[image: image1.wmf]
HYPERCARD IIGS 1.1 ERS
© 1991-92 Apple Computer, Inc. All Rights Reserved

Summary of HyperCard IIGS Version 1.1

Version 1.1 is an enhanced version of HyperCard IIGS version 1.0. As such, it includes all the features of HyperCard IIGS version 1.0 (referred to hereafter as version 1.0) as well as new features specific to version 1.1. Stacks created with version 1.0 are 100% compatible with version 1.1. Stacks created with the later version will continue to function with version 1.0 provided the stacks do not take advantage of features specific to version 1.1. Stacks that use the new HyperTalk features of 1.1 will generate HyperTalk errors if run under version 1.0.

HyperCard IIgs 1.1 is designed to function with the same memory requirements as version 1.0. It requires an Apple IIGS with at least 1.5 megabytes of memory and a hard disk.

Version 1.1 is System Software 6.0 aware and takes advantage of several new system software features. Version 1.1 will continue to run with System Software 5.0.4 as did HyperCard IIgs version 1.0.

The new features of version 1.1 are designed to provide easier access to commonly used scripting techniques, implement the most useful/practical of the Macintosh HyperCard 2.1 features, provide a further implementation of color, and take advantage of new features in System Software.

Bugs fixed in version 1.1 consist of all known crashing bugs as well as any bugs fixable within the scope of the 1.1 release.

Version 1.1 Features

This section describes all the new features of HyperCard IIgs 1.1 as well as comparing them to similar or identical features of Macintosh HyperCard 2.0/2.1. The list below is comprised of visual changes as well as discernible feature changes. It does not include changes such as speed enhancements or bug fixes which are included in a separate section.

New property - “ItemDelimiter”

This new property allows the scripter to define any single character as the delimiter character used to separate items in HyperTalk containers. For example, the scripter wishes to locate the filename from within a container that contains a complete pathname. Using version 1.1 and the itemDelimiter property, the scripter can do this:

Variable “bucket” contains:

:Barney:HyperCard:Stacks:MyOwnStack

The user executes the following script:

set the itemDelimiter to colon

put last item of bucket

Version 1.1 responds with:

MyOwnStack

The itemDelimiter property resets to the comma character at idle time so as not to affect compatibility with stacks that assume the itemDelimiter character is always a comma. This property is identical to HyperCard 2.1.

New constants - “Comma” and “Colon”

Version 1.1 contains two new HyperTalk constants. They are “colon” and “comma.” These constants are designed to compliment the new itemDelimiter property.

The user can now script:

Set the itemDelimiter to colon

or

Set the itemDelimiter to comma

Instead of:

Set the itemDelimiter to “:”

or

Set the itemDelimiter to “,”

Note that the scripter is not restricted to using these constants and can use any HyperTalk character or expression to define the itemDelimiter character.

Feature enhancement - “Compact Stack”

Compacting a stack with free space in the resource fork caused by adding and deleting resources will now compact the resource fork as well as the data fork when the user chooses the Compact Stack menu item if: (a) the user holds down the option key, (b) the free space is > 50K, or (c) the free space is > 10% of the resource fork size.

Command enhancement - “Ask”

The “Ask” command has been enhanced to return “Cancel” if the user clicks the cancel button in addition to returning empty in the variable “it.”

The user can now script:

ask “Please enter your name:”

if the result is not “Cancel” then

 put it into userName

end if

Property change - “Rect, top, topLeft, location”

The rect property of windows has been altered to be compatible with Macintosh HyperCard. HyperCard IIGS 1.0 would return a rect with the top left corner starting at the top left of the window frame. HyperCard IIgs 1.1 and all versions of Macintosh HyperCard return the top left corner of the content region. The same applies when setting the top, location, or topLeft of a window. The coordinates specified define the top left of the content region. Scripts from HyperCard IIGS 1.0 that specifically set a window to a certain location will cause the window to appear six pixels higher than it did running under HyperCard IIgs 1.0. This can be easily changed in the particular script.

New property - “BackColor”

A new property named “BackColor” has been added to fields and buttons. This property determines the background color of a button or field. HyperCard IIGS 1.0 is restricted to white backgrounds.

The user can access this new property with the following:

set the backColor of button 1 to 15

or

set the backcolor of last field to 5

The backColor property is limited to an integer between 1 and 16 representing one of the sixteen colors available to user on that particular card/background. This property can also be accessed and changed from the revised object color dialog boxes.

Changed dialog boxes - “Field Colors” and “Button Colors”

The dialog boxes which allow the user to view and modify the color attributes of buttons and fields have been altered significantly. Included on the next page are screenshots of the new dialog boxes.

