associated icons are removed from the Desktop database and the new rBundle resource and icons from the newer version of The Application are incorporated into the Desktop database.

If the version of the application is below that of an application that the Finder already “knows,” then any rBundle and rIcon resources in the application are NOT added to the Finder’s Desktop database.

For the above reasons, if you want the Finder to launch the latest version of your application, the product name should not change throughout the lifetime of the product. Also, the version number of your product should steadily increase and never decrease.

rBundle ($802B)

+000
Word
Version ($0000)

+002
Word
OffsetToDocumentList (xxx), offset from beginning of rBundle resource to DocList structure

+004
Long
rIcon ID for the application

+008
Long
rBundle ID for this rBundle resource

+012
Long
Used internally by the Finder. Must be zero.

+xxx
DocList...

DocList structure

+000
Word
Count of OneDoc structures following

+002
OneDoc...

OneDoc structure

+000
Word
OneDocSize, size in bytes of this structure (varies)

+002
Word
OffsetToMatchFlags, offset to MatchFlags field from beginning of OneDoc structure

+004
Word
NumResults—number of result field groups following (that is, pieces of information that are valid as a result of the match succeeding) NumResults must be at least 4.

The following field is result number 1.
+006
Word
bit 0 = launch this (ie, if bit 0 = 0, then only display this icon)

bit 4 = (voting priority 0) App for this OneDoc can open this file

bit 5 = (voting priority 1) App for this OneDoc can write this file (possibly in a different format

 than it was opened)

bit 6 = (voting priority 2) App for this OneDoc can write to this file in the same format it was

 opened.

bit 7 = (voting priority 3) App for this OneDoc is the owner of this type

 of file (e.g. the application AppleWorks and the OneDoc for AppleWorks documents)

All other bits are reserved.

The following two fields are result number 2.

+008
Long
rFinderPath ID of the path needed to run the application for the document.

This is used internally by the Finder to keep track of where applications are,

and is normally set to zero (NIL).

+012
Long
Used internally by the Finder, must be zero (NIL).

The following two fields are result number 3.

+016
Long
rIcon ID for this document type.

If this is NIL, the Finder uses the default Icon for this document if the match succeeds.

+020
Long
Used internally by the Finder, must be zero.

The following two fields are result number 4 (present if NumResults >= 4)

+024
Long
rIcon ID for the small icon for this document.

If this is NIL, the Finder uses the default small Icon for this document if the match succeeds.

+028
Long
Used internally by the Finder, must be zero.

The following field is result number 5 (present if NumResults >= 5)

+032
pString
String to describe this type of document more specifically than any filetype descriptor files. If this string is not present, the best match available from the filetype descriptor files is used. This string should only be present if it can do a better job describing this document than the filetype descriptor files.

+xxx
Long
MatchFlags—32 bits specifying which of the following fields are present (in the order given here). All fields present are matched against. (The MatchFlags field comes right after the last result field present.)

+xxx
...
matchXXX fields

Note:
All fields have to match for the comparison to succeed. If you need to do “or” matching, you need more than one OneDoc structure (possibly with the same icon ID). If you do this, place any OneDocs next to each other sequentially in the rBundle so that the Finder spends less time when it needs to update the Desktop file.

MatchFlags bits:

bit 0:
GS/OS file type

bit 1:
auxiliary type

bit 2:
filename

bit 3:
creation date/time

bit 4:
modification date/time

bit 5:
local access

bit 6:
network access

bit 7:
extended files

bit 8:
HFS-style File type

bit 9:
HFS-style Creator type

bit 10:
OptionList contents

bit 11:
total EOF (resource and data fork)

bits 12-31: reserved for future use (use 0)

Example:
$00000003 = match by filetype and auxiliary type. Only the matchFileType and matchAuxType structures follow.

Example:
$00000005 = match by filetype and filename. The matchFileType and matchFileName structures follow, optionally separated by a matchType ID of zero (0x0).

Note:
This structure is upward compatible—if any bits are set that you don’t recognize, you just ignore the fields after that point and skip to the next OneDoc structure. The size field lets you do that without knowing the size of any unknown fields.)

A MatchType ID of zero (0x0) is reserved and is ignored by the Finder.
matchFileType structure:

+000
Word
MatchType ID (0x1)

+002
Word
GS/OS Filetype

Example: $00B3 = match GS/OS Application files

Example: $0000 = match file type $0000 *only*

matchAuxType structure:

+000
Word
MatchType ID (0x2)

+002
Long
auxiliary type mask

+006
Long
auxiliary type value

(do bit-and with mask, then compare against value)

Example: $FFFFFFFF $00001234 = match auxtype $00001234 only

Example: $00008000 $00000000 = match auxtypes with bit 15 OFF

matchFilename structure:

+000
Word
MatchType ID (0x3)

+002
String
Pascal string with “*” characters for wildcards. Case is not significant.

All 8-bits of the characters are significant.

Example: $09 “Installer”

Example: $05 “*.TXT”

matchCreateDateTime structure:

+000
Word
MatchType ID (0x4)

+002
Word
compareSpec (see below)

+004
TimeRec
Date/Time value to mask and compare against (8)

(Secs, mins, hour, year, day, month, 0, weekday)

Example: $0188, $00 $00 $00 $5A $00 $00 $00 $03
= any Tuesday in 1990

 (compareSpec $0188 = bytes 3 and 7, “equal”)
matchModDateTime structure:

+000
Word
MatchType ID (0x5)

+002
Word
compareSpec (see below)

+004
TimeRec
Date/Time value to mask and compare against (8)

(Secs, mins, hour, year, day, month, 0, weekday)

Example: $0188, $00 $00 $00 $5A $00 $00 $00 $03
= any Tuesday in 1990

 (compareSpec $0188 = bytes 3 and 7, “equal”)

matchLocalAccess structure:

+000
Word
MatchType ID (0x6)

+002
Word
local access word mask

+004
Word
local access word value

(do bit-and with mask, then compare against value)

Example:
$0004

$0004 = files with their invisible bit set

Example:
$0080

$0000 = files with their Destroy bit clear
matchNetworkAccess structure:

+000
Word
MatchType ID (0x7)

+002
Long
network access long mask

+006
Long
network access long value

(do bit-and with mask, then compare against value)

Example:
$00000404 (mask)

$00000404 (value) = folders to which both you and everyone can make changes.

Example:
$02020206 (mask)

$02020006 (value) = folders to which you can make changes, and folders in which the owner or the group (but not everyone) can make changes.

