HFS FST External ERS

v0.09

GS/OS HFS File System Translator

External ERS

Version 0.09

© 1989-1991 Apple Computer, Inc.

All rights reserved.
Table Of Contents

Introduction
3

Limitations
3

Pathname Syntax
3

File Types and Aux Types
4

System Calls
5

CREATE ($01)
5

DESTROY ($02)
6

CHANGE_PATH ($04)
6

SET_FILE_INFO ($05)
6

GET_FILE_INFO ($06)
7

JUDGE_NAME ($07)
9

VOLUME ($08)
10

CLEAR_BACKUP ($0B)
10

OPEN ($10)
11

READ ($12)
11

WRITE ($13)
11

CLOSE ($14)
12

FLUSH ($15)
12

SET_MARK ($16)
12

GET_MARK ($17)
12

SET_EOF ($18)
12

GET_EOF ($19)
12

GET_DIR_ENTRY ($1C)
12

GET_DEV_NUM ($20)
13

FORMAT ($24)
13

ERASE_DISK ($25)
13

FST_SPECIFIC ($33)
13

.c1.Introduction

This ERS provides information specific to the GS/OS HFS File System Translator and is intended to be used as a supplement to the "GS/OS System Calls External ERS" and the "Spongeboy Project GS/OS Enhancements ERS". HFS is described in detail in "Macintosh Technical Note #246" and chapter 19 of "Inside Macintosh Volume IV".

HFS is the file system currently used on the Apple Macintosh family of computers. The HFS FST provides GS/OS applications the ability to read and write data on HFS disks. Some of the advantages of the HFS file system are that it can access volumes larger than 32Mb and files larger than 16Mb, and it allows up to 65535 files and up to 65535 directories at the root level.

.c1.Limitations

•
The first release of the HFS FST does not enable the Apple //GS to boot from an HFS volume.

• The HFS FST does not support 5.25-inch disks. The attributes word in the FST Header has bit 1 set to indicate to the Initialization Manager that HFS is not a valid file system for 5.25-inch disks.

• The HFS FST does not support volumes created under MFS, the original file system used on the Macintosh.

• The HFS FST does not enable the Apple //GS to execute applications written for the Macintosh or vice-versa.

.c1.Pathname Syntax

The HFS FST imposes the following restrictions on pathname syntax:

• Volume names are limited to a maximum of 27 characters.

• Filenames are limited to a maximum of 31 characters.

• All characters except ":" are valid in a pathname.

Note that the high bit of a character is significant. Characters with values greater than 127 are considered extended ASCII and typically display as special symbols on a Macintosh.

If the first filename in a partial pathname is a number, GS/OS assumes that it is a prefix designator. Since numbers are valid filenames in HFS, an explicit prefix designator should always be used when dealing with partial pathnames that begin with a number. For example, the pathname "0:555:Hello" refers to file "Hello" in folder "555" relative to prefix 0. The pathname "555:Hello" will result in an "invalid path syntax" error since GS/OS assumes that "555:" designates prefix 555 which is invalid.

.c1.File Types and Aux Types

The HFS FST handles the translation of ProDOS filetypes and auxtypes to and from Macintosh creators and filetypes in a manner similar to that used by the AppleShare FST, Apple File Exchange, and the MPW MAX cross-development tools.

On an HFS volume, ProDOS files are distinguished by a Macintosh creator of "pdos". The Macintosh filetype is assigned based on the ProDOS filetype and auxtype. If the ProDOS auxtype does not have to be preserved, the file can be given a special Macintosh filetype such as "TEXT" or "PS16" which allows the Macintosh to display a unique icon for the file. If the ProDOS auxtype needs to be preserved, the file will be given a Macintosh filetype of the form $70 $uv $wx $yz ($70 is a lower-case "p") in which $uv is the ProDOS filetype and $wxyz is the ProDOS auxtype. The Macintosh will not be able to display unique icons for these files but the advantage is that if the file is later copied onto a ProDOS volume, the auxtype information will be correct. ProDOS auxtype information is preserved for all SRC ($B0) files and for S16 ($B3) files when the high byte of the auxtype is $DB (this signifies that the low byte of the auxtype contains valid information).

Macintosh directories do not have creators or filetypes. When converted to ProDOS, they will be given ProDOS filetype $0F (directory) and auxtype $0000.

The conversion rules are summarized in the following tables. If more than one rule applies, the one closest to the top of the table is used.