[image: image2.wmf]
HyperCard IIgs version 1.1 Field Colors Dialog

[image: image3.wmf]
HyperCard IIgs version 1.1 Button Colors Dialog

Feature Enhancement - “Transparency”

The new backColor property interacts with transparent buttons and fields to provide “tinted” buttons/fields similar to a stained glass effect. Setting the backColor of a transparent button or field causes the background of the part to be translucent, allowing objects behind the part to show through to the foreground. The choice of backColor determines how the objects underneath show through and how they are tinted. Transparent objects created with version 1.0 always have a backColor of white which is not affected by this feature. Transparent objects with a white background color will function identically to version 1.0.

New Functions - “ClickLine” and “ClickChunk”

Version 1.1 contains two new functions that allow the scripter to easily determine where in a particular field a user clicked.

Syntax for the clickLine, clickChunk functions:

put the clickLine

put the clickChunk

Or

put clickLine()

put clickChunk()

ClickLine returns the line clicked in this format:

line 3 of card field 1

ClickChunk returns a chunk expression defining the text clicked on in this form:

char 5 to 9 of bkgnd field 6

ClickLine returns the line clicked relative to the actual text of the field, not the way the text is word wrapped. Therefore, a user can click on the text on the second line of a field and have line one returned since the first line of the field was long enough to wrap to the second display line. These functions are identical in implementation to these functions in Macintosh HyperCard 2.0/2.1.

System Software 6.0 support

HyperCard IIgs 1.1 contains several features specific to the 6.0 environment. If running under System Software 5.0.4, these features will not be available.

Detect disk insertions

Version 1.1 will now detect disk insertions and respond appropriately
at idle time. If the disk is unreadable, a dialog box will be displayed asking

the user if they wish to format the disk.

Launching under System Software 6.0

HyperCard IIgs 1.1 will not drop out of the SHR screen while launching, exe-
cuting another GS/OS application, or quitting to the Finder.

Finder support

Version 1.1 contains Finder “info” resources containing icon, version, and

copyright information as well as document types and paths.

Command enhancement - “Play”

The Play” command has been enhanced to work in conjunction with the new 6.0
Sound Control Panel. If 6.0 is in use and the user attempts to play a sound
that is not present in the current resource heirarchy, version 1.1 will query the
Sound Control Panel to determine if a sound with that name exists in the Sounds
folder of the boot disk. If it does, version 1.1 will play the sound just as if it was
present in a resource. This process will be transparent to the end user.

XWindows

HyperCard IIgs 1.1 implements a subset of the XWindow concept from Macintosh HyperCard 2.0/2.1. Certain concepts such as those dealing with an externally based script editor as in 2.0/2.1 are not implemented. The list below details the XWindow implementation of HyperCard IIgs version 1.1.

HyperTalk Extensions

HyperCard IIgs 1.1 HyperTalk has been extended to include support for moving, hiding, showing, and otherwise manipulating XWindows as easily as the built-in windows such as the Tool, Pattern, and Go palettes. In addition, HyperTalk support for the built-in windows is improved and expanded. All the original methods of dealing with windows remain intact and unchanged.

New Method of Referencing Windows - by Name, Number, or Ordinal.

Version 1.1 now supports referencing windows, both built-in and external, in several new ways. These new ways of referencing the windows are compatible with 2.0/2.1. Referencing a window in HyperCard IIGS 1.0/HyperCard 1.2.5 was restricted to this:

show tool window

Although this still functions, it is now possible to reference a window in any one of the following methods:

show tool window

hide window tool

show window “tool”

close window “Fred” <---- Assuming there is a window named “Fred”

set the location of first window to 50,50

get the visible of sixth window

show last window

show window 3

show window id 69341 at 50,30

hide any window

All of the existing commands and functions dealing with windows as well as all new commands and functions now support this method of referencing windows. Note that only the built-in windows (Tool, Pattern, Card, and Go) can be referenced in the old form of “<name> window.”

[image: image4.wmf]
HyperCard IIgs version 1.1 Windows

New Function - “windows”

Version 1.1 implements a new function which returns a return-delimited list of all windows currently available. This is 2.0/2.1 compatible. A typical result of this function is below:

Message

Home <------ The name of the card window is the current stack.

Pattern

Tool

Go

Extension to Existing Function - “number of windows”

In addition to being able to determine the number of cards, bkgnds, parts, etc. version 1.1 can now report the number of available windows. This is 2.0/2.1 compatible. This number is the number of HyperCard windows, it does not include DA windows or any others.

