Additions to the

AppleShare Programmer's Guide

for the

Apple IIGS

Delta ERS - EXTERNAL

October 7, 1991

v0.05CD

Copyright Apple Computer, Inc., 1988-1991

All rights reserved.

Table of Contents

Introduction
1

Asynchronous vs. Synchronous
1

Internet Address of a Router
1

New Miscellaneous Calls
2

CancelTimer ($45)
2

GetInfo2 ($3B)
3

Changes to the Name Binding Protocol (NBP)
4

General NBP changes
4

NBPKill ($46)
4

Changes to the AppleTalk Transaction Protocol (ATP)
5

General ATP changes
5

New Calls to the Zone Information Protocol (ZIP)
6

GetZoneList2 ($3C)
6

GetLocalZones ($3D)
7

SetMyZone ($3E)
8

GetNetInfo ($3F)
9

Changes to the Remote Print Manager (RPM)
10

PMSetPrinter ($28)
10

PMCloseSession ($47)
10

PMFlushSession ($48)
10

New Calls to the ProDOS Filing Interface (PFI)
11

FIHooks ($37)
11

FILogin2 ($38)
13

FIListSessions2 ($39)
14

FIGetSVersion ($3A)
15

.c1.Introduction
This document explains the changes and additions made to the AppleTalk® protocol stack for the Apple IIGS™ computer and System Disk 6.0. Changes made for System Disk 5.0.x are also included in this document for ease of reference. It is assumed that the reader has read and has access to the following documents:

•
AppleShare Programmer's Guide to the Apple IIGS

•
Inside AppleTalk
.c2.Asynchronous vs. Synchronous

The programmer should never make a synchronous only call with the async flag set (bit 7 = 1). Although some synchronous only calls can be made with the async flag set, the results can be unpredictable. In most cases, the call will complete with no detectable side effects, but others will hang or crash. As of System 6.0, synchronous-only calls made with the async flag set on a GS using LocalTalk will now immediately return error $0104 (sync/async error); this matches the behavior of the Apple IIe Workstation Card.

.c2.Internet Address of a Router

When sending packets to a router where you supply the internet address of the desintation node, you should always use the value returned in the aRouter field of the GetInfo2 call. You should no longer assume that you can reach a router by sending to network number 0 and node number aBridge returned by the GetInfo call.

u
Note: This restriction implies that you should no longer use the GetZoneList call since it only accepts a node number (imlicitly using 0 for the network number). While every effort will be made to keep this call functional, you should now use the GetZoneList2 call instead.

.c1.New Miscellaneous Calls

.c2.CancelTimer ($45)

The CancelTimer call is used to cancel an asynchronous InstallTimer call before it completes. It uses the identical parameter list as the corresponding InstallTimer that is being removed. The parameter structure for the RemoveTimer call list listed here.

Position
Name
Size
Value
$00
Async Flag
Byte
$00
(Synchronous only)

$01
Command
Byte
$45

$02
Result Code
Word
<---

$04
Reserved
12 Bytes
x (the rest of the InstallTimer

parameter list)

The Async Flag and Command bytes must be changed in the original parameter list used for the InstallTimer call. If the timer routine has not been installed or had completed, a "No Timer Installed" error ($0103) is returned. If the timer is successfully canceled, the completion routine will receive a "Timer Canceled" error ($0106). This is important as a successful result for the CancelTimer call will return error $0106 instead of "No Error" ($0000).

The CancelTimer call returns these result codes, as well as the result codes for all system calls.

Result
Description

$0103
No Timer Installed

$0106
Timer Canceled

.c2.GetInfo2 ($3B)

This is an extension to the GetInfo ($02) call that returns extra information necessary for EtherTalk and AppleTalk Phase 2 support. The parameter block is as follows:

Position
Name
Size
Value

$00
async
Byte
$00
(Synchronous only)

$01
command
Byte
$3B

$02
result
Word
<---

$04
reqVersion
Word
--->

$06
flags
Long
<---

$0A
netLow
<Word>
<---

$0C
netHigh
<Word>
<---

$0E
ourAddr
4 Bytes
<---

$12
aRouter
4 Bytes
<---

$16
linkType
Word
<---

$18
linkLength
Word
--->

$1A
linkBuffer
Long
--->

$1E
linkActLen
Word
<---

The field completionRtnReturn will contain the address to jump to when returning from a completion routine, socket listener, or protocol handler. The reqVersion field tells AppleTalk which version of the info you want (so it can be extended later); the above definition is for version 1. The flags field is currently undefined (perhaps a flag for extended networks?). The netLow and netHigh fields determine the range of network numbers on your network; for non-extended networks, they will both be the same as your network number. Both fields are in high-low byte order (opposite that of a 6502). The ourAddr and aRouter fields specify 24-bit AppleTalk node addresses for your machine and for the last router heard from; the first word is the network number in high-low order, the third byte is the node number, the last byte is reserved.