ProDOS -> Macintosh conversion

ProDOS

Macintosh
Filetype
Auxtype
Creator
Filetype

$00
$0000
"pdos"
"BINA"
$04 (TXT)
$0000
"pdos"
"TEXT"
$B3 (S16)
$DByz
"pdos"
"p" $B3 $DB $yz
$B3 (S16)
(any)
"pdos"
"PS16"
$D7
$0000
"pdos"
"MIDI"
$D8
$0000
"pdos"
"AIFF"
$D8
$0001
"pdos"
"AIFC"

$E0
$0005
"dCpy"
"dImg"

$FF (SYS)
(any)
"pdos"
"PSYS"
$uv
$wxyz
"pdos"
"p" $uv $wx $yz

Macintosh -> ProDOS conversion

Macintosh

ProDOS
Creator
Filetype
Filetype
Auxtype
"pdos"
"PS16"
$B3 (S16)
$0000
"pdos"
"PSYS"
$FF (SYS)
$0000
"pdos"
"XY∆∆" †
$XY
$0000
"pdos"
"p" $uv $wx $yz
$uv
$wxyz

"dCpy"
"dImg"
$E0
$0005

(any)
"BINA"
$00
$0000
(any)
"TEXT"
$04 (TXT)
$0000
(any)
"MIDI"
$D7
$0000
(any)
"AIFF"
$D8
$0000
(any)
"AIFC"
$D8
$0001
(any)
(any)
$00
$0000

† Where X,Y are hex digits (i.e. "0"-"9" or "A"-"F"), and ∆ is a space

.c1.System Calls

The following GS/OS system calls are supported by the HFS FST.

Call #
Name

Call #
Name

$01
Create

$14
Close

$02
Destroy

$15
Flush

$04
Change Path

$16
Set Mark

$05
Set File Info

$17
Get Mark

$06
Get File Info

$18
Set EOF

$07
JudgeName

$19
Get EOF

$08
Volume

$1C
Get Dir Entry

$0B
Clear Backup

$20
Get Dev Num

$10
Open

$24
Format

$12
Read

$25
Erase Disk

$13
Write

$33
FST Specific

The rest of this section lists each of the supported system calls and indicates any areas where the operation of the HFS FST differs from that described in the GS/OS System Calls ERS and the Spongeboy Project GS/OS Ehancements ERS.

.c2.CREATE ($01)

The 'access' parameter is handled as follows -

Bit 0 (read enabled/disabled) is ignored. All files/directories are created with read access enabled. The HFS file system does not have the ability to disable read access.

Bit 5 (backup needed/not needed) is ignored. All files/directories are created with the 'backup date/time' field set to 0 which indicates that the file/directory has never been backed up. The HFS file system does not have a 'backup needed' bit.

Bit 2 (invisible/visible) is copied into bit 14 of the Finder Info Flag word. (See GET_FILE_INFO for a description of the Finder Info Flag word.)

Bit 1 (write enabled/disabled), bit 6 (rename enabled/disabled) and bit 7 (destroy enabled/disabled) are all mapped into the 'locked' bit in the HFS file entry if a file is being created. If any one of the bits is clear, the 'locked' bit will be set. The HFS file system does not store separate information for writing, renaming and deleting. A locked file cannot be written to, renamed, deleted, or have its EOF changed. It can have its mark and file info changed and it can be moved within its volume. Bit 1 , bit 6 and bit 7 are ignored if a subdirectory is being created since the HFS file system does not have the ability to lock directories. All directories are created unlocked.

The Macintosh creator and filetype will be derived according to the rules in the previous section.

Only the low byte of the 'file_type' parameter and the low word of the 'aux_type' parameter will be used. If the high byte of the 'file_type' parameter or high word of the 'aux_type' parameter is non-zero, an invalid parameter error will be returned.

The 'eof' and 'resource_eof' parameters will be rounded up to the nearest allocation block when the fork is extended. (Allocation blocks are explained in Macintosh Technical Note #246)

If the 'create_date'parameter contains a year which is earlier than 1904, it will be rounded up to 1904.

If the 'storage_type' parameter = $8005, the file must already exist and must be a 'standard file' (ie the file's resource fork must have a physical EOF = 0). For this special case, the 'access', 'filetype', 'auxtype' and 'eof' parameters are ignored.

.c2.DESTROY ($02)

No differences.

.c2.CHANGE_PATH ($04)

A file cannot be renamed if it is locked.