The user can script:

put the number of windows

HyperCard IIgs 1.1 responds with:

5

Extension to Existing Command “set”

Version 1.1 implements all of the properties previously supported for built-in windows for external windows as well. This includes location, topLeft, location, visible, etc. This is identical to 2.0/2.1.

Extension to Existing Command “Dial with Modem”

Executing the dial with modem command now attempts to dial the phone with a serial or modem card if the built-in modem port is disabled. The logic for the dial command is this:

1)
Look for the modem port, if slot 2 is set to “modem”, send the modem dialing string out the built-in port.

2)
If the built-in modem port is disabled, look for a character device in slot 2. If found, send the modem dialing string to that card.

3)
If the built-in port is disabled and slot 2 does not contain a character device, scan for a character device beginning at slot 1 and send the dialing command to the first one found.

Extension to Existing Command “Play”

Version 1.1 will now play any sound in the Sounds folder when using System 6.0. If a play command is given using a sound that is not in the current resource heirarchy, HyperCard IIGS v.1.1 will call the Sound CDEV of System 6.0 to determine whether a sound of that name exists in the folder. If so, it is loaded and used just as any sound resource would be.

New Window Property - “Name”

Version 1.1 now supports the read-only window property “name.” This allows the user to determine a window name. Commonly used when the user only knows the window number.

The user can script:

put the name of <windowReference>

HyperCard IIgs version 1.1 responds with something like:

Pattern

New Window Property - “Number”

Version 1.1 now supports the read-only window property “number.” This allows the user to determine a window number. Commonly used when the user only knows the window name.

The user can script:

put the number of <windowReference>

HyperCard IIgs version 1.1 responds with something like:

5

New Window Property - “ID”

Version 1.1 now supports the read-only window property “ID.” This allows the user to determine the ID of a given window. There are several things to note regarding window IDs. IDs for the built-in windows are assigned when HyperCard IIgs starts up and will not change. XWindow IDs are assigned when the window is created and released when the window is closed. Window IDs may vary for any window from machine to machine.

The user can script:

put the id of <windowReference>

HyperCard IIgs version 1.1 responds with something like:

69341

Extension to Existing Command - “Close”

The Close command has been extended to included support for closing external windows as well as closing text files and printing jobs. Only external windows may be closed. Attempting to close a built-in window will result in the error message “Can’t close that window.” Syntax for closing external windows is:

close <windowReference>

The Close command supports all forms of window references and is HyperCard 2.0/2.1 compatible.

Extensions to the XCMD Interface

Version 1.1 contains several new callbacks dealing with the implementation of XWindows as well as related utility callbacks. These callbacks are accessed with a set of new HyperXCMD interfaces files providing access to the callbacks from Pascal, C, and Assembly Language. As many of the new callbacks as possible are modeled after their Macintosh HyperCard 2.0/2.1 counterparts within the scope of our XWindow implementation. Following is a list and general description of the new callbacks.

New Callback - “StrToRect”

PROCEDURE StrToRect(str: Str255; VAR rct: Rect);

Inputs
str
String containing text to convert to a rect

Outputs
rct
Rect containing specified coordinates

This callback converts a Pascal string containing alphanumeric characters delimited by commas designating a rectangle to a true, four integer rect record. Pascal interface is above.

New Callback - “RectToStr”

PROCEDURE RectToStr(rct: Rect; VAR str: Str255);

Inputs
rct
Rect containing coordinates to convert

Outputs
str
String containing alphanumeric representation of rect

The complement of StrToRect, this callback converts a rect record back to a string.

New Callback - “StrToPoint”

PROCEDURE StrToPoint(str: Str255; VAR pt: Point);

Inputs
str
String containing text to convert to a point

Outputs
pt
Point containing specified coordinates

This callback converts a Pascal string containing alphanumeric characters delimited by commas designating a point to a true, two integer point record.

New Callback - “PointToStr”

PROCEDURE PointToStr(pt: Point; VAR str: Str255);

Inputs
pt
Point containing coordinates to convert

Outputs
str
String containing alphanumeric representation of point

The complement of StrToPoint, this callback converts a point record back to a string.

New Callback - “NewXWindow”

FUNCTION NewXWindow(boundsRect: Rect; windName: Str31

 visible: BOOLEAN, windowStyle: INTEGER): WindowPtr;

Inputs
boundsRect
Rect for newly created window

windName
Name used for HyperTalk references to the window and,

optionally, displayed depending on the window type.

visible
Whether to create the new window initially visible

windowStyle
Style of the XWindow. 0 = windoid, 1 = rectangle,

2 = shadow, 3 = dialog box.