The type of physical data link is returned in linkType; the currently defined values are 1=LocalTalk, 2=Ethernet. The node's physical (link) address is returned in the buffer pointed to by linkBuffer. The linkLength field specifies the length of the buffer pointed to by linkBuffer; if linkLength is less than the size of the data to be returned and linkBuffer is not zero, error $0107 (Buffer Too Small) is returned. The linkActLen field is always set to the size of the link's physical address.

.c1.Changes to the Name Binding Protocol (NBP)

.c2.General NBP changes

The NBP socket listener is the process that receives NBP lookup requests from other nodes and replies to them. It is not directly accessible to the programmer, but it is changed to support new features.

A single approximately-equal-to character (≈, $C5) is allowed in the object and type strings; it matches zero or more characters in the middle or at the beginning or end of a string (only one occurrence is allowed). Case-insensitive matching of diacritical characters is supported (this is a bug fix).

The byte value $FF as the first byte of an object, type, or zone string is reserved. This is not enforced (so that it CAN be used if it becomes defined). Similarly, other reserved characters (such as "=" and "≈") should not be used when registering a name, but this restriction is not enforced.

.c2.NBPKill ($46)

The NBPKill call is used to cancel an asynchronous NBP call before it completes. The parameter structure for the NBPKill call list listed here.

Position
Name
Size
Value
$00
Async Flag
Byte
$00
(Synchronous only)

$01
Command
Byte
$46

$02
Result Code
Word
<---

$04
ParamBlockPointer
Long
--->

ParamBlockPointer must point to the beginning of the parameter block that is currently being used by the asynchronous call that is to be canceled.

The NBPKill call returns these result codes, as well as the result codes for all system calls.

Result
Description

$040A
ParamBlock Not Found

.c1.Changes to the AppleTalk Transaction Protocol (ATP)

.c2.General ATP changes

The lower three bits of the ATP Flags parameter of the SendATPReq ($12) call may be set by the client to indicate the desired length of the TRel timer in an exactly-once (XO) transaction. Valid values (in binary) and their timer length are:

•
000 = 30 second TRel timer

•
001 = 1 minute TRel timer

•
010 = 2 minute TRel timer

•
011 = 4 minute TRel timer

•
100 = 8 minute TRel timer

Other values for this field are reserved and should not be used. These same bits are also valid in the ATP Flags field of the SendATPResp ($17) call although they are not actually transmitted over the network. Your application should copy the ATP Flags byte returned by the GetARPReq ($16) call to the ATP Flags for SendATPResp before making the SendATPResp call for this feature to work properly.

u
Note: AppleTalk Phase 1 nodes will not honor the TRel timer field in the XO TReq packets and will always use a TRel timer value of 30 seconds.

.c1.New Calls to the Zone Information Protocol (ZIP)

.c2.GetZoneList2 ($3C)

This is an extension of the original GetZoneList ($1B) call, using a 24-bit value for the address of the router used to obtain the list. The parameter list is as follows.

Position
Name
Size
Value

$00
async
Byte
--->

$01
command
Byte
$3C

$02
result
Word
<---

$04
completionRoutine
Long
--->

$08
bufferLength
Word
--->

$0A
bufferPointer
Long
--->

$0E
startIndex
Word
--->

$10
retryInterval
Byte
--->

$11
retryCount
Byte
--->

$12
zonesReturned
Word
<---

$14
zipWork
Long
--->
(Set to 0 on first call)

$18
reserved
Long
<---

The call obtains the value of aRouter internally. The zipWork field should be set to all zeroes before making the call for the first time. If error $0602 (ZIP Overflow -- more zones than will fit in the given buffer) is returned, you may make the call again without changing the zipWork field. You may change the startIndex field (usually to startIndex+zonesReturned) and make the call again to return more zones. To obtain a list of all local zones on the network, repeat the call after adding zonesReturned to startIndex until an error other than $0602 is returned. The zonesReturned field returns the actual number of zones returned in the buffer for that call only (it does not accumulate for multiple calls).