Example:
$00000084 (mask)

$00000000 (value) = folders which you do not own and to which you cannot make changes.

matchExtended structure:

+000
Word
MatchType ID (0x8)

+002
Word
mask

+004
Word
comparison value

Bit 15
= flag for extended files, all other bits reserved

Example:
$8000

$8000 = extended file (files with non-zero length resource forks)

matchHFSFileType structure:
+000
Word
MatchType ID (0x9)

+002
Long
4-character type to match, in Mac order

Example: $4D $41 $43 $41 = ‘MACA’

(All files on HFS and AppleShare volumes have four-character HFS-style filetypes. Extended ProDOS files can also have four-character filetypes.)

matchHFSCreator structure:

+000
Word
MatchType ID (0xA)

+002
Long
4-character creator to match, in Mac order

Example: $4D $41 $43 $41 = ‘MACA’

(All files on HFS and AppleShare volumes have four-character HFS-style creator types. Extended ProDOS files can also have four-character creator types.)

matchOptionList structure:

+000
Word
MatchType ID (0xB)

+002
Word
Number of FSTGroupOption structures following

+004
FSTGroupOption...
FSTGroupOption structure:

+000
Word
Number of File System IDs this structure applies to

+002
Word
first File System ID, ...

+xxx
Word
Offset into Option_List

+xxx
Long
Field Mask

+xxx
Long
Field Value

+xxx
Word
Comparison Operator (like for Date/Time)

matchOptionList example:

$0002
Two FSTGroupOption structures follow (both must match for the comparison to succeed)

first FSTGroupOption structure:

$0003

Three file systems:

$1234

first FileSysID

$3456

second FileSysID

$4567

third FileSysID

$0010

offset into option_list buffer

$0000FFFF
mask for Long fetched from option_list

$00004321
comparison value for the masked Long

$050F

compareSpec (“not equal to”, low 4 bytes)

second FSTGroupOption structure:

$0001

Only one file system for this check

$1234

first FileSysID

$0020

offset into option_list buffer

$FFFFFFFF
mask for Long fetched from option_list

$12345678
comparison value for the masked Long

$040F

compareSpec (“not less than”, low 4 bytes)

matchEOF structure:

+000
Word
MatchType ID (0xC)

+002
Word
compareSpec (see below, bits 4-7 do not apply)

+004
Long
EOF of compare against (EOF is total of data and resource forks)

compareSpec:
bits 15-11
reserved (use 0)

bit 10

reverse the sense of the compare

bits 9-8

00=less-than, 01=equal, 10=greater, 11=reserved

(if bit 10 is set, 00=greater-than-or-equal, 01=not equal, 10=less-than-or-equal)

bits 7-0

Each bit enables one of eight possible bytes to be included in the comparison. Each 0 bit here forces a byte in the value to be 0 before the comparison.

rFinderPath
($802C)

+000
Word
Version ($0000)

+002
Word
Offset to pathname

+004
Word
pcount (minimum pcount is zero)

+006
Long
pcount = 1

rVersion ID of version resource

This should normally be ID 1 if the rFinderPath resource is used in

an application to predefine where to find this application. This

will not be ID 1 in any of the Finder's “Desktop” files.

This ID is allowed to be NIL.

+10
Long

Used internally by the Finder, must be zero.

+xxx
WString
Pathname to application

.c3.Icon Loading And Searching Order

When starting up, the Finder loads icons from each device from lowest numbered online device (#1) through the highest numbered online device. On each device, the Finder first loads any Desktop file from the Icons folder, then loads all non-inactive old-style (Pre-Finder 6.0) icon files in the Icons folder. When the user inserts a disk, the Finder first loads the Desktop file from the inserted disk, then converts all the old-style icon files.

The Finder searches for icons based on the order they were loaded. This means that the Finder will look through the icon from device #1 first before looking through all the icons from device #2, and so on.

Because of the order that icons are loaded, icons attached to rBundle resources in Desktop files will be matched first before an icon which is set to match the same criteria in an old-style icon file.

Within Desktop files, the Finder loads rBundle resources sequentially, from lowest ID through highest ID. Finder searches through the OneDocs from the first loaded rBundle to the last loaded rBundle.

The Finder’s always searches its built-in icons last.

.c2.Inter-Application Communication

Anything that communicates with the Finder through the Tool Locator AcceptRequests/ SendRequest mechanism is a “Finder Extension.” Permanent inits and desk accessories can be Finder extensions.

Communication between the Finder and extensions goes both ways. When the Finder needs to send information to extensions, it calls SendRequest with a finderSays code from the table below, allowing any interested AcceptRequests clients to receive the information.

When an extension needs the Finder to do something, it calls SendRequest with a tellFinderXXX code, directing the request to “Apple~Finder~”, with a sendHow value of sendToName+stopAfterOne.

Finder extensions can be stored on disk as Permanent Initialization Files. When executed, an extension should call AcceptRequests (in the Tool Locator) to install a “request procedure” that communicates with the Finder.

In the case of a Permanent Initialization File, the userID value passed to AcceptRequests must be the file’s unmodified memory ID, as returned from MMStartUp or as found in the A register when the initialization file was executed. (In exceptional cases, a Finder Extension may need to install more than one request procedure. This is okay, but they should all have the same userID.)

If an extension needs to access data files, it may use the value of the “@” prefix any time between finderSaysHello and finderSaysGoodbye. The “@” prefix is the directory the Finder is running from, or (if the user launched the Finder from a server) the user’s User folder on the network.

The FinderExtras Folder

Many Finder extensions are NDAs or permanent inits, which are kept in memory at all times (except for any dynamic segments). If an extension is useful only from the Finder, you may want to free up memory while in other applications by keeping the extension in the FinderExtras folder within the Finder’s folder (that is, usually *:System:FinderExtras).

There is a special filetype/auxiliary type combination for Finder Extensions designed for FinderExtras: filetype $BC, auxiliary type $0001.

Before finderSaysHello, the Finder loads and executes any permanent inits or Finder Extensions in FinderExtras. After finderSaysGoodbye, it removes each FinderExtras extension from memory by sending the srqGoAway request, removing all Request Procedures with the extension’s memory ID, and finally calling UserShutDown on its memory ID.

Extensions in the FinderExtras folder must not remain connected to the system in any way after receiving the srqGoAway request, or the system will crash.

.c3.finderSays codes

Any entity that has called AcceptRequests can receive these requests (they are sent to all request procedures) which are sent by the Finder.

This is a list of the request codes the Finder sends. A description of each code follows.

reqCode

 Name

$0100

 finderSaysHello

$0101

 finderSaysGoodbye

$0102

 finderSaysSelectionChanged

$0103

 finderSaysMItemSelected

$0104

*finderSaysBeforeOpen

$0105

*finderSaysOpenFailed

$0106

*finderSaysBeforeCopy

$0107

 finderSaysIdle

$0108

*finderSaysExtrasChosen

$0109

*finderSaysBeforeRename

$010A

*finderSaysKeyHit
The Finder sends the requests which are marked with an asterisk (*) so they are received by only the first request procedure to handle the request; the rest can be handled by any number of procedures.

finderSaysHello

$0100

The Finder sends finderSaysHello in its startup process, every time the Finder is launched.