Outputs
windowPtr
Pointer to a standard window record defining the new

window.

This callback allows an external command to create and register a window. In addition to creating the window, HyperCard also adds the new window to its internal list of external windows and keeps the XCMD in memory after it terminates so that it can respond to events concerning the window. The windows created are standard IIGS windows and can be manipulated in the same way as a window created from within a stand-alone application with two exceptions.

(1) The XCMD must never call the toolbox routine CloseWindow on the XWindow. External commands MUST use the CloseXWindow callback to dispose of a window.

(2) External commands must not alter the wRefCon field of the window record. This field is reserved for HyperCard. External commands needing to save or restore data associated with a particular window can use the SetXWindowValue and GetXWindowValue callbacks.

New Callback - “CloseXWindow”

PROCEDURE CloseXWindow(window: WindowPtr);

Inputs
window
Pointer to a window record designating the window to be

closed

Outputs
<none>

This callback send an xCloseEvt to the owner external, closes the window, and disposes of all memory HyperCard has allocated for the window. XCMDs that create windows are responsible for disposing of any memory they have allocated when they receive an xCloseEvt.

New Callback - “SetXWindowValue”

PROCEDURE SetXWindowValue(window: WindowPtr; customValue: LongInt);

Inputs
window
Pointer to window associated with the value

customValue
Four byte value containing data to store with the window

Outputs
<none>

This callback allows an external command to store a four byte value along with any XWindow. This value will typically be a pointer or handle to a block of memory containing information the external command wishes to keep intact regarding the contents of the XWindow. Because external commands can execute and terminate many times in response to events, data cannot be kept in standard variables.

New Callback - “GetXWindowValue”

FUNCTION GetXWindowValue(window: WindowPtr): LongInt;

Inputs
window
Pointer to window associated with the value

Outputs
customValue
Four byte value containing the data stored with the

window

New Callback - “HideHCPalettes”

PROCEDURE HideHCPalettes;

Inputs
<none>

Outputs
<none>

This callback hides all currently visible windows, both built-in and XWindows. Additionally, it stores internally which windows were visible at the time it was called so that a subsequent call to ShowHCPalettes will display the same set of windows. This callback is commonly used when an external command needs to clear the screen such as when using the video overlay card.

New Callback - “ShowHCPalettes”

PROCEDURE ShowHCPalettes;

Inputs
<none>

Outputs
<none>

This callback displays all windows hidden with the HideHCPalettes callback. If HideHCPalettes was not called, this callback does not display any windows.

New Callback - “SetXWIdleTime”

PROCEDURE SetXWIdleTime(window: WindowPtr; interval: LongInt);

Inputs
window
Pointer to owner window

interval
Length (in ticks) between idle events

Outputs
<none>

External commands that create XWindows will normally receive xIdleEvt events periodically. Because HyperCard IIgs must spend time generating and sending these events, an external command can tell HyperCard IIgs how often it wants these events. Setting the interval to zero will cause HyperCard IIgs to not send any idle events. Setting the interval to a very small number will cause HyperCard IIgs to send xIdleEvt events as quickly as possible. Because of the overhead involved in generating and sending an event, an external command should not depend on receiving xIdleEvt events at exact intervals. In addition, xIdleEvt events are only sent at HyperCard IIgs idle time and may be postponed for lengthy intervals while scripts are running.

New Callback - “XWAllowReEntrancy”

PROCEDURE XWAllowReEntrancy(window: WindowPtr; allowSysEvts: BOOLEAN;

 allowHCEvts: BOOLEAN);

Inputs
window
Pointer to owner window

allowSysEvts
Whether to allow reentrant system events

allowHCEvts
Whether to allow reentrant HyperCard events

External commands have control over whether to allow reentrant events. That is, whether to allow an event to be sent to an external that is still executing in response to another event. The default is not to allow recursive calls to an external command.

Events Dealing with XWindows

External commands that create XWindows are kept in memory after they terminate so that they may be called in response to events concerning the XWindows they created. An XCMD can determine whether it has been called from a script or the message box or in response to an event by checking the paramCount field of the parameter block. If this value is negative, the XCMD has been called in response to an event. The following Pascal code fragment illustrates this concept.

BEGIN {SampleXCMD}

 { If the paramCount is negative, we have been called in response

to an event }

 IF paramPtr^.paramCount < 0 THEN BEGIN

 HandleEvents;

 EXIT(SampleXCMD);

 END; {if}

 { program continues... }

The Events an External Command Can Receive

The following is a list of all events an external command can receive along with a description of the event. Some of the events are standard system events while others are generated by HyperCard.