The ChangePath call will allow a duplicate volume to be renamed if a device name is used as the source pathname.

.c2.SET_FILE_INFO ($05)

The 'access' parameter is handled as follows -

Bit 0 (read enabled/disabled) is ignored. The HFS file system does not have the ability to disable read access.

Bit 5 (backup needed/not needed) is ignored.

Bit 2 (invisible/visible) is copied into bit 14 of the Finder Info Flag word. (See GET_FILE_INFO for a description of the Finder Info Flag word.)

Bit 1 (write enabled/disabled), bit 6 (rename enabled/disabled) and bit 7 (destroy enabled/disabled) are handled differently for files and directories.

For files, bits 1, 6 and 7 are all mapped into the 'locked' bit in the HFS file entry. If any one of the bits is clear, the 'locked' bit will be set. The HFS file system does not store separate information for writing, renaming and deleting. A locked file cannot be written to, renamed, deleted, or have its EOF changed. It can have its mark and file info changed and it can be moved within its volume.

For directories, if bits 1, 6 or 7 are clear a $4E error will be returned since the HFS file system does not have the ability to lock directories.

The Macintosh creator and filetype will be derived according to the rules in the previous section.

Only the low byte of the 'file_type' parameter and the low word of the 'aux_type' parameter will be used. If the high byte of the 'file_type' parameter or high word of the 'aux_type' parameter is non-zero, an invalid parameter error will be returned.

The 'file_type' and 'aux_type' parameters are ignored for subdirectories.

The class 1 'option_list' is structured as follows -

word
input

buffer size

word
input

data size

word
input

File System ID

32 bytes
input

Finder Info (in 68000 format!)

If the File System ID field is not $0006 (HFS), $000D (AppleShare) or $0001 (ProDOS), the option list will be ignored. If the buffer size field is < 36 or if the data size field is < 32, the option list will be ignored. The Macintosh creator and filetype supplied in the Finder Info field will have priority over the creator and filetype derived from the 'file_type' and 'aux_type' input parameters. Any data past the Finder Info field is ignored. See GET_FILE_INFO for a description of the Finder Info field.

Any year inputs (ie create_date, mod_date, create_date_time and mod_date_time) which are earlier than 1904 will be rounded up to 1904.

This call is not defined for volume directories and will return error $40 (bad path syntax).

.c2.GET_FILE_INFO ($06)

The 'access' parameter bits will be set as follows for files -

bit 0 - set to 1

bit 1 - set to 1 if the file is unlocked. Otherwise, set to 0.

bit 2 - set to the same value as the Finder Info 'invisible' flag bit

bit 3 - set to 0

bit 4 - set to 0

bit 5 - set to 1 if the 'backup date/time' field in the HFS file entry contains a date/time which is earlier than the 'modified date/time' field. Otherwise, set to 0.

bit 6 - set to 1 if the file is unlocked. Otherwise, set to 0.

bit 7 - set to 1 if the file is unlocked. Otherwise, set to 0.

bits 8-15 - set to 0

The 'access' parameter bits will be set as follows for subdirectories -

bit 0 - set to 1

bit 1 - set to 1

bit 2 - set to the same value as the Finder Info 'invisible' flag bit

bit 3 - set to 0

bit 4 - set to 0

bit 5 - set to 1 if the 'backup date/time' field in the HFS directory entry contains a date/time which is earlier than the 'modified date/time' field. Otherwise, set to 0.

bit 6 - set to 1

bit 7 - set to 1

bits 8-15 - set to 0

The 'access' parameter bits will be set as follows for volume directories -

bit 0 - set to 1

bit 1 - set to 1

bit 2 - set to 0

bit 3 - set to 0

bit 4 - set to 0

bit 5 - set to 0

bit 6 - set to 1

bit 7 - set to 1

bits 8-15 - set to 0

The 'file_type' and 'aux_type' parameters will be derived from the Macintosh creator and filetype according to the rules in the previous section.

The only possible values for the 'storage_type' parameter are -

$01 - standard file

$05 - extended file

$0D - subdirectory

$0F - volume directory

If the physical EOF of a file's resource fork is 0, the storage_type will be returned as $01 (standard file), otherwise it will be returned as $05 (extended file). This is done because the HFS file system has no way to distinguish between a fork of length 0 and a fork that doesn't exist.