In response to finderSaysHello, an extension may make tellFinderAddToExtras requests to install menu items into the Finder’s Extras menu. tellFinderAddToExtras is one of the few requests that can be made at finderSaysHello time, because the Finder is not finished starting up yet.

It is reasonable to watch for finderSaysHello and finderSaysGoodbye notifications to keep track of whether the Finder is present.

dataIn is a pointer to a buffer in the following format:

+000
Word
parameter count (will always be at least 3)

+002
Long
Finder’s version number (from its rVersion resource)

+006
Word
Finder’s memory ID (for use with SetCurResourceApp)

+008
Word
iconObjSize—for accessing fields of extended icons (on the desktop)

dataOut buffer:

Reserved

finderSaysGoodbye

$0101

The Finder sends finderSaysGoodbye early in its shutdown process to inform extensions that the Finder is going away (for whatever reason). Extensions must remove all of their Extras menu items at this time.

Note:
Extensions should be prepared to receive multiple finderSaysGoodbye requests, doing no harm on a redundant request (calling tellFinderRemoveFromExtras with a stale itemID, or zero, is harmful). This is especially important if the extension ever refuses to go away (by rejejcting an srqGoAway request, or by accepting it and returning a userID of zero).

The Finder does not send redundant finderSaysGoodbye requests by itself, but redundant requests are unavoidable in some cases when a utility attempts to remove or replace an extension on the fly.

dataIn buffer:

Reserved

dataOut buffer:

Reserved

finderSaysSelectionChanged

$0102

The Finder sends this whenever the set of selected icons may have changed. On receiving this notification, an extension can make the tellFinderGetSelectedIcons call to see what icons are now selected. Extensions that have menu items in the Extras menu may want to call EnableMItem or DisableMItem on those items at this point.

dataIn buffer:

Reserved

dataOut buffer:

Reserved

finderSaysMItemSelected

$0103

The Finder sends this whenever the user chooses any normal menu item (that is, not an $F000-range “Windows” item, not an $E000-range “Extras” item, and not a desk accessory item from the Apple menu). This request is sent to all Finder extensions. The Finder decides whether to continue with the menu selection based on whether any extension accepts the request and whether the abortIt flag is true.

Note:
Before acting on a finderSaysMItemSelected request, check the abortIt flag in the dataOut buffer. If the value is nonzero, some other Finder extension saw the request first and handled it before you. (Occasionally it is useful for an extension to see that particular menu items are being chosen, even if they’ve already been handled, so the Finder does not set the stopAfterOne flag to SendRequest when sending finderSaysMItemSelected.)

dataIn is a pointer to a buffer with the following format:

+000
Word
parameter count (will be at least 3)

+002
Word
menu item ID

+004
Word
menu ID

+006
Word
modifiers (after menu was released, open apple masked out)

dataOut is a pointer to a buffer with the following format:

+000
Word
recvCount

+002
Word
abortIt flag (boolean, non-zero means Finder won't continue menu selection)

Here are the valid menu item ID values. Note that there is a separate code for finderItemCleanUpByName, even though the user sees them as the same item with a varying name.

$012D
finderItemAbout

$012E
finderItemHelp

$015F
finderItemNewFolder

$0160
finderItemOpen

$0161
finderItemPrint

$0162
finderItemClose

$0163
finderItemCloseAll

$0164
finderItemDuplicate

$0165
finderItemPutAway

$0166
finderItemValidate

$00FA
finderItemUndo

$00FB
finderItemCut

$00FC
finderItemCopy

$00FD
finderItemPaste

$00FE
finderItemClear

$0191
finderItemSelectAll

$0192
finderItemShowClipboard

$01C3
finderItemStackWindows

$01F5
finderItemByIcon

$01F6
finderItemBySmallIcon

$01F7
finderItemByName

$01F8
finderItemByDate

$01F9
finderItemBySize

$01FA
finderItemByKind

$0227
finderItemFormat

$0228
finderItemErase

$0229
finderItemVerify

$022A
finderItemEject

$0259
finderItemCleanup

$025A
finderItemEmptyTrash

$025B
finderItemPreferences

$025C
finderItemIconInfo

$025D
finderItemShutDown

$025E
finderItemCleanUpByName

$028B
finderItemColorBlack

$028C
finderItemColorBlue

$028D
finderItemColorYellowBrown

$028E
finderItemColorGray1

$028F
finderItemColorRed

$0290
finderItemColorPurple

$0291
finderItemColorOrange

$0292
finderItemColorPink

$0293
finderItemColorDarkGreen

$0294
finderItemColorAqua

$0295
finderItemColorBrightGreen

$0296
finderItemColorPaleGreen

$0298
finderItemColorPeriwinkleBlue

$0299
finderItemColorYellow

$029A
finderItemColorWhite

finderSaysBeforeOpen

$0104

finderSaysOpenFailed

$0105

When you receive finderSaysBeforeOpen, do not assume the Finder is necessarily present! See discussion below.

When the user opens a document or application icon, the Finder sends finderSaysBeforeOpen. If the request does not get handled, the Finder tries to find an appropriate application to launch for the document. If that doesn’t work, the Finder sends finderSaysOpenFailed to give extensions a chance to handle the request knowing that no application was found.

(If the user opens several icons at once, the Finder makes one set of finderSays calls for each icon in turn. Also, if by opening a document the Finder is about to attempt to launch an application, the Finder sends a separate finderSaysBeforeOpen for the application after sending finderSaysBeforeOpen for the document.)

The Finder does not send finderSaysBeforeOpen or finderSaysOpenFailed when opening a folder.

The modifiers field contains a useful set of modifers. Note that the Command key is masked out of the modifiers field if the user hit a Command-key combination to invoke finderSaysBeforeOpen. So, if the user has hit Command-O to call the Finder’s “Open” function, the bit for the Command key will be clear in the modifiers field.

Note that using the Shift key to trigger something for the extension isn’t necessarily a good thing. There is a very thin line between Shift-clicking to select an icon, and Shift-double-clicking to open and do something extension-based to it.

When the Finder makes a finderSaysBeforeOpen or finderSaysOpenFailed call, the dataIn parameter is a pointer to a structure with the following format:

+000
Word
parameter count (at least 6)

+002
Long
pointer to class-one pathname

+006
Long
pointer to rectangle to zoom out from (or NIL if none)

+010
Word
Filetype

+012
Long
Auxiliary type

+016
Word
Modifiers

+018
Long
theIconObj (NIL, or handle to the icon object being opened)

+022
Word
printFlag (0 for Open, nonzero for Print)

All seven of these fields are always present, including printFlag, even though Finder 6.0 sets the parameter count to six.

Be sure to check printFlag to distinguish an Open from a Print. Try choosing Print from the File menu to make sure your extension does not accidentally treat Print like Open.

dataOut buffer:

Reserved

Can something besides the Finder sends finderSaysBeforeOpen?