HyperCard Event - “xOpenEvt”

xOpenEvt is the first event sent to any XWindow. This event is sent to any new XWindows immediately after the parent XCMD terminates. No events will be sent to an XWindow before this event.

HyperCard Event - “xCloseEvt”

This is HyperCard’s method of notifying the XCMD that a window that it created is being closed. At the time of the event, the window is still present and visible. The window will be closed immediately following the event. The owner XCMD should not call CloseXWindow or close the window in any other means when it receives this event. HyperCard will handle closing the window when the XCMD returns control. XCMDs will typically use this event to dispose of any additional memory they have allocated for the XWindow.

HyperCard Event - “xHidePalettesEvt”

This event is sent to all XWindows when an external command executes the HideHCPalettes callback. An external command may wish to deallocate memory or take other action when the user hides their window in this manner.

HyperCard Event - “xShowPalettesEvt”

This event is sent to all XWindows when an external command executes the ShowHCPalettes callback. An external command may need to prepare itself to handle update events, etc, if it has deallocated the memory when being hidden.

HyperCard Event - “xCursorWith”

This event is sent to an XWindow when the mousecursor enters therect of their window. The owner XCMD can then set the cursor to a custom shape if desired using the GS Toolbox. If they do not wish to handle the changing of the cursor shape, the external command should set the passFlag of the parameter block to TRUE so that HyperCard IIgs will handle the cursor itself. Since this message is sent repeatedly, as long as the cursor is within the window, the XCMD should determine whether it has already changed the cursor shape before doing so again to avoid flickering of the cursor and slowing down the CPU.

System Event - “UpdateEvt”

This event indicates the all or part of the specified window needs to be updated. It is the responsibilty of the owner external of each window to handle redrawing the contents of the window in response to this event.

System Event - “MouseDownEvt”

The user has pressed the mouse button while the mouse pointer was within an external window. The external command will commonly handle tracking the mouse click manually, or call FindControl and have the control manager do so.

System Event - “NullEvt”

This event will only be sent if the XCMD/XFCN has enabled idle events by setting the idle interval to a value other than zero with the SetXWIdleTime callback. See the description of this callback above for more information regarding using null events.

Care and Feeding of Your New XWindow

An XCMD that creates an XWindow is treated differently from an XCMD that doesn’t. The following section details differences the XCMD author needs to be aware of.

1) XCMDs that create external windows are kept in memory as long as any XWindows that XCMD created are open.

2) XWindow XCMDs should not assume that they own only one window. Subsequent calls to the XCMD may create additional windows. The XCMD should use the windowPtr passed and the GetXWindowValue and SetXWindowValue calls to determine the appropriate action to take in response to a particular event.

3) The same Memory Manager user ID is passed to an XWindow owner XCMD as long as any of the XWindows the XCMD owns are open. The XCMD should not perform a DisposeAll on its memory ID because other windows that the XCMD is responsible for could still be open.

4) The wFrameBits field of an XWindow is inaccessible to an XCMD, XCMDs should not attempt to modify the standard window attributes of a windoid.

5) XWindow owners that close all of their XWindows will be disposed of when there are no more pending calls to them.

Major Bug Fixes in HyperCard IIgs 1.1

This section lists the bugs present in version 1.0 that are addressed in HyperCard IIgs 1.1. This is not a complete list of all bug fixes but rather a guide to major differences in version 1.0 and version 1.1 that a user could encounter.

Project Area
Bug Description
Scope of Bug Fix

Memory Mgmt.
Last sound played is left in memory
Version 1.1 now cleans up

locked and unpurgeable until another
sounds at idle time.
sound is played at which point that

sound is left locked and unpurgeable.

Externals
If an XCMD is passed an argument that
Added error check and

necessitates leaving the stack which
recovery for this situation.
contains the XCMD, version 1.0 would

crash.

Interpreter
Internal hash values were not being
Localized assembly fix.

generated correctly, slowing HyperTalk

execution speed.

Read Command
Read command could orphan a 4K
Rewrite of Read command.

handle in out of memory conditions.

Command is also wasteful of memory

and inefficient.

Clipboard
Version 1.0 was using an undocument-
Change to using

ed scrap type for palettes.
documented type.

Cursors
Several cases where version 1.0 wasn’t
Modified problem routines

restoring the cursor shape correctly.
to save/restore cursor correctly.

Edit Menu
Edit Menu IDs off-by-one for DAs.
Modified to use correct

Copy would be Cut, Paste would be
values.