The class 1 'option_list' is structured as follows -

word
input

buffer size

word
output

data size

word
output

File System ID

32 bytes
output

Finder Info (in 68000 format!)

long
output

Parent Directory ID

The Finder Info for a file is structured as follows -

4 chars
Macintosh filetype

4 chars
Macintosh creator

word

Finder flags

Bit
Meaning

0
file lives on the desktop

1
bit 0 of color

2
bit 1 of color

3
bit 2 of color

4
reserved for color

5
always switch launch if possible

6
application file is shareable

7
file should be cached

8
file initialized

9
Changed (obsolete ?)

10
Busy (obsolete ?)

11
NoCopy (obsolete)

12
name is locked

13
file has bundle to export

14
file is invisible

15
Locked (obsolete ?)

point

Location of file's icon in window (in local coordinates)

word

File's window (unused with HFS)

word

Icon ID

8 bytes
(unused)

word

Comment ID

long

Directory ID of home folder if icon on desk (for Put Away)

The Finder Info for a subdirectory is structured as follows -

rect

Folder's window rectangle (in global coordinates)

word

Finder flags (same as for a file ?)

point

Location of folder's icon in window

word

Folder's view

point

Window's scroll position

long

ID of next open directory

word

(unused)

word

Comment ID

long

Directory ID of home folder if icon on desk (for Put Away)

The Finder Info for a volume directory will be returned as all zeroes.

The class 0 'blocks_used' parameter will be estimated for subdirectories since there is no reasonable way to determine it with the HFS file system.

The class 1 'eof', 'blocks_used', 'resource_eof' and 'resource_blocks' parameters are undefined for subdirectories and volume directories.

.c2.JUDGE_NAME ($07)

This is a class 1 call only. The parameter block is as follows -

Offset
Label

Description

$00
pcount
input word value

minimum = 3, maximum = 6

$02
file_sys_id
input word value

The call is dispatched only to the specified FST.

$04
name_type
input word value

Specifies the type of name.

0 = unknown

1 = volume name

2 = directory name

3 = filename

If 'name_type' = 0, the least restrictive rules will be used.

If 'name_type' > 3, error $53 (parameter out of range) will

be reported.

$06
syntax

output longword pointer

Points to a displayable Pascal string which describes the

FST's syntax rules.

$0A
max_len
output word value

The maximum length of the specified name type.

$0C
name

input longword pointer

Points to a class 1 output buffer which contains the name.

The FST modifies the name to make it conform to the FST's

syntax rules. If the pointer is 0, no error will be reported. If

the output buffer is not large enough to hold a maximum

length name of the specified type, error $4F (buffer too

small) will be reported.

$10
name_flags
output word value

Indicates what, if anything, was wrong with the name.

bit 15 - name contained illegal characters

bit 14 - name was too long

bit 13 - syntax error

If name_flags <> 0, then the FST modified the name.

If the name parameter is supplied but the name length is 0, the name string will be set to "A" and bit 13 of the name_flags parameter will be set to indicate a syntax error.

The HFS FST modifies the name as follows -

1 - Replace all colons and nuls with periods.

2 - If the name is too long and name_type = 1 then keep the first 13 characters,

insert a "..", and keep the last 12 characters. If the name is too long and

name_type <> 1 then keep the first 15 characters, insert a "..", and keep the last

14 characters.

.c2.VOLUME ($08)

The Volume call will setup the 'volname' output parameter if error $57 (duplicate volume) is being returned.

If a class 0 Volume call is being executed and the 'volname' output parameter is longer than 16 characters (15 character name + leading slash), error $2F (device offline) will be returned.

.c2.CLEAR_BACKUP ($0B)

Since the HFS file system does not have a 'backup needed' bit for files/directories, this call will change the 'backup date/time' field of the file/directory entry to be either the current date/time or one second later than the 'modified date/time' field, whichever is later.

This call does nothing for volume directories.

.c2.OPEN ($10)

If a directory is being opened, the 'request_access' parameter must be either $0001 (read only) or $0000 (as permitted). If the 'request_access' parameter is $0002 (write only) or $0003 (read/write), error $4E (invalid access) will be reported.

If a file is being opened, the following rules apply -

If the 'request_access' parameter is $0001 (read only), the file will be opened as read only unless it has already been opened with write access, in which case error $4E (invalid access) will be returned.

If the 'request_access' parameter is $0002 (write only), the file will be opened as write only unless it has already been opened or is locked, in which case error $4E (invalid access) will be returned.