GetZoneList2 returns the following errors in addition to the miscellaneous system errors.

Result Code
Description

$0601
Network error, including too many ZIP calls in progress

$0602
ZIP overflow -- the buffer was not big enough

$0603
ZIP not found -- unable to find a router

.c2.GetLocalZones ($3D)

This call returns the list of zones local to the node's own network. It works in the same way as the GetZoneList2 call. The parameter list is as follows.

Position
Name
Size
Value

$00
async
Byte
--->

$01
command
Byte
$3D

$02
result
Word
<---

$04
completionRoutine
Long
--->

$08
bufferLength
Word
--->

$0A
bufferPointer
Long
--->

$0E
startIndex
Word
--->

$10
retryInterval
Byte
--->

$11
retryCount
Byte
--->

$12
zonesReturned
Word
<---

$14
zipWork
Long
--->
(Set to 0 on first call)

$18
reserved
Long
<---

The node may choose to reside in any of the zones returned by this call (by using the SetMyZone call). The call obtains the value of aRouter internally. The zipWork field should be set to all zeroes before making the call for the first time. If error $0602 (ZIP Overflow -- more zones than will fit in the given buffer) is returned, you may make the call again without changing the zipWork field. You may change the startIndex field (usually to startIndex+zonesReturned) and make the call again to return more zones. To obtain a list of all local zones on the network, repeat the call after adding zonesReturned to startIndex until an error other than $0602 is returned. The zonesReturned field returns the actual number of zones returned in the buffer for that call only (it does not accumulate for multiple calls).

On a non-extended network, this call will return a single zone, the same as returned by GetMyZone ($1A).
GetLocalZones returns the following errors in addition to the miscellaneous system errors.

Result Code
Description

$0601
Network error, including too many ZIP calls in progress

$0602
ZIP overflow -- the buffer was not big enough

$0603
ZIP not found -- unable to find a router

.c2.SetMyZone ($3E)

This call allows the caller to change the zone in which the node resides. The parameter list is as follows.

Position
Name
Size
Value

$00
async
Byte
--->

$01
command
Byte
$3E

$02
result
Word
<---

$04
completionRoutine
Long
--->

$08
defaultZone
Long
--->

This call changes the node's current and default zone to the zone name pointed to by bufferPointer; the zone name is a Pascal string (i.e. with a preceding length byte). The zone name set must be valid for the node's network (i.e. one of the zones as returned by GetLocalZones). This call also changes the default zone name stored in the node and will be used as the default zone name the next time the node is initialized on an extended network. On a non-extended network, error $0604 (Network Not Extended) is returned.

SetMyZone returns the following errors in addition to the miscellaneous system errors.

Result Code
Description

$0601
Network error, including too many ZIP calls in progress

$0603
ZIP not found -- unable to find a router

$0604
Network Not Extended

.c2.GetNetInfo ($3F)

The GetNetInfo call returns information about a given local zone name. The parameter list is as follows.

Position
Name
Size
Value

$00
async
Byte
--->

$01
command
Byte
$3F

$02
result
Word
<---

$04
completionRoutine
Long
--->

$08
requestZone
Long
--->

$0C
zipFlags
Word
<---

$0E
netLow
<Word>
<---

$10
netHigh
<Word>
<---

$12
multicastLength
Word
--->

$14
multicastBuffer
Long
--->

$18
defaultZone
Long
--->

The requestZone field points to a Pascal string containing the local zone name for which information is to be returned. Bit 7 of zipFlags is set if the requestZone is not valid for the network on which the node resides; Bit 6 is set if the data link does not support mulicasts; Bit 5 is set if there is only one local zone. The netLow and netHigh fields indicate the range of network numbers on the node's network. The multicastLength and multicastBuffer fields specify the size and address of a buffer where the multicast address corresponding to the zone name is returned (as a length bytes and that many data bytes). If the requested zone name was invalid (bit 7 of zipFlags was set), the multicast address is that of the default zone; if the defaultZone field is not zero, it points to a buffer of at least 33 bytes where the default zone name will be returned.