Copy, etc.

HyperTalk
Saving a copy of a stack from Hyper-
Now save the wet paint on

Talk while in the Paint tools with wet
the correct card before the

paint present would result in the
copy.

paint being saved on the first card of

the source stack being copied.

Paint Tools
Fonts loaded or generated when
Correctly set fonts as

using paint text were not released.
purgeable after use.

Visual Effects
Using visual effect dissolve with a
No longer crashes.

completely obscured card window

causes a crash.

HyperTalk
The Dial command would not utilize
Version 1.1 now looks for a

a modem or serial card.
character device, preferrably

in slot 2, if the built-in

modem port is overridden.

Memory Mgmt.
Internal PLib routine that copies
Patched out PLIB routine

blocks of memory contained a bug
withfixed version.

that would overwrite a word of mem-

ory if the area being copied was an odd

number of bytes and crossed a bank.

HyperTalk
Using the "write at" syntax of the write
This 1.0 bug is fixed within

command to write at a point beyond the
Version 1.1 so that it zeros

eof of a file would not clear the data be-
the data.

tween the previous eof and the new

mark when writing to an AppleShare or

HFS volume.

Screen Update
Scrolling a field then moving windows
Fixed.

over top of it would cause the field to

refresh incorrectly.

Renaming a Stack
Changing the case of a character of
Fixed.

the name of a stack would not rename

the stack.

HyperTalk
Opening a ProDOS 8 application
Now correctly using

“with”a document was incorrectly using
slashes.

colons to specify the document path.

HyperTalk
Executing an invalid callback number
Now call SysFailMgr.

would execute a brk instruction, exiting

to the debugger or monitor.

Speed Improvements

Listed below are specific areas that have been improved as far as execution speed. While many improvements within the program as far as overall speed and responsiveness have been implemented, this section details speed improvements local to a specific area.

Project Area
Description of Speed Improvement

Icon Picker
Time to display the icon picker when choosing an icon for a button has

been drastically reduced. Most apparent when displaying many icons

as in the Button Ideas stack.

Interpreter
(Also listed in bug fixes.) Internal hash values were being generated

incorrectly, reducing execution speed. Hash values now generated

correctly.

Interpreter
Internal interpreter routines rewritten in assembly.

Graphics
Internal picture unpacking algorithm rewritten in assembly for improved
speed.

Button Hiliting
Version 1.0 writes the hilite of auto-hilite buttons to disk every time they
are clicked regardless of whether the button actually changed state.
HyperCard IIGS v.1.1 only writes auto-hilite buttons to disk if the state

actually changes, saving a disk access for every mouse click.

Button/Fields
Button and field drawing code is now all assembly.

Code Size/Memory Usage

HyperCard IIgs version 1.1 is smaller in code size than HyperCard IIGS version 1.0 even with the addition of the new features because version 1.1 is compiled with a later version of the Pascal IIGS compiler which generates smaller/faster code and because of routines rewritten in assembly which is inherently smaller than most compiled Pascal code as well as more efficient. Optimizing of Pascal code has also resulted in smaller code size and memory usage.

Version 1.1 manages memory more efficiently and will work better than version 1.0 in low memory situations because of the memory management bugs fixed as noted above and because of reorganized global variable usage and new code segmentation used throughout the program.

Sample XWindow Code (Pascal)

Included below is the source code for a sample XCMD. This is a much simplified version of the Picture XCMD that appears in the Scripter’s Tools stack. The complete source to that XCMD is also available as sample source code.

{---

 file Picture.p

 Part of HyperCard IIGS 1.1

 Copyright © 1991 Apple Computer, Inc.

 This XCMD has the following syntax:

Picture resName [, windowStyle]

INPUTS:
resName
Name of pict resource to draw in the window

windowStyle
(Optional) Defines the appearance of the

picture window. Can be rect, rectangle,

shadow, or dialog. Any other text or not

specified results in a standard windoid.

 This XCMD creates and maintains an XWindow. The XWindow contains

 a picture retrieved from a resource with a name specified by the

 caller. If the resource cannot be found, the XWindow is still

 created and the text "Unable to draw picture." is displayed.

 Author:
Darin Acquistapace

 Created:
5/22/91

 Modified:
See Mod History Below

 Modification History:

5/22/91 - New today.

5/30/91- Updated for revised XWindow callbacks

6/04/91 - Added HyperCard version check.

6/12/91 - Changed from wInContent to mouseDownEvt for mouseDowns.

6/14/91 - Added XWAllowReEntrancy for release with 1.1d10.