If the 'request_access' parameter is $0003 (read/write), the file will be opened as read/write unless it has already been opened or is locked, in which case error $4E (invalid access) will be returned.

If the 'request_access' parameter is $0000 (as permitted), an attempt will be made to open the file as read/write if it is unlocked or read only if it is locked. If the file has already been opened with write access, error $4E (invalid access) will be returned. If the file has already been opened with read only access, it will be opened again with read only access.

The class 1 'access', 'file_type', 'aux_type', 'storage_type', 'option_list', 'eof', 'blocks_used', 'resource_eof' and 'resource_blocks' parameters are as described for the GET_FILE_INFO call.

A file's resource fork can always be opened since there is no way to distinguish between a fork of length 0 and a fork that doesn't exist.

.c2.READ ($12)

This call is not defined for directories and will return error $4B (unsupported storage type).

.c2.WRITE ($13)

This call is not defined for directories and will return error $4B (unsupported storage type).

If the logical EOF needs to be extended to accomodate the new data, the physical EOF will be set to the new logical EOF rounded up to the nearest allocation block. If the file needs to be extended to accomodate the new physical EOF, the number of bytes added to the file will be rounded up to the nearest clump. (Allocation blocks and clumps are explained in Macintosh Technical Note #246)

.c2.CLOSE ($14)

This call will truncate the file to its physical EOF before closing it.

This call does nothing for directories.

.c2.FLUSH ($15)

A new class 1 parameter has been added. If the 'fast_flush' parameter is non-zero, the file's 'modified date/time' information will not be updated unless the file entry has to be updated because other information (ie the logical EOF and/or physical EOF) has changed.

This call does nothing for directories.

.c2.SET_MARK ($16)

This call is not defined for directories and will return error $4B (unsupported storage type).

.c2.GET_MARK ($17)

This call is not defined for directories and will return error $4B (unsupported storage type).

.c2.SET_EOF ($18)

This call is not defined for directories and will return error $4B (unsupported storage type).

If the logical EOF is extended, the additional bytes will not be zeroed.

If the logical EOF is extended, the physical EOF will be set to the new logical EOF rounded up to the nearest allocation block. If the file needs to be extended to accomodate the new physical EOF, the number of bytes added to the file will be rounded up to the nearest clump.

If the logical EOF is shortened, the physical EOF is truncated to the logical EOF rounded up to the nearest allocation block and the file is truncated to the end of the extent containing the new physical EOF.

(Allocation blocks, clumps and extents are explained in Macintosh Technical Note #246)

.c2.GET_EOF ($19)

This call is not defined for directories and will return error $4B (unsupported storage type).

.c2.GET_DIR_ENTRY ($1C)

This call is not defined for files and will return error $4A (version error).

The 'access', 'file_type', 'aux_type', and 'option_list' parameters are as described for the GET_FILE_INFO call.

The class 0 'eof' and 'block_count' parameters are undefined if the 'filetype' parameter is returned as $0F (directory).

The class 1 'eof', 'block_count', 'resource_eof' and 'resource_blocks' parameters are undefined if the 'filetype' parameter is returned as $0F (directory).

If the 'name' output buffer is not big enough to hold the entire name string, GetDirEntry will store as much of the string as will fit and will then return all other requested output parameters before reporting error $4F (buffer too small).

.c2.GET_DEV_NUM ($20)

No differences.

.c2.FORMAT ($24)

3.5-inch disks which have been formatted by the HFS FST will be recognized by both the Macintosh and Apple //GS but will not be bootable on either machine (blocks 0 and 1 are zeroed during formatting).

Unpartitioned hard drives which have been formatted by the HFS FST will be recognized by the Apple //GS but will not be recognized by a Macintosh. In order for a hard drive to be recognized by a Macintosh it must be partitioned and must contain a special Apple_Driver partition which is used by the Mac when mounting the drive on the desktop. The HFS FST does not partition hard drives when formatting them. Therefore, if the user wishes to format a hard drive for use on both a //GS and a Macintosh, the drive must either be formatted on the Macintosh or partitioned and formatted using the revised ADU.

The minimum volume size is 10 physical blocks.

.c2.ERASE_DISK ($25)

The only difference between ERASE_DISK and FORMAT is that ERASE_DISK does not issue a format call to the device.

See comments under FORMAT.

.c2.FST_SPECIFIC ($33)

This call is not defined and will return error $65.

Page 4