Yes. Sending finderSaysBeforeOpen is permitted in the desktop environment, as long as sufficient tools are started to support NDAs.

It may be useful for NDAs or other utilities to send finderSaysBeforeOpen to ask other utilities to behave as they would if a certain file were doube-clicked from the Finder. For example, the Control Panels NDA opens a Control Panel, and EasyMount mounts a server from an EasyMount document.

If you write any utility that accepts finderSaysBeforeOpen, be prepared to be in an environment other than the Finder. Do not assume that your tellFinder requests will succeed (you’ll get error $0120 from SendRequest if the Finder is not present). Do not assume that all the tools the Finder starts, such as Text Edit, are started. Do not assume 640 mode.

If the environment your utility needs is not present, simply reject the finderSaysBeforeOpen request. This way other utilities still get a shot at handling it.

If you send finderSaysBeforeOpen, you must provide all seven parameters, and you should set the parameter count to seven (even thought Finder 6.0 sets it to six). If there is no rectangle for the accepting procedure to zoom out from, set the rectangle pointer to NIL. Always set theIconObj to NIL, since you have no icon object handle.

finderSaysBeforeCopy

$0106

Before the Finder does a file copy or a ChangePath call to move a volume on a volume, for each file the Finder calls finderSaysBeforeCopy. DO NOT modify any of the parameters passed to dataIn. They are for examination only.

When the Finder makes a finderSaysBeforeCopy call, the dataIn parameter is a pointer to a structure with the following format:

+000
Word
parameter count (at least 2)

+002
Long
pointer to class-one source pathname

+006
Long
pointer to class-one destination pathname

dataOut buffer:

+000
Word
recvCount

+002
Word
abortFlag (0 = continue, 1 = abort, 2 - $FFFF reserved)

finderSaysIdle

$0107

Finder broadcasts finderSaysIdle immediately before calling TaskMaster in its main loop. Finder extensions should be careful not to steal too much time at this point, or the Finder will become sluggish.

dataIn buffer:

Reserved

dataOut buffer:

Reserved

finderSaysExtrasChosen

$0108

finderSaysExtrasChosen notifies extensions that the user selected an item from the Extras menu. The menu item number of the selected item is in the low word of dataIn.

An extension that added an item to the Extras menu was assigned a menu item number when it called tellFinderAddToExtras; an extension must accept a finderSaysExtrasChosen request if and only if it owns the menu item number passed in the low word of dataIn.

The Extras menu title remains hilited until the request processing is finished. If an extension puts up a modal dialog in response to finderSaysExtrasChosen, the Extras menu title remains hilited the whole time, as it should. In this case, the extension’s menu item should end with an ellipsis (for example, “Encrypt Files...”).

If no extension accepts a finderSaysExtrasChosen request, the Finder calls SysBeep2(sbOperationFailed).

dataOut buffer:

Reserved

finderSaysBeforeRename

$0109

When the user is about to rename an icon, the Finder sends finderSaysRename. If the request does not get accepted, the Finder tries to rename the icon. If the request is accepted, the Finder uses the return from dataOut to determine whether to perform the rename or not. This call is intended as a simple stop-gap security measure to (for instance) to keep someone from renaming something which really shouldn't be renamed (like the system folder on a server in a school). DO NOT modify any of the parameters passed to dataIn. They are for examination only.

When the Finder makes a finderSaysBeforeRename call, the dataIn parameter is a pointer to a structure with the following format:

+000
Word
parameter count (at least 4)

+002
Long
pointer to class-one old pathname

+006
Long
pointer to class-one new pathname

+010
Word
Filetype

+012
Long
Auxiliary type

dataOut buffer:

+000
Word
recvCount

+002
Word
abortFlag (boolean, non-zero to abort the rename)

finderSaysKeyHit

$010A

If the Finder isn’t able to deal with a keypress, it sends finderSaysKeyHit before returning to the Finder’s event loop.

When the Finder makes a finderSaysKeyHit call, the dataIn parameter is a pointer to a structure with the following format:

+000
Word
parameter count (at least 2)

+002
Word
message from TaskMaster (character in low byte)

+004
Word
modifiers

dataOut buffer:

Reserved

.c3.tellFinder Codes

Extensions use SendRequest in the Tool Locator to send these requests to "Apple~Finder~", using a sendHow value of sendToName+stopAfterOne.

reqCode

 Name

$8000

*tellFinderGetDebugInfo

$8001

*askFinderAreYouThere

$8002

 tellFinderOpenWindow

$8003

 tellFinderCloseWindow

$8004

 tellFinderGetSelectedIcons

$8005

 tellFinderSetSelectedIcons

$8006

 tellFinderLaunchThis

$8007

 tellFinderShutDown

$8008

 tellFinderMItemSelected

$800A

 tellFinderMatchFileToIcon

$800B

 tellFinderAddBundle

$800C

 tellFinderAboutChange

$800D

 tellFinderCheckDatabase

$800E

 tellFinderColorSelection

$800F

 tellFinderAddToExtras

$8011

*askFinderIdleHowLong

$8012

 tellFinderGetWindowIcons

$8013

 tellFinderGetWindowInfo

$8014

 tellFinderRemoveFromExtras

$8015

 tellFinderSpecialPreferences
tellFinder Environment

During a tellFinder request, the Finder automatically sets the CurResourceApp to the Finder and the current menu bar to the System menu bar. Before returning control to your program, the Finder restores your settings.

Request codes marked with an asterisk above can be made just about any time. The Finder accepts the other requests only at certain times: during finderSaysHello, finderSaysGoodbye, finderSaysExtrasChosen, finderSaysSelectionChanged, finderSaysKeyHit, finderSaysMItemSelected, finderSaysIdle, and while the Finder is in its TaskMaster call.

Typically, but not always, the Finder is prepared to handle requests when an NDA Action routine gets called, or when a Run Queue task gets called (during SystemTask).

tellFinder requests attempted when the Finder is unprepared simply return Finder result fErrBusy.

dataOut buffer format

All dataOut buffers begin with a count word that tells the caller how many times a request was accepted (SendRequest requires this).

All tellFinderXXX requests return a result code word at +002. This is zero if the request was handled successfully; other values depend on the particular request being made, but usually nonzero values are error codes returned unchanged from the toolbox or GS/OS.