If the the multicast buffer's length (as specified by multicastLength) is not enough to hold the actual multicast address, error $0605 will be returned and all other fields will be returned. If the caller sets multicastLength to zero, then the multicast address will not be returned (and this will cause no error).

GetNetInfo returns the following errors in addition to the miscellaneous system errors.

Result Code
Description

$0601
Network error, including too many ZIP calls in progress

$0603
ZIP not found -- unable to find a router

$0604
Network Not Extended

$0605
ZIP Buffer Too Small -- multicastBuffer not large enough

.c1.Changes to the Remote Print Manager (RPM)

.c2.PMSetPrinter ($28)

This call hasn't changed accept for the fact that if the Timeout Interval is set to zero (0), then the session will never time out and must be stopped via the new PMCloseSession call.

.c2.PMCloseSession ($47)

The PMCloseSession call is used to close any outstanding RPM session. The parameter structure for the PMCloseSession call list listed here.

Position
Name
Size
Value
$00
Async Flag
Byte
$00
(Synchronous only)

$01
Command
Byte
$47

$02
Result Code
Word
<---

The PMCloseSession call never returns an error.

.c2.PMFlushSession ($48)

The PMFlushSession call is used to flush any unwritten data on the current RPM session. The parameter structure for the PMFlushSession call is listed here. Note: This call is only available under System Disk 5.03 and later.

Position
Name
Size
Value
$00
Async Flag
Byte
$00
(Synchronous only)

$01
Command
Byte
$48

$02
Result Code
Word
<---

The PMFlushSession call never returns an error.

.c1.New Calls to the ProDOS Filing Interface (PFI)

PFI has been modified to correctly set and get invisibility status on files. This includes both regular files and directories. Bit 2 in the ProDOS Access field now specifies whether or not the file or directory is invisible.

.c2.FIHooks ($37)

The FIHooks call is used for changing the default event notification routine. If the login program passes the default attention routine (null) to PFI, the default hooks will be called. These default hooks can be either set or returned through this call. The parameter structure for the FIHooks call is listed here.

Position
Name
Size
Value
$00
Async Flag
Byte
$00
(Synchronous only)

$01
Command
Byte
$37

$02
Result Code
Word
<---

$04
Flag Byte
Byte
--->

$05
MountVector
Long
<-->

$09
UnmountVector
Long
<-->

$0D
AttentionVector
Long
<-->

The Flag Byte field specifies the OS type and whether the hooks are to be set or returned, as shown in Table 1.

Table 1. Bit Settings for the Hook Flag Field

Bit Number
Setting
Description

7
Set (1)
ProDOS 8 active.

Clear (0)
GS/OS active.

6
Set (1)
The hooks will be set.

Clear (0)
The hooks will be returned.

5 - 0
Clear (0)
Must be zero.

Note: If bit 6 is clear, hooks to be returned, then bit 7 is ignored and the OS type will not be changed.

The MountVector field is a pointer to the routine that will be called whenever PFI adds a new volume to its internal tables.

The UnmountVector field is a pointer to the routine that will be called whenever PFI removes a volume from its internal tables. The MountVector and UnmountVector will be called in the following environment:

• = Undefined

ENTRY:
Called via 'JSL'

A Reg
=
Undefined

X Reg
=
Low word of parameter block pointer

Y Reg
=
High word of parameter block pointer

D Reg
=
PFI direct page

B Reg
=
PFI data bank

P Reg
=
N
V
M
X
D
I
Z
C
E

•
•
0
0
0
•
•
•
0

The parameter block contains the following data:

Byte
Session reference number

Byte
P8 Unit #

PString[28]
Volume name

Word
Volume ID

PString[32]
Server name

PString[33]
Zone name

EXIT:
Return via 'RTL'

A Reg
=
Undefined

X Reg
=
Undefined

Y Reg
=
Undefined

D Reg
=
PFI direct page

B Reg
=
PFI data bank

P Reg
=
N
V
M
X
D
I
Z
C
E

•
•
0
0
0
•
•
0
0

The AttentionVector field is a pointer to the routine that will be called whenever PFI receives a standard attention event for one of the mounted volumes.The AttentionVector will be called in the same environment as the mount and unmount vectors with the following parameter block:

Byte
Session reference number

Byte
Type of attention

Word
Attention data

PString[32]
Server name

PString[33]
Zone name

The result codes returned for the FIHooks call are the same as those common to all general system calls.