6/24/91 - Modified to work with "real" custom defProc XWindows.

6/31/91 - Added support for xCursorWithin message.

8/19/91 - Added support for multiple window styles.

---}

UNIT DummyUnit;

{$Z+ }

{$N+ }

INTERFACE

USES

 Types, Memory, MiscTool, GSOS, QuickDraw, Resources, QDAux, Events,

 Controls, Windows, Menus, HyperXCMD;

PROCEDURE EntryPoint(paramPtr: XCmdPtr);

IMPLEMENTATION

PROCEDURE XPicture(paramPtr: XCmdPtr);

FORWARD;

PROCEDURE EntryPoint(paramPtr: XCmdPtr);

BEGIN

 XPicture(paramPtr);

END;

PROCEDURE XPicture(paramPtr: XCmdPtr);

CONST

ScriptErrStr
= 'Can''t understand arguments of XCMD Picture.';

CopyrightStr
= 'Picture XCMD v1.0d7" & return &

 "by Darin Acquistapace, 5/22/91" & return

 & "© 1991 Apple Computer, Inc.';

HelpStr

= 'FORM: Picture ResourceName [, windowStyle]';

WrongVersionStr
= 'Picture XCMD requires HyperCard IIGS 1.1';

CreateErrStr
= 'Unable to create window';

CantDrawStr

= 'Unable to draw picture.';

RectStr1

= 'rect';

RectStr2

= 'rectangle';

ShadowStr

= 'shadow';

DialogStr

= 'dialog';

VAR

pCount:

INTEGER;

windowStyle:
INTEGER;

sampleXWindow:
WindowPtr;

windRect:

Rect;

str:

Str255;

styleStr:

Str255;

PROCEDURE HTError;

{ Puts the specified string into the result and terminates with a

HyperTalk error}

BEGIN

 ParamPtr^.ReturnValue := PasToZero(ScriptErrStr);

 ParamPtr^.ReturnStat := 1;

 EXIT(XPicture);

END; {HTError}

PROCEDURE ReturnResult(str: Str255);

{ Puts the specified string into the result and terminates }

BEGIN

 ParamPtr^.ReturnValue := PasToZero(str);

 EXIT(XPicture);

END; {ReturnResult}

PROCEDURE CommandInfo(Msg : str255);

{ Puts the specified string into a dialog box and terminates }

BEGIN

 SendHCmessage(concat('answer "', Msg, '"'));

 EXIT(XPicture);

END; {CommandInfo}

PROCEDURE UpdatePicture(whichWindow: WindowPtr);

{ This draws our picture into the XWindow }

VAR

 myPictureHndl: LongInt;

 destRect:
 Rect;

BEGIN

 { Retrieve the handle to our picture }

 myPictureHndl := GetXWindowValue(whichWindow);

 { Display message if unable to load the picture }

 IF myPictureHndl = 0 THEN BEGIN

 WITH whichWindow^.portRect DO SetRect(destRect, 0, 0, right,

bottom);

 EraseRect(destRect);

 MoveTo(10,13);

 DrawString(CantDrawStr);

 EXIT(UpdatePicture);

 END; {if}

 { Draw picture in upper left corner }

 WITH PicHndl(myPictureHndl)^^.picFrame DO

 SetRect(destRect, 0, 0, right-left, bottom-top);

 DrawPicture(PicHndl(myPictureHndl), destRect);

END; {UpdatePicture}

PROCEDURE CleanUpMemory(whichWindow: WindowPtr);

{ Remove our picture from memory when we close }

VAR

 myPictureHndl: LongInt;

BEGIN

 myPictureHndl := GetXWindowValue(whichWindow);

 IF myPictureHndl = 0 THEN EXIT(CleanUpMemory);

 KillPicture(PicHndl(myPictureHndl));

 SetXWindowValue(whichWindow, 0); { Just to be safe - clear

this value }

END; {CleanUpMemory}

PROCEDURE HandleWindowClick(whichWindow: WindowPtr; ourEvent:

EventRecord);

{ The user has clicked in our window, handle tracking the click }

 FUNCTION MouseUpInWindow: BOOLEAN;

 { Handle tracking a mouseClick in our window }

 VAR

 mouseLoc:
Point;

 oldInWind:
BOOLEAN;

 inWind:
BOOLEAN;

 targetRect:
Rect;

 BEGIN

 oldInWind := FALSE;

 inWind := TRUE;

 WITH whichWindow^.portRect DO SetRect(targetRect, 0, 0, right,

bottom);

 REPEAT

 IF oldInWind <> inWind THEN BEGIN

InvertRect(targetRect);

oldInWind := inWind;