A finderResult code is:

$0000
no error

$00xx
a GS/OS error

$xxxx
a toolbox error

$4201
fErrBadInput—bad input value

$4202
fErrFailed—could not complete request

$4203
fErrCancel—user cancelled operation

$4204
fErrDimmed—menu item was dimmed

$4205
fErrBusy—not now, the Finder has a headache

$4206
fErrNotPrudent -- can’t add Finder’s resources to desktop file

$4207
fErrBadBundle -- unknown rBundle version, or rBundle damaged

$42FF
fErrNotImp—request not implemented

tellFinderGetDebugInfo

$8000

dataIn is reserved and must be zero.

dataOut buffer:

+000
Word
recvCount
+002
Word
finderResult
zero

+004
Word
Reserved
+006
Word
direct page

address of Finder’s first direct page

+008
Handle
deskIc

handle to first desktop IconObj

+012
Long
nameChainH

match-by-name chain reference

+016
Long
filetypeBlock
pointer to list of match-by-filetype chain references

+020
Long
deviceBlock
pointer to list of match-by-devicetype chain references

+024
Long
masterChainH
hmatch-by-non-filetype chain reference

+028
Long
finderPathsH
handle of the list of FinderPath handle info records

+032
Word
finderPathsCount
number of FinderPath records

+034
Long
nameChainInsert
insertion point for the name chain

+038
Long
reserved
+042
Long
masterChainInsert
insertion point for the master chain

+046
Long
reserved
+050
Handle
ChainTable

handle to chain table

+054
Handle
IconOffsetArray
handle to array of containing offsets within handles containing icons

+058
Handle
IconHandleArray
handle to array of containing handles containing icons

+062
Word
IconArrayUsed
of icons currently being used by Finder

+064
Word
IconArraySize
of icons that can be stuffed into current icon arrays above

+066
Long
Reserved

+070
60 bytes

room for future parameters

askFinderAreYouThere

$8001

dataIn is reserved and must be zero. If the Finder is present, it always accepts this request and returns no error.

dataOut buffer:

+000
Word
recvCount
+002
Word
finderResult
tellFinderOpenWindow

$8002

Opens the specified window. dataIn is a pointer to a class-one input pathname (a full pathname, or “Trash”, or “Clip”, or “About”, or a device name).

The Finder calls ExpandPath on the pathname, so opening a window from a device name is possible.

dataOut buffer:

+000
Word
recvCount
+002
Word
finderResult
+004
Long
resulting window pointer (or NIL if there was an error)

tellFinderCloseWindow

$8003

Closes the specified Finder window. dataIn is a pointer to a class-one input pathname (a full pathname, or “Trash”, or “Clip”, or “About”, or a device name).

The Finder calls ExpandPath on the pathname, so closing a window from a device name is possible.

dataOut buffer:

+000
Word
recvCount
+002
Word
finderResult
tellFinderGetSelectedIcons

$8004

Returns a handle containing information on each icon that is currently selected. The returned stringList handle is yours to deal with. When you’re done with it, you must call DisposeHandle on it.

Each string is either a fully expanded pathname or the name of some other Finder icon (“Trash” or the device name of an AppleDisk 5.25 device).

dataIn, bit 31 = return extended stringList format (see WARNING below). All other bits in dataIn are reserved and should be zero.

dataOut buffer:

+000
Word
recvCount
+002
Word
finderResult
+004
Long
pointer to window containing the selected icons, or NIL for the desktop

+008
Long
new stringList handle

A stringList handle has the following format:

+000
Word
number of pathnames following

+002
WString1...

+xxx
WString2...

If bit 31 is set in dataIn, the extended stringList handle has the following format:

 +000
Word
number of variable length records following

 +002
Record1...

 +xxx Record2...

 ...

 +xxx
RecordN...

Each record consists of:

 +000
Word
Offset to WString1 (offset from start of record, +000)

 +002
Word
y coordinate of icon, icon view (bottom of icon)

 +004
Word
x coordinate of icon, icon view (middle of icon)

 +006
Word
y coordinate of icon’s text, list view

 +008
Word RESERVED for height of icon for current view (not useful in 6.0)

 +010
Word
RESERVED for width of icon for current view (not useful in 6.0)

 +012
Long
iconObj handle for this icon
 +xxx
WString1 (at offset specified in the first field of the record)

Don’t depend on the Offset to the WString in each record in an extended stringList handle always being the same. Apple reserves the right to change the amount of information returned before each pathname.

Extended stringList WARNING

Because of a problem in Finder 6.0, it is unsafe to use the extended-stringList versions of the tellFinderGetSelectedIcons or tellFinderGetWindowIcons calls unless you first follow the instructions below, to make a five-byte patch to the Finder in memory.

Accept the finderSaysHello request. Compare the Finder version longword to $0600A000 (version 6.0). If it maches, pass the dataIn value (the pointer to the finderSaysHelloIn structure) to FindHandle. At offset +$2E5A in the block FindHandle locates for you, store the following bytes: $A0 $0A $00 $80 $3F $00.

;

; PatchFinder60

;

; It is unsafe to call tellFinderGetSelectedIcons (extended) or

; tellFinderGetWindowIcons (extended) in Finder 6.0.

;

; This patch makes it safe, but disables the iconHeight and

; iconWidth fields in the extended stringList data.

;

; The patch checks for Finder version 6.0 ($0600A000) and

; then locates the main segment by doing FindHandle on the

; finderSaysHello dataIn value.

;

; Then we copy a "LDY #$000A, BRA +$3F" to offset $2E5A.

;

PatchFinder60 name

 ldy #2 ;offset to rVersion vers, low word

 lda [<dataIn],y

 cmp #$A000

 bne @notFinder60

 iny

 iny

 lda [<dataIn],y ;rVersion vers, high word

 cmp #$0600

 bne @notFinder60

 pha

 pha ;space for FindHandle

 pei <dataIn+2

 pei <dataIn

 _FindHandle

 phd

 tsc

 tcd
 ;handle is at <3 (temp DP on stack)

 ldy #2

 lda [<3],y

 tax

 lda [<3]

 sta <3

 stx <5 ;pointer to main segment is at <3

 ldy #$2E5A ;offset into main Finder segment

 lda #$0AA0 ;first word of patch (LDY #$xx0A)

 sta [<3],y

 iny

 iny

 lda #$8000 ;second word of patch (high byte of LDY, BRA)

 sta [<3],y

 iny

 iny

 lda #$003f ;offset for BRA, and a superflous $00

 sta [<3],y

 pld

 pla

 pla ;discard handle

@notFinder60 rts

tellFinderSetSelectedIcons

$8005

dataIn is a (regular, not extended) stringList handle. Do not set bit 31 (or any other bits in the highest byte). The stringList structure is described under tellFinderGetSelectedIcons.

The Finder selects the icons specified in stringList. If other icons are selected in the same window (or on the desktop, if the specified icons are on the desktop) then previously-selected icons remain selected.

To deselect all icons, pass a stringList handle with a pathname count of zero.