.c2.FILogin2 ($38)

The FILogin2 call is used to log in to a server. This call work primarily like the FILogin call. The exception is that there are two additional parameters at the end of the FILogin call structure. The parameter structure for the FILogin2 call is listed here.

Position
Name
Size
Value
$00
Async Flag
Byte
$00
(Synchronous only)

$01
Command
Byte
$38

$02
Result Code
Word
<---

$04
SLS Network Number
<Word>
--->

$06
SLS Node Number
Byte
--->

$07
SLS Socket Number
Byte
--->

$08
Command Buffer Length
Word
--->

$0A
Command Buffer Pointer
Long
--->

$0E
Reply Buffer Length
Word
--->

$10
Reply Buffer Pointer
Long
--->

$14
Session Reference #
Byte
<---

$15
Attn Routine
Long
--->

$19
Server Name Pointer
Long
--->

$1D
Zone Name Pointer
Long
--->

$21
AFP Version Number
Word
--->

The Command Buffer must be in AFP format for the FILogin2 call, with the first 2 bytes reserved for the AFP Command Number. When the call completes, the Reply Buffer contains the reply, if any, in AFP format. The Session Reference # field will return the ASP Session Reference Number. If the call completes with the Login Continue Error, the caller must complete the log-in process with the server by using the FILoginCont call. As far as PFI is concerned, the session has been established, unless the call completes with an error other than Login Continue.

The Server Name Pointer and Zone Name Pointer must point to a valid Pascal String (length byte followed by name). The AFP Version word must be in the following format:

"AFPVersion 1.1"
=
$0101

"AFPVersion 2.0"
=
$0200

"AFPVersion 2.1"
=
$0201

The high byte is the major version number and the low byte is the minor version number.

The Server Name, Zone Name, and AFP Version fields are NOT used by PFI to login to the server. These fields are required for the ListSessions2 and FIGetSVersion calls. It is up to the programmer making the Login2 call to verify that these parameters are correct.

The FILogin2 call returns these result codes, as well as the result codes for all system calls.

Result
Description

$0A01
Too many sessions

$0A02
Unable to open session

$0A03
No response from server

$0A04
Login continue

$0A13
Already logged in to server

$0A15
User not authorized

$0A16
Parameter error

$0A17
Server going down

$0A18
Bad UAM

$0A19
Bad version number

.c2.FIListSessions2 ($39)

The FIListSessions2 call is used to retrieve a list of current sessions being maintained through PFI and any volumes mounted for those sessions. This call work primarily like the FILogin call. The exception is that there are two additional parameters returned for every session. The parameter structure for the FIListSessions2 call is listed here.

Position
Name
Size
Value
$00
Async Flag
Byte
$00
(Synchronous only)

$01
Command
Byte
$39

$02
Result Code
Word
<---

$04
Buffer Length
Word
--->

$06
Buffer Pointer
Long
--->

$0A
Entries Returned
Byte
<---

The list is placed into the specified buffer. If the buffer is not large enough, the buffer will retain the maximum possible number of current sessions and then return as error. The format of the buffer is as follows:

Position
Name
Size
Value
$00
Session Reference #
Byte
<---

$01
Slot/Drive
Byte
<---

$02
Volume Name
28 Bytes
<---

$1E
Volume ID
<Word>
<---

$20
Server Name
32 Bytes
<---

$40
Zone Name
33 Bytes
<---

The FIListSessions2 call returns these result codes, as well as the result codes for all system calls.

Result
Description

$0A0B
Buffer too small

.c2.FIGetSVersion ($3A)

The FIGetSVersion call is used to determine what version of AFP was used to login to a particular server. The parameter structure for the FIGetSVersion call is listed here.

Position
Name
Size
Value
$00
Async Flag
Byte
$00
(Synchronous only)

$01
Command
Byte
$3A

$02
Result Code
Word
<---

$04
Session Number
Byte
--->

$05
AFP Version Number
Word
<---

The AFP Version word will be in the following format:

$0101
=
"AFPVersion 1.1"

$0200
=
"AFPVersion 2.0"

$0201
=
"AFPVersion 2.1"

The high byte is the major version number and the low byte is the minor version number.

The FIGetSVersion call returns these result codes, as well as the result codes for all system calls.

Result
Description

$0A06
Invalid session reference number