 END; {if}

 GetMouse(mouseLoc);

 inWind := PtInRect(mouseLoc, targetRect);

 UNTIL NOT Button(0);

 IF oldInWind THEN InvertRect(targetRect);
{Turn off hilite}

 MouseUpInWindow := inWind; { Return whether mouseUp occurred

in the rect }

 END; {MouseUpInWindow}

BEGIN

 IF MouseUpInWindow THEN SendHCMessage('play "Harpsichord" tempo

400 "c d e"');

END; {HandleWindowClick}

PROCEDURE HandleEvents;

{ Handle events specific to our XWindow }

VAR

 myEventInfo:
XWEventInfoPtr;

 window:
WindowPtr;

 event:

EventRecord;

BEGIN

 myEventInfo := XWEventInfoPtr(paramPtr^.params[1]);

 window := myEventInfo^.eventWindow;

 event := myEventInfo^.event;

 CASE event.what OF

 xOpenEvt:

XWAllowReEntrancy(window, TRUE, TRUE);

 updateEvt:

UpdatePicture(window);

 mouseDownEvt:
HandleWindowClick(window, event);

 xCloseEvt:

CleanUpMemory(window);

 xCursorWithin:
paramPtr^.passFlag := TRUE; { Let HC

change our cursor }

 END; {case}

END; {HandleEvents}

PROCEDURE SetUpContents(resName: Str255);

{ Create the contents of our window }

VAR

 myPictureHndl: PicHndl;

 homeFile:
 INTEGER;

 pictureID:
 LongInt;

BEGIN

 IF NOT FindNamedResource(rPicture, resName, homeFile, pictureID) THEN

 EXIT(SetUpContents);

 Handle(myPictureHndl) := LoadResource(rPicture, pictureID);

 IF _toolErr <> 0 THEN EXIT(SetUpContents);

 DetachResource(rPicture, pictureID);

 IF _toolErr <> 0 THEN BEGIN

 ReleaseResource(3, rPicture, pictureID);

 EXIT(SetUpContents);

 END; {if}

 { Have HyperCard save handle to our picture resource }

 SetXWindowValue(sampleXWindow, LongInt(myPictureHndl));

END; {HandleEvents}

FUNCTION CorrectVersion: BOOLEAN;

{ This returns true if the version of HyperCard is >= minVersion }

CONST

 minVersion = '1.1';

VAR

 tempHandle:
Handle;

 tempStr:
Str255;

BEGIN

 tempHandle := EvalExpr('the version');

 ZeroToPas(tempHandle^, tempStr);

 IF temphandle <> NIL THEN DisposeHandle(tempHandle);

 CorrectVersion := tempStr >= minVersion;

END; {CorrectVersion}

 BEGIN

pCount := paramPtr^.paramCount;

{ If the paramCount is negative, we have been called in response

to an event }

IF pCount < 0 THEN BEGIN

 HandleEvents;

 EXIT(XPicture);

END; {if}

{ Display help or copyright info in response to "?" or "!" }

IF pCount >= 1 THEN BEGIN

 ZeroToPas(paramPtr^.params[1]^, str);

 IF str = '!' THEN CommandInfo(CopyrightStr);

 IF str = '?' THEN CommandInfo(HelpStr);

END; {if}

{ We''ll take one or two parameters }

IF (pCount < 1) OR (pCount > 2) THEN HTError;

{Make sure we are running at least version 1.1 of HyperCard IIGS}

IF NOT CorrectVersion THEN ReturnResult(WrongVersionStr);

IF pCount = 1 THEN windowStyle := xWindoidStyle

ELSE BEGIN

 ZeroToPas(paramPtr^.params[2]^, styleStr);

 IF StringEqual(styleStr, RectStr1) THEN windowStyle :=

xRectStyle

 ELSE IF StringEqual(styleStr, RectStr2) THEN windowStyle :=

xRectStyle

 ELSE IF StringEqual(styleStr, ShadowStr) THEN windowStyle :=

xShadowStyle

 ELSE IF StringEqual(styleStr, DialogStr) THEN windowStyle :=

xDialogStyle

 ELSE windowStyle := xWindoidStyle;

END; {else}

SetRect(windRect, 50, 76, 250, 140);

sampleXWindow := NewXWindow(windRect, str, FALSE, windowStyle);

IF sampleXWindow = NIL THEN ReturnResult(CreateErrStr);

SetUpContents(str);
{ Create the contents for the window }

ShowWindow(sampleXWindow);

 END;

END.
{ of the dummy unit
}