No errors are returned for pathnames in the stringList handle for which no icon can be selected.

dataOut buffer:

+000
Word
recvCount
+002
Word
finderResult
tellFinderLaunchThis

$8006

The Finder performs an ExpandPath call on the input pathname and verifies that the file exists and has an application file type ($FF, $B3, or $B5). If all is well, the Finder launches the specified application the next time the main event loop gets control.

dataIn is a pointer to the following structure:

+000
Word
Reserved (use $0000)

+002
Long
Pointer to class-one GS/OS pathname

dataOut buffer:

+000
Word
recvCount
+002
Word
finderResult
tellFinderShutDown

$8007

The high word of dataIn is reserved and must be zero. The low word of dataIn contains one of the following values:

0
turn off power

1
restart system

2
quit from the Finder

The requested action does not happen right away. Instead, it happens the next time the Finder’s main event loop gets control.

dataOut buffer:

+000
recvCount
+002
finderResult

tellFinderMItemSelected

$8008

Tells the Finder to execute a menu-based action, just as if the user had chosen the item from the menus. The allowed menu item values are listed under finderSaysMItemSelected.

You can only simulate the “normal” Finder menu items. You can’t use this call to simulate menu items from Extras, to select windows from Windows menu, or to open desk accessories (you can bring windows to the front with SelectWindow in the Window Manager, and you can open Desk Accessories with OpenNDA in the Desk Manager).

Actions that cause the Finder to shut down do not occur until the Finder’s main event loop regains control. This includes Open (if application or document icons are selected) and Shut Down.

You specify the modifiers in the same format as in the modifiers field of an Event record. For some menu commands, the Option key or other modifiers are important.

dataIn is a pointer to a buffer which contains:

+000
Word
menu item ID

+002
Word
modifiers

+004
Word
flags (bit 15 = hilite menu title, all other bits reserved)

dataOut buffer:

+000
Word
recvCount

+002
Word
finderResult
finderResult will be fErrDimmed if the specified menu item is disabled.

tellFinderMatchFileToIcon

$800A

Asks the Finder to search its internal data structures from all the volumes which have been mounted so far to look for an icon which matches the specified search criteria.

Note that several fields in the dataIn buffer are stored in a nonstandard format. The fields marked as SwapLong are four bytes long, but the first and second words are interchanged. (Instead of +0 +1 +2 +3, the order is +2 +3 +0 +1.)

dataIn is a pointer to a buffer which contains:

+000
Word
pcount (11), minimum of 10

+002
Word
Voting bits (4-7) we want ($8000 = don’t care)

+004
Word
Which match we want (1 or higher)

+006
Word
filetype

+008
SwapLong
auxtype

+012
SwapLong
pointer to filename to match against

+016
SwapLong
pointer to create date/time, GS/OS format

+020
SwapLong
pointer to mod date/time, GS/OS format

+024
Word
local access word

+026
Word
flags, bit 15 = extended file, all other bits reserved

+028
SwapLong
pointer to option list, or NIL

+032
SwapLong
Combined (resource and data fork) EOF

dataOut buffer:

+000
Word
recvCount

+002
Word
finderResult

+004
Long
offset to OneDoc structure in rBundle handle which matches, or NIL if no match

+008
Long
handle to rBundle structure which matches, or NIL if no match

+012
Long
Offset to small icon to use (never NIL)

+016
Long
Offset to large icon to use (never NIL)

+020
Long
handle to rFinderPath, or NIL if no one owns icon

tellFinderAddBundle

$800B

Tells the Finder to examine the contents of an rBundle from the provided pathname and add the contents of the rBundle (including attached rIcon, rFinderPath, and rVersion resources) to the Desktop file. Because this call does not update the in-memory contents of the Desktop file, the Finder must be re-launched to incorporate any changes to any Desktop files.

dataIn is a pointer to a buffer which contains:

+000
Word
Reserved, must be zero

+002
Long
Pointer to class-one GS/OS pathname

+006
Long
Pointer to class-one GS/OS pathname for desktop file

+010
Long
rBundle ID to put into Desktop file, or zero for first available ID

dataOut buffer:

+000
Word
recvCount

+002
Word
finderResult
tellFinderAboutChange

$800C

Informs the Finder that the contents of a directory have changed. If there is an open window for this directory, the Finder re-reads the directory’s contents and brings the window up to date.

This is useful when a desk accessory or Finder extension creates a new file, especially if that file is immediately useful to the user (for example, the EasyMount Finder extension calls tellFinderAboutChange after creating a new server alias).

dataIn is a pointer to the class-one pathname of a directory.

dataOut buffer:

+000
recvCount
+002
finderResult
tellFinderCheckDatabase

$800D

Asks the Finder to do a lookup of whether or not it knows about a specific rVersion from all of the desktop databases which have been read into memory so far.

dataIn is a pointer to a buffer which contains:

+000
Word
update, high bit set if database should be updated if exact rVersion match is found

+002
Long
ptr to class-one GS/OS pathname to use for update or NIL if no update

[68000 byte order]

+006
Long
ptr to rVersion resource in memory (must be locked)

[68000 byte order]

dataOut buffer:

+000
Word
recvCount
+002
Word
finderResult
+004
Word
0 if no match found, $FFFF if exact match found, $8000 if newer rVersion found

tellFinderColorSelection

$800E

Applies color selection to the selected icons.

dataIn is formatted like this: $wx00yz00

Each icon’s old foreground color is ANDed with W and ORed with Y.

Each icon’s old background color is ANDed with X and ORed with Z.

To revert an icon to its default colors, set the foreground and background colors to zero.

dataOut buffer:

+000
recvCount
+002
finderResult
tellFinderAddToExtras

$800F

The Finder adds the specified menu item to the Extras menu (adding the Extras menu to the menu bar first if it is not already there). The item is added at the bottom of the menu unless otherwise specified.

dataIn is a pointer to a menu item template, just like InsertMItem2 requires (see Toolbox Reference Volume 3, Menu Manager chapter—page 37-15). The itemID field is normally ignored, since the Finder assigns an ID for the item. The version field has a special use.

dataOut buffer:

+000
Word
recvCount
+002
Word
finderResult
+004
Word
resulting menu item number that the Finder assigned you (keep it for use during finderSaysExtrasChosen!)

+006
Word
Menu ID for extras menu (in case the menu needs to be resized, etc). See note below.

Each time the Finder starts up, each extension receives the finderSaysHello message and makes zero or more tellFinderAddToExtras calls to add menu items to the Extras menu.

Because no extension can determine how many other extensions will add items to the Extras menu, the Finder administrates dividing lines between groups of items. For the first item in every group, extensions must set bit 15 of the menu item template’s version field, to tell the Finder that a dividing line should appear before that item if necessary (no dividing line is needed if there are no items above it in the menu; the Finder checks that).

Always flag your first Extras item with a dividing line. Extensions should always set the dividing line bit of their first menu item; if you have a lot if items, you may want additional dividing lines.

Each dividing line created by the Finder is associated with the item right below it; removing that item automatically removes the dividing line.

If your extension already has one or more Extras items and needs to add more items later, adding the item to the bottom of the menu is not the right thing (other extensions may have added items below yours). In this case, set bit 14 of the menu item template’s version field, and in the template’s menu item ID field provide the item number of the item you wish to insert after (this should be the ID of an item you previously added with tellFinderAddToExtras).

When the user chooses the extra menu item from the Extras menu, the Finder broadcasts finderSaysExtrasChosen (passing the menu item ID that the Finder assigned to the extension during the tellFinderAddToExtras call). The extension that owns the menu item is expected to accept the finderSaysExtrasChosen request.

Note—If you make any Menu Manager calls on your menu item, the Extras Menu, or the system menu bar, be sure to set the CurResourceApp to the Finder’s value (as provided at finderSaysHello time), or the Menu Manager calls may fail. For example:

GetCurResourceApp (preserve present value)

SetCurResourceApp to the Finder

SetMItemName on your item

CalcMenuSize on the Extras menu

SetCurResourceApp back to preserved value

askFinderIdleHowLong

$8011

dataIn is reserved and must be zero.

dataOut buffer:

+000
Word
recvCount
+002
Word
finderResult
+004
Long
tick count (number of ticks since last user activity in the Finder)

tellFinderGetWindowIcons

$8012

dataIn is a pointer to a Finder window (any directory window or the Trash window), or NIL for the desktop. The resulting stringList handle lists all the icons in the specified window (or on the desktop).

Bit 31 controls the type of the stringList handle (extended or regular). If you set bit 31 to get an extended stringList, read the warning under tellFinderGetSelectedIcons.

dataOut buffer:

+000
Word
recvCount
+002
Word
finderResult
+004
Long
new stringList handle (same format as tellFinderGetSelectedIcons)

tellFinderGetWindowInfo

$8013

dataIn is a pointer to any Finder window. This call does not make sense for the Desktop, so NIL is not allowed. DO NOT modify the strings you get from tellFinderGetWindowInfo; the Finder does not provide a copy that can be modified.

dataOut buffer:

+000
Word
recvCount
+002
Word
finderResult (fErrBadInput if the window is NIL or a System window)

+004
Word
window type ($0002 = directory window, $0004 = trash, $0008 = clipboard, $0010 = Icon Info window, $0020 = Verify window, $0040 = About window, $0080 = Help window)

+006
Word
windView (0=by Icon, 1=by Small Icon, 2=by Name, 3=by Date, 4=by Size, 5=by Kind)

+008
Word
windFST (file system ID for a directory window)

+010
Long
windTitle (pointer to window’s Pascal String title)

+014
Long
windPath (pointer to window’s Word-string pathname)

+018
Long
reserved for future use

+022
Long
reserved for future use

tellFinderRemoveFromExtras

$8014

The low word of dataIn is a menu item number previously assigned by tellFinderAddToExtras (the high word is reserved and must be zero). The Finder removes the corresponding item from the Extras menu (and removes the menu if there are no items left).

If the menu item was flagged as the first item in a group when it was added, removing it automatically removes the dividing line, if one was needed.

dataOut buffer:

+000
Word
recvCount
+002
Word
finderResult
tellFinderSpecialPreferences
$8015

Tells the Finder to set some special preferences for this execution of the Finder only. The preferences are NOT saved. The Finder must be re-told about the preferences each time it is run. In the future this will allow certain special behavior modifications to the Finder by third-party utilities.

It’s okay to call tellFinderSpecialPreferences at finderSaysHello time.

dataIn is a pointer to a buffer which contains:

+000
Word
pcount (must be 1)

+002
Word
boolean (0 = don’t allow, $0001 = allow), allow dragging hard disk partitions to the trash

dataOut buffer:

+000
Word
recvCount

+002
Word
Reserved for finderResult. Finder 6.0 does not return a useful value here.

.c2.Internal Finder Data Structures

Finder uses two data structures for many of its operations: iconObj handles for icons, and windBlk structures for windows. Each window which belongs to the Finder has at least a portion of the windBlk. You can find the pointer to a window’s windBlk by calling GetWRefCon (in the Window Manager) with the window’s pointer.

Use this information with care, making conservative assumptions when possible (for example, be prepared to deal with unexpected values, such as a windView greater than five).

These data structures are read only! You should not change the values of any fields.

When possible, use tellFinderGetWindowInfo instead of examining the windBlk structure directly.

;

; --- Block pointed to by RefCon (a window’s windBlk) ----

;

windIcons
Long
;Handle of first iconObj in window (NIL = none)

windID
Word
;Window's ID number (see below)
windView
Word
;0-5, icon, small, name, size, date, kind

windIc
Long
;Handle of iconObj that opened into this window

windDiskIc
Long
;Handle of disk icon that originally owns this

windItems
Word
;Number of items in window
windUsed
Long
;Number of bytes used in window

windFree
Long
;Numnber of bytes free on disk

windFST
Word
;FST ID of this window

windAccess
Word
;AppleShare access bits

windDirty
Word
;bit 15 = used by Finder

;bits 14-0 are reserved and 0
windTitle
Block 54
;Window's title (padded with spaces)

windMenuItem
Word
;Window's menu item #
windMenuText
Block 52
;Window's title for the menu item

windDate
Block 8
;Window's date
windPath
Block 991
;Complete pathname, wString
;

; --- Window ID numbers (windID field of window's info block) ----

;

sysWindID
=
$0001
;System window
dirWindID
=
$0002
;Directory window, all fields present
trashWindID
=
$0004
;Trash window, fields end at windMenuText

clipWindID
=
$0008
;Clipboard window, fields end at windMenuText

infoWindID
=
$0010
;Info window, all fields present
verifyWindID
=
$0020
;Verify or Validate window, fields end at windMenuText

aboutWindID
=
$0040
;About window, fields end at windMenuText

helpWindID
=
$0080
;Help window, fields end at windMenuText

;

; --- iconObj record offsets -------------------------------------

;

icNext
Long
;Handle of next icon in list (NIL = no more)
icLast
Long
;Handle of previous icon in list (NIL = no more)
icMom
Long
;Window that icon is currently in
icWind
Long
;Window that icon is opened into
icDisk
Long
;Disk IconObj which owns this icon
icFlag
Long
;Defined below
icFType
Word
;Icon's file type
icFileInfo
Long
;File's Aux type or Device's File System
icKind
Long
;PTR to kind string, can be NIL
icy
Word
;Position of icon's bottom
icx
Word
;X position of icon's middle
icTextY
Word
;Icon's y position when viewed by text
icTitleLen
Word
;Half the length of the icon's title
icName
Block 34
;Name of icon, a pascal string
icLocalAccess
Word
;Icon's current local access
icForked
Word
;High bit set if file is extended

icFBlocks
Long
;Icon's file block size, device’s used blocks

icFBytes
Long
;Icon's file byte size, device’s total blocks

icCDate
Block 8
;Icon's file creation date
icMDate
Block 8
;Icon's file modification date
icIcon
Long
;Index into Handle and Offset arrays for this icon

icSmallIcon
Long
;Index into Handle and Offset arrays for this icon

icRBundle
Long
;Handle of rBundle which matched or NIL

icOneDocOffset
Long
;Offset to OneDoc within rBundle handle

icInfo
Long
;Pointer to Info window if any, else NIL

icDevNum
Word
;Icon's device number (device icons)

icDevInfo
Word
;If icon is a device, the return from _DInfo

icOptionList
Word
;The option_list for this file, 44 bytes long

icFST
Word
;The file sytem for this file (in option_list

Block 36

icNetworkAccess
Long
;The network access for this file if file is on a network

The size of an iconObj structure is subject to change—fields may be added to the end in the future. Use the iconObjSize field of finderSaysHello dataIn to locate the three extended-iconObj fields.

;

; --- Extended iconObj record -------------------------------------

;

icOldPosY
Word
;Y position in real mom window
icOldPosX
Word
;X position in real mom window
icOwner
Block 993
;Pathname of icon's real owner
;

; --- icFlag flags ---

;

ICSELECTED
=
$0001
;1 = selected, 0=normal
ICOPENED
=
$0002
;1 = icon is opened, 0 = icon closed

ICOFFLINE
=
$0004
;1 = offline, 0 = online
ICEXTENDED
=
$0008
;1 = extended ICONOBJ record
ICLOCKED
=
$0080
;1 = icon is locked
ICFORECLR
=
$0F00
;Icon's foreground (outline) color
ICBACKCLR
=
$F000
;Icon's background (fill) color
ICNETACCESS
=
$000F0000
;Network access rights (4 bits)
ICNETWORK
=
$01000000
;1 = Network, 0 = local
ICREADABLE
=
$02000000
;1 = read access, 0 = no read access
NOTE:
All bits are used by icFlag. DO NOT commandeer any icFlag bits for any reason.

DO NOT change the setting of any of the icFlag bits. Not all the used bits are publicly

documented. The Finder relies heavily on the icFlag field and changes to it by anything other

than the Finder are sure to cause disaster!

Finding an icon image from an icon index

Here's how to find an icon image in the Finder after you get an index from the icIcon or icSmallIcon fields (or from the small and large icon indexes provided by tellFinderMatchFileToIcon):

After receiving finderSaysHello, call tellFinderGetDebugInfo. This returns 128 bytes of data in dataOut. Extract the following two handles from dataOut:

 +054 Handle iconOffsetArray
 +058 Handle iconHandleArray
Each array contains a four-byte entry for each indexed icon, starting with zero. So multiply the icon index by four and use it to index into the pair of arrays. The entry from iconHandleArray tells you what handle the icon is stored in, and the entry from iconOffsetArray tells you the offset within that handle. Dereference the handle and add the offset, and you have the address of a QuickDraw II Auxiliary style icon, suitable for DrawIcon.

.c1.Things I Think I’d Pay Cash For If I Was a User (Ideas for Extensions)

Dave and I think that the following would be really cool. No doubt people have come up with some similar ideas on their own and are already working on them. You might want to ask around and avoid duplicating somebody else’s efforts.

• A Finder Extension which would allow me to set an interval at which the extension would automatically scan my online volumes for folders which had changed, and within the folders which had changed, call tellFinderAddBundle for every application with a resource fork. Or, a Finder Extension which would scan through all my online volumes after removing my existing Desktop files to keep my Desktop databases up-to-date.

• A scheduling utility that launches a selected application at a selected time or interval (such as a backup program). Of course, it shouldn’t launch while the user is in the middle of something, so it should watch for finderSaysIdle and (from time to time) call askFinderIdleHowLong to see if the Finder has been idle for several minutes.

• A “power user” Icon Info window, letting the user view and edit the filetype and auxiliary type of a selected file, show the sizes of the data and resource forks, etc. For example, a “Power User Info” item in the Extras menu could open a modeless system window for each selected icon. (To create a modeless system window, use SetSysWindow in the Window Manager, and GetAuxWindInfo in the 6.0 Window Manager; see also the 6.0 Desk Manager toolbox documentation.)

• A utility to re-mount Apple SCSI partitions that have been unmounted. (This utility could also use tellFinderSpecialPreferences to let the user drag hard-disk partitions to the trash to unmount them.)

• Extensions to view or edit various sorts of files, such as text/Teach files, Sounds, Fonts, and various kinds of graphics files.

• A Find File utility with options to automatically open the window containing the found item or items, or even to launch those items.

• A pair of Extras menu commands called “Preserve Selection” and “Restore Selection”, which would remember and restore your selected Finder icons (idea by Ron Lichty).

• Extension to encrypt and decrypt files (select document icons and choose “Encrypt...” from the Extras menu).

• A way to select icons by wildcard (pop up a dialog where the user enters “*.asm”, and all icons with names ending in “.asm” in the front window are instantly selected). (Use tellFinderGetWindowIcons and tellFinderSetSelectedIcons. Maybe have a checkbox for “select on desktop.”)

• A text-based Finder interface, in an System window, maybe supporting scripting. (Dragging icons around would be the hardest part—you might be able to simulate it using FakeMouse in the Event Manager.)

• Keyboard navigation (similar to Macintosh Finder 7.0) is an obvious choice. We’re already working on one and hope to release it soon. If you’re thinking of trying this yourself, note that there are some big problems we have to get around by cheating, using hard-coded offsets into the Finder 6.0 code. One problem is the speed hit of calling tellFinderSetSelectedIcons twice (once to deselect icons, once to select the new one...fast enough for most purposes, but not for keyboard navigation) . Another problem is that icons tend to be renameable far too often for navigation to work well—even if you click on the icon itself (not its name), you still get a rename field, and keystrokes get used in the icon’s name instead of going to finderSaysKeyHit.

• Not quite a Finder extension...an NDA to be used outside the Finder (maybe inside, too), which sends finderSaysBeforeOpen to anybody willing to receive it. The user would choose files using Standard File (or by choosing a folder from a customizable list, to start Standard File out in a useful directory; or by choosing a file from a customizable list). This would be useful for Control Panels (the Control Panel NDA will open them) and for EasyMount documents (it will mount the server volume, asking for password info if needed...the results in 320 mode are poor in EasyMount 1.0).

.c1.Related Documents

System 6 Toolbox ERS

Apple IIgs Finder 1.3 ERS

Apple IIgs System Disk User’s Guide

GS/OS AppleShare, DOS 3.3, HFS, Pascal, ProDOS, High Sierra/ISO-9660 FST ERS's

Apple II File Type Notes: File Type $42, Developer Technical Support (7/89)

AppleShare IIgs File Server Logon Package ERS

Apple IIgs Control Panel & CDEVs External ERS

Apple IIgs Finder 6.0
Page 7
6/09/09

